92
Views
89
CrossRef citations to date
0
Altmetric
Research Article

TH1 AND TH2 RESPONSES IN PATHOGENESIS AND REGULATION OF EXPERIMENTAL AUTOIMMUNE UVEORETINITIS

Pages 197-208 | Published online: 03 Aug 2009

  • R.R. Caspi, Experimental autoimmune uveoretinitis-Rat and mouse. In I.R. Cohenand A. Miller, eds., Animal Models for Autoimmune Diseases: A Guidebook, pp. 57-81, Academic Press, San Diego, CA, 1994.
  • I. Gery, M. Mochizuki, and R.B. Nussenblatt, Retinal specific antigens and immunopathogenic processes they provoke. Prog. Retinal Res., 5: 75-109, 1986.
  • G. Adamus and C.-C. Chan, Experimental autoimmune uveitides: Multiple antigens, diverse diseases. International Reviews of Immunology, 21(2-3): 209-229, 2002.
  • I. Gery and J.W. Streilein, Autoimmunity in the eye and its regulation. Curr. Opin. Immunol., 6: 938-945, 1994.
  • R.B. Nussenblatt, S.M. Whitcup, and A.G. Palestine, Uveitis: Fundamentals and Clinical Practice, 2nd ed. St. Louis, MO: Mosby, 1996.
  • G. Pennesi and R.R. Caspi, Genetic control of susceptibility in clinical and experimental uveitis. International Reviews of Immunology, 21(2-3): xx-xx, 2002.
  • R.R. Caspi, IL-12 in autoimmunity. Clin. Immunol. Immunopathol., 88: 4-13, 1998.
  • B. Charlton and K.J. Lafferty, The Thl/Th2 balance in autoimmunity. Curr. Opin. Immunol., 7: 793-798, 1995.
  • A. Saoudi, J. Kuhn, K. Huygen, Y. de Kozak, T. Velu, M. Goldman, P. Druet, and B. Bellon, TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur. J. Immunol., 23: 3096-3103, 1993.
  • L.V. Rizzo, H. Xu, C.-C. Chan, B. Wiggert, and R.R. Caspi, IL-10 has a protective role in experimental autoimmune uveoretinitis. Int. Immunol., 10: 807-814, 1998.
  • M. Rocken, M. Racke, and E.M. Shevach, IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today, 17: 225-231, 1996.
  • L. Adorini, J.C. Guery, and S. Trembleau, Manipulation of the Th1/Th2 cell balance: An approach to treat human autoimmune diseases? Autoimmunity, 23: 53-68, 1996.
  • H. Xu, L.V. Rizzo, R.B. Silver, and R.R. Caspi, Uveitogenicity is associated with a Thl-like lymphokine profile: Cytokine-dependent modulation of early and committed effector T cells in experimental autoimmune uveitis. Cell. Immunol., 178: 69-78, 1997.
  • R.R. Caspi, R.B. Silver, C.-C. Chan, B. Sun, R.K. Agarwal, J. Wells, S. Oddo, Y. Fujino, F. Najafian, and R.L. Wilder, Genetic susceptibility to experimental autoimmune uveoretinitis in the rat is associated with an elevated Th1 response. J. Immunol., 157: 2668-2675, 1996.
  • T.K. Tarrant, R.B. Silver, C.-C. Chan, B. Wiggert, and R.R. Caspi, Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J. Immunol., 161: 122-127, 1998.
  • R.R. Caspi, B. Sun, R.K. Agarwal, R.B. Silver, L.V. Rizzo, C.-C. Chan, B. Wiggert, and R.L. Wilder, T cell mechanisms in experimental autoimmune uveoretinitis: Susceptibility is a function of the cytokine response profile. Eye, 11: 209-212, 1997.
  • B. Sun, L.V. Rizzo, S.H. Sun, C.-C. Chan, B. Wiggert, R.L. Wilder, and R.R. Caspi, Genetic susceptibility to experimental autoimmune uveitis involves more than a predisposition to generate a T helper-1-like or a T helper-2-like response. J. Immunol., 159: 1004-1011, 1997.
  • R.B. Silver, C.-C. Chan, B. Wiggert, and R.R. Caspi, The requirement for pertussis to induce EAU is strain-dependent: B10.RIII, but not B10.A mice, develop EAU and Th1 responses to IRBP without pertussis treatment. Invest. Ophthalmol. Vis. Sci., 40: 2898-2905, 1999.
  • G. Yap, M. Pesin, and A. Sher, Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J. Immunol., 165: 628-631, 2000.
  • L. Stobie, S. Gurunathan, C. Prussin, D.L. Sacks, N. Glaichenhaus, C.Y. Wu, and R.A. Seder, The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc. Natl. Acad. Sci. USA, 97: 8427-8432, 2000.
  • I.J. Fuss, T. Marth, M.F. Neurath, G.R. Pearlstein, A. Jain, and W. Strober, Antiinterleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology, 117: 1078-1088, 1999.
  • P.A. Moreland T.B. Oriss, Crossregulation between Th1 and Th2 cells. Crit. Rev. Immunol., 18: 275-303, 1998.
  • A. Saoudi, B. Bellon, Y. de Kozak, J. Kuhn, M.C. Vial, B. Thillaye, and P. Druet, Prevention of experimental autoimmune uveoretinitis and experimental autoimmune pinealitis in (Lewis x Brown-Norway) F1 rats by HgC12 injections. Immunology, 74: 348-354, 1991.
  • R.R. Caspi, C.-C. Chan, B.C. Grubbs, R.B. Silver, B. Wiggert, C.F. Parsa, S. Bahmanyar, A. Billiau, and H. Heremans, Endogenous systemic IFN-gamma has a protective role against ocular autoimmunity in mice. J. Immunol., 152: 890-899, 1994.
  • K. Vermeire, H. Heremans, M. Vandeputte, S. Huang, A. Billiau, and P. Matthys, Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J. Immunol., 158: 5507-5513, 1997.
  • H. Heremans, C. Dillen, M. Groenen, E. Martens, and A. Billiau, Chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice: Enhancement by monoclonal antibodies against interferon-gamma. Eur. J. Immunol., 26: 2393-2398, 1996.
  • L.S. Jones, L.V. Rizzo, R.K. Agarwal, T.K. Tarrant, C.C. Chan, B. Wiggert, and R.R. Caspi, IFN-gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J. Immunol., 158: 5997-6005, 1997.
  • R.B. Silver, T.K. Tarrant, C.-C. Chan, B. Wiggert, and R.R. Caspi, Mice deficient in inducible nitric oxide synthase are susceptible to experimental autoimmune uveoretinitis. Invest. Ophthalmol. Vis. Sci., 40: 1280-1284, 1999.
  • S. Hoey, R.S. Grabowski, S.H. Ralston, J.V. Forrester, and J. Liversidge, Nitric oxide accelerates the onset and increases the severity of experimental autoimmune uveoretinitis through an IFN-gamma-dependent mechanism. J. Immunol., 159: 5132-5142, 1997.
  • J.J. Lafaille, F.V. Keere, A.L. Hsu, J.L. Baron, W Haas, C.S. Raine, and S. Tonegawa, Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med., 186: 307-312, 1997.
  • I. Gery and C. Egwuagu, Central tolerance mechanisms in control of susceptibility to autoimmune uveitic disease. International Rev. Immunol., 21(2-3): 89-100, 2002.
  • B. Bielekova, B. Goodwin, N. Richert, I. Cortese, T Kondo, G., Afshar, B. Gran, J. Eaton, J. Antel, J.A. Frank, H.F. McFarland, and R. Martin, Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nat. Med., 6: 1167-1175, 2000.
  • L. Kappos, G. Comi, H. Panitch, J. Oger, J. Antel, P. Conlon, and L. Steinman, Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The altered peptide ligand in relapsing MS study group. Nat. Med., 6: 1176-1182, 2000.
  • J.F. Bach, Non-Th2 regulatory T-cell control of Th1 autoimmunity. Scand. J. Immunol., 54: 21-29, 2001.
  • G.J. Prud'hommeand C.A. Piccirillo, The inhibitory effects of transforming growth factor-beta-1 (TGF-betal) in autoimmune diseases. J. Autoimmun., 14: 23-42, 2000.
  • G.J. Thorbecke, D.T. Umetsu, R.H. deKruyff, G. Hansen, L.Z. Chen, and G.M. Hochwald, When engineered to produce latent TGF-betal, antigen specific T cells down regulate Th1 cell-mediated autoimmune and Th2 cell-mediated allergic inflammatory processes. Cytokine Growth Factor Rev., 11: 89-96, 2000.
  • H. Groux, A. O'Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. deVries, and M.G. Roncarolo, A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 389: 737-742, 1997.
  • T.B. Connor, Jr., A.B. Roberts, M.B. Sporn, D. Danielpour, L.L. Dart, R.G. Michels, S. de Bustros, C. Enger, H. Kato, M. Lansing, et al. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J. Clin. Invest., 83: 1661-1666, 1989.
  • A. Billiau, H. Heremans, F. Vandekerckhove, R. Dijkmans, H. Sobis, E. Meulepas, and H. Carton, Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol., 140: 1506-1510, 1988.
  • T.K. Tarrant, P.B. Silver, J.L. Wahlsten, L.V. Rizzo, C.-C. Chan, B. Wiggert, and R.R. Caspi, Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J. Exp. Med., 189: 219-230, 1999.
  • H. KoIb and V. Kolb-Bachofen, Nitric oxide in autoimmune disease: Cytotoxic or regulatory mediator? Immunol. Today, 19: 556-561, 1998.
  • C.Q. Chu, S. Wittmer, and D.K. Dalton, Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med., 192: 123-128, 2000.
  • G. Kassiotis and G. Kollias, Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: Implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med., 193: 427-434, 2001.
  • L.V. Rizzo, A.L. Vallochi, D. Schlesinger, M.C. Martins, and R. Belfort Jr., The role of inflammatory and anti-inflammatory cytokines in the progression of experimental autoimmune uveitis. J. Immunol. AAI/CIS Annual meeting, Seattle, WA: (Abstract # 52.24), 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.