230
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Process flowsheet development for selective arsenic removal, lead and antimony recovery from lead softening slag

, , , &

References

  • Anderson, C. G. 2001. Hydrometallurgically treating antimony-bearing industrial wastes. JOM 53 (1):18–20. doi:10.1007/s11837-001-0156-y.
  • Binz, F., and B. Friedrich. 2015. Recovery of antimony trioxide flame retardants from lead refining residues by slag conditioning and fuming. Chemie Ingenieur Technik 87 (11):1569–79. doi:10.1002/cite.201500071.
  • Binz, F., and B. Friedrich. 2017. Development of secondary antimony oxides from metallurgical slags for the application in plastic products. Journal of Sustainable Metallurgy 3 (4):683–89. doi:10.1007/s40831-017-0125-5.
  • Blanpain, B., S. Arnout, C. Mathias, and D. R. Swinbourne. 2014. Chapter 8 - Lead recycling. In Handbook of recycling, ed. E. Worrell and M. A. Reuter, 95–111. Elsevier.
  • Brink, S., R. Kleijn, B. Sprecher, N. Mancheri, and A. Tukker. 2022. Resilience in the antimony supply chain. Resources Conservation and Recycling 186:106586. doi:10.1016/j.resconrec.2022.106586.
  • Chen, B. J., B. C. Yang, and Z. D. Niu. 1995. Lead smelting, in design manual for heavy nonferrous metal (Lead, Zinc, and Bismuth) smelting (in Chinese). Beijing: Metallurgical Industry Press.
  • Dupont, D., S. Arnout, P. T. Jones, and K. Binnemans. 2016. Antimony recovery from end-of-life products and industrial process residues: A critical review. Journal of Sustainable Metallurgy 2 (1):79–103. doi:10.1007/s40831-016-0043-y.
  • EC (European Commission). 2020. Study on the EU’s list of critical raw materials – Final report.
  • Ellis, T. W., and A. H. Mirza. 2010. The refining of secondary lead for use in advanced lead-acid batteries. Journal of Power Sources 195 (14):4525–29. doi:10.1016/j.jpowsour.2009.12.118.
  • Firoozi, S. 2005. Thermodynamics and mechanisms of lead softening. Canada: McGill University.
  • Gavrichev, K., A. Bolshakov, D. Kondakov, A. Khoroshilov, and S. Denisov. 2008. Thermal transformations of lead oxides. Journal of Thermal Analysis and Calorimetry 92 (3):857–63. doi:10.1007/s10973-007-8590-x.
  • González-Domínguez, J. A., E. Peters, and D. B. Dreisinger. 1991. The refining of lead by the betts process. Journal of Applied Electrochemistry 21 (3):189–202. doi:10.1007/BF01052570.
  • Ichlas, Z. T., R. A. Rustandi, and M. Z. Mubarok. 2020. Selective nitric acid leaching for recycling of lead-bearing solder dross. Journal of Cleaner Production 264:121675. doi:10.1016/j.jclepro.2020.121675.
  • ILZSG (International Lead and Zinc Study Group). 2022. Lead and Zinc statistics. https://www.ilzsg.org/static/statistics.aspx?from=1.
  • Kapusta, J. P., T. R. Meadowcroft, and G. G. Richards. 2002. Oxygen softening of lead on line measurement of bullion quality. Canadian Metallurgical Quarterly 41 (4):451–64. doi:10.1179/cmq.2002.41.4.451.
  • Kim, E., L. Horckmans, J. Spooren, K. C. Vrancken, M. Quaghebeur, and K. Broos. 2017. Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues. Hydrometallurgy 169:372–81. doi:10.1016/j.hydromet.2017.02.027.
  • Kopyto, M., W. Przybyło, B. Onderka, and K. Fitzner. 2009. Thermodynamic properties of Sb2O3-SiO2 and PbO-Sb2O3-SiO2 liquid solutions. Archives of Metallurgy and Materials 54:811–22.
  • Lee, M. S., J. G. Ahn, and J. W. Ahn. 2003. Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution. Hydrometallurgy 70 (1–3):23–29. doi:10.1016/S0304-386X(03)00045-8.
  • Lee, H., and B. Mishra. 2020. Recovery of copper and precious metals and separation of lead from flue dust of electronic waste processing. Mineral Processing and Extractive Metallurgy Review 41 (3):153–61. doi:10.1080/08827508.2019.1575827.
  • Li, D., X. Guo, Z. Xu, Q. Tian, and Q. Feng. 2015. Leaching behavior of metals from copper anode slime using an alkali fusion-leaching process. Hydrometallurgy 157:9–12. doi:10.1016/j.hydromet.2015.07.008.
  • Ling, H., B. Blanpain, M. Guo, and A. Malfliet. 2021. Characterization of antimony-containing metallurgical residues for antimony recovery. Journal of Cleaner Production 327:129491. doi:10.1016/j.jclepro.2021.129491.
  • Ling, H., A. Malfliet, B. Blanpain, and M. Guo. 2022a. A review of the technologies for antimony recovery from refractory ores and metallurgical residues. Mineral Processing and Extractive Metallurgy Review 1–25. doi:10.1080/08827508.2022.2132946.
  • Ling, H., A. Malfliet, B. Blanpain, and M. Guo. 2022b. Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid. Separation and Purification Technology 281:119976. doi:10.1016/j.seppur.2021.119976.
  • Liu, W., W. Li, J. Han, D. Wu, Z. Li, K. Gu, and W. Qin. 2019. Preparation of calcium stannate from lead refining slag by alkaline leaching-purification-causticization process. Separation and Purification Technology 212:119–25. doi:10.1016/j.seppur.2018.11.024.
  • Li, X., Z. Yin, and B. Guo. 1995. Recovery of gold and silver from tin-rich slag. Mineral Processing and Extractive Metallurgy Review 15 (1–4):136. doi:10.1080/08827509508936956.
  • Luganov, V. A., E. N. Sajin, and G. A. Plakhin. 1995. Treatment of arsenic bearing raw materials. Mineral Processing and Extractive Metallurgy Review 15 (1–4):201. doi:10.1080/08827509508914198.
  • Palden, T., L. Machiels, M. Regadío, and K. Binnemans. 2021. Antimony recovery from lead-rich dross of lead smelter and conversion into antimony oxide chloride (Sb4O5Cl2). ACS Sustainable Chemistry & Engineering 9 (14):5074–84. doi:10.1021/acssuschemeng.0c09073.
  • Pan, J., Y. Sun, W. Li, J. Knight, and A. Manthiram. 2013. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell. Nature Communication 4 (1):2178. doi:10.1038/ncomms3178.
  • Singh, L. 1990. Synthesis of potassium antimony tartrate from the antimony dross of lead smelters. Hydrometallurgy 25 (1):19–25. doi:10.1016/0304-386X(90)90061-6.
  • Stevenson, M. 2009. Recycling | Lead–Acid batteries: Overview. In Encyclopedia of electrochemical power sources, ed. Jürgen Garche, 165–78. Elsevier Science.
  • USGS (United States Geological Survey). 2022. Mineral commodity summaries 2022. Virginia: U.S. Geological Survey.
  • Wu, D., W. Liu, J. Han, F. Jiao, J. Xu, K. Gu, and W. Qin. 2019. Direct preparation of sodium stannate from lead refining dross after NaOH roasting-water leaching. Separation and Purification Technology 227:115683. doi:10.1016/j.seppur.2019.115683.
  • Xu, Z., X. Guo, D. Li, and Q. Tian. 2018. Leaching kinetics of tellurium-bearing materials in alkaline sulfide solutions. Mineral Processing and Extractive Metallurgy Review 41 (1):1–10. doi:10.1080/08827508.2018.1506981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.