42
Views
9
CrossRef citations to date
0
Altmetric
Research Article

VIRAL AND CELLULAR DETERMINANTS OF APOPTOSIS INDUCED BY MAMMALIAN REOVIRUS

, &
Pages 477-503 | Published online: 03 Aug 2009

  • Y. Shen, and T.E. Shenk, Viruses, and apoptosis, Gurr. Opin. Genet. Devel 5: 105-111 1995.
  • V. O'Brien, Viruses, and apoptosis, J. Gen. Virol., 79: 1833-1845 1998.
  • A. Ashkenazi, and V.M. Dixit, Death receptors: Signaling, and modulation, Science 281: 1305-1308 1998.
  • A.H. Wyllie, Apoptosis: An overview, Br. Med. Bull., 53: 451-465 1997.
  • E.S. Razvi, and R.M.Welsh, Apoptosis in viral infections, Adv. Virus Res., 45: 1-60 1995.
  • J.G. Teodoro, and P.E. Branton, Regulation of apoptosis by viral gene products, J. Virol 71: 1739-1746 1997.
  • A. Roulston, R.C. Marcellus, and P.E. Branton, Viruses, and apoptosis, Ann. Rev. Microbiol 53: 577-628 1999.
  • E.M. Schwarz, C. Badorff, T.S. mura, R. Wessely, B. Badorff, I.M. Verma, and K.U. Knowlton, NF-kappaB-mediated inhibition of apoptosis is required for encephalomyocarditis virus virulence: A mechanism of resistance in p50 knockout mice, J. Viral., 72: 5654-5660 1998.
  • J.J. Cohen, Programmed cell death in the immune system, Adv. Immunol., 50: 55-85 1991.
  • M.L. Nibert, and L.A. Schiff, In: D.M. Knipe, and P.M. Howley (Eds.), Fields Virology, Philadelphia: Lippincott-Raven pp. 1679-1728, 2001.
  • K.L. Tyler, In: D.M. Knipe, and P.M. Howley, (Eds.), Fields Virology, Philadelphia: Lippincott-Raven pp. 1729-1945, 2001.
  • A.B. Sabin, Reoviruses: A new group of respiratory, and enteric viruses formerly classified as ECHO type 10 is described. Science 130: 1387-1389 1959.
  • L. Rosen, In: E.H. Lennette, and N.J. Schmidt (Eds.), Diagnostic Procedures for Viral, and Rickettsial Infections, New York: American Public Health Association pp. 577-584, 1979.
  • K.A. Dryden, G. Wang, M. Yeager, M.L. Nibert, KM. Coombs, D.B. Furlong, B.N. Fields, and T.S. Baker, Early steps in reovirus infection are associated with dramatic changes in supramolecular structure, and protein conformation: Analysis of virions, and subviral particles by cryoelectron microscopy, and image reconstruction, J. Cell Biol., 122: 1023-1041 1993.
  • KM. Coombs, Stoichiometry of reovirus structural proteins in virus, ISVP, and core particles, Virology 243: 218-228 1998.
  • K.M. Reinisch, M.L. Nibert, and S.O. Harrison, Structure of the reovirus core at 3.6 Å resolution, Nature 404: 960-967 2000.
  • D.B. Furlong, M.L. Nibert, and B.N. Fields, Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J. Virol., 62: 246-256 1988.
  • R.D.B. Fraser, D.B. Furlong, B.L. Trus, M.L. Nibert, B.N. Fields, and A.C. Steven, Molecular structure of the cell-attachment protein of reovirus: Correlation of computer-processed electron micrographs with sequence-based predictions, J. Virol., 64: 2990-3000 1990.
  • J.D. Chappell, A. Prota, T.S. Dermody, and T. Stehle, Crystal structure of reovirus attachment protein si reveals evolutionary relationship to adenovirus fiber, EMBO J., 21: 1-11 2002.
  • E.S. Barton, J.C. Forrest, J.L. Connolly, J.D. Chappell, Y. Liu, E. Schnell, A. Nusrat, C.A. Parkos, and T.S. Dermody, Junction adhesion molecule is a receptor for reovirus, Cell 104: 441-451 2001.
  • L.J. Sturzenbecker, M.L. Nibert, D.B. Furlong, and B.N. Fields, Intracellular digestion of reovirus particles requires a low pH, and is an essential step in the viral infectious cycle, J. Virol., 61: 2351-2361 1987.
  • J. Borsa, M.D. Sargent, P.A. Lievaart, and T.P. Copps, Reovirus: Evidence for a second step in the intracellular uncoating, and transcriptase activation process, Virology 111: 191-200 1981.
  • D.H. Rubin, D.B. Weiner, C. Dworkin, M.I. Greene, G.G. Maul, and W.V. Williams, Receptor utilization by reovirus type 3: Distinct binding sites on thymoma, and fibroblast cell lines result in differential compartmentalization of virions, Microb. Pathog., 12: 351-365 1992.
  • G.S. Baer, D.H. Ebert, C.J. Chung, A.H. Erickson, and T.S. Dermody, Mutant cells selected during persistent reovirus infection do not express mature cathepsin L, and do not support reovirus disassembly, J. Virol., 73: 9532-9543 1999.
  • J.W. Hooper, and B.N. Fields, Monoclonal antibodies to reovirus si, and ml proteins inhibit chromium release from mouse L cells, J. Virol., 70: 672-677 1996.
  • P. Lucia-Jandris, J.W. Hooper, and B.N. Fields, Reovirus M2 gene is associated with chromium release from mouse L cells, J. Virol., 67: 5339-5345 1993.
  • J.W. Hooper, and B.N. Fields, Role of the µ1 protein in reovirus stability, and capacity to cause chromium release from host cells, J. Virol., 70: 459-467 1996.
  • M. Schonberg, S.C. Silverstein, D.H. Levin, and G. Acs, Asynchronous synthesis of the complementary strands of the reovirus genome, Proc. Natl. Acad. Sci. USA 68: 505-508 1971.
  • J.K-K Li, J.D. Keene, P.P. Scheible, and W.K Joklik, Nature of the 3'-terminal sequence of the plus, and minus strands of the S1 gene of reovirus serotypes 1, 2, and 3, Virology 105: 41-51 1980.
  • E.M. Morgan, and H. J. Zweerink, Characterization of transcriptase, and replicase particles isolated from reovirus infected cells, Virology 68: 455-466 1975.
  • W.K Joklik, Structure, and function of the reovirus genome, Microbiol. Rev., 45: 483-501 1981.
  • H.W. Virgin, K.L. Tyler, and T.S. Dermody, In: N. Nathanson, (Ed.), Viral Pathogenesis, New York: Lippincott-Raven pp. 669-699, 1997.
  • J.L. Wolf, D.H. Rubin, R. Finberg, R.S. Kaufman, A.H. Sharpe, J.S. Trier, and B.N. Fields, Intestinal M cells: A pathway of entry of reovirus into the host, Science 212: 471-472 1981.
  • K.L. Tyler, D.A. McPhee, and B.N. Fields, Distinct pathways of viral spread in the host determined by reovirus S1 gene segment, Science 233: 770-774 1986.
  • H.L. Weiner, M.L. Powers, and B.N. Fields, Absolute linkage of virulence, and central nervous system tropism of reoviruses to viral hemagglutinin, J. Infect. Dis., 141: 609-616 1980.
  • H.L. Weiner, D. Drayna, D.R. Averill, Jr., and B.N. Fields, Molecular basis of reovirus virulence: Role of the S1 gene, Proc. Natl. Acad. Sci. USA., 74: 5744-5748 1977.
  • L.A. Morrison, R.L. Sidman, and B.N. Fields, Direct spread of reovirus from the intestinal lumen to the central nervous system through vagal autonomie nerve fibers, Proc. Natl. Acad. Sci. USA., 88: 3852-3856 1991.
  • M. Tardieu, M.L. Powers, and H.L. Weiner, Age-dependent susceptibility to reovirus type 3 encephalitis: Role of viral, and host factors, Ann. Neural., 13: 602-607 1983.
  • M. A. Dichter, and H.L. Weiner, Infection of neuronal cell cultures with reovirus mimics in vitro patterns of neurotropism, Ann. Neural., 16: 603-610 1984.
  • H.L. Weiner, KA. AuIt, and B.N. Fields, Interaction of reovirus with cell surface receptors. I. Murine, and human lymphocytes have a receptor for the hemagglutinin of reovirus type 3, J. Immunol., 124: 2143-2148 1980.
  • P.W. Lee, E.G. Hayes, and W.K Joklik, Protein s1 is the reovirus cell attachment protein, Virology 108: 156-163 1981.
  • K.L. Tyler, M.K Squier, S.E. Rodgers, S.E. Schneider, S.M. Oberhaus, T.A. Grdina, J.J. Cohen, and T.S. Dermody, Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein s1, J. Viral., 68: 6972-6979 1995.
  • S.E. Rodgers, E.S. Barton, S.M. Oberhaus, B. Pike, C.A Gibson, K.L. Tyler, and T.S. Dermody, Reovirus-induced apoptosis of MDCK cells is not linked to viral yield, and is blocked by Bcl-2, J. Viral., 71: 2540-2546 1997.
  • P. Clarke, S.M. Meintzer, S. Gibson, C. Widmann, T.P. Garrington, G.L. Johnson, and K.L. Tyler, Reovirus-induced apoptosis is mediated by TRAIL, J. Viral., 74: 8135-8139 2000.
  • J.L. Connolly, S.E. Rodgers, P. Clarke, D.W. Ballard, L.D. Kerr, K.L. Tyler, and T.S. Dermody, Reovirus-induced apoptosis requires activation of transcription factor NF-?B J. Viral., 74: 2981-2989 2000.
  • S.M. Oberhaus, R.L. Smith, G.H. Clayton, T.S. Dermody, and K.L. Tyler, Reovirus infection, and tissue injury in the mouse central nervous system are associated with apoptosis, J. Viral., 71: 2100-2106 1997.
  • R. DeBiasi, C. Edelstein, B. Sherry, and K Tyler, Calpain inhibition protects against virus-induced apoptotic myocardial injury, J. Viral., 75: 351-361 2001.
  • J.L. Connolly, E.S. Barton, and T.S. Dermody, Reovirus binding to cell surface sialic acid potentiates virus-induced apoptosis, J. Viral 75: 4029-4039 2001.
  • K.L. Tyler, M.KT. Squier, A.L. Brown, B. Pike, D. Willis, S.M. Oberhaus, T.S. Dermody, and J.J. Cohen, Linkage between reovirus-induced apoptosis, and inhibition of cellular DNA synthesis: Role of the S1, and M2 genes. J. Viral., 70: 7984-7991 1996.
  • H. Ernst, and A.J. Shatkin, Reovirus hemagglutinin mRNA codes for two poly-peptides in overlapping reading frames, Proc. Natl. Acad. Sci. USA., 82: 48-52 1985.
  • B.L. Jacobs, J.A. Atwater, S.M. Munemitsu, and C.E. Samuel, Biosynthesis of reovirus-specified polypeptides. The S1 mRNA synthesized in vivo is structurally, and functionally indistinguishable from in vitro-synthesized S1 mRNA, and encodes two polypeptides, sla, and s1bNS, Virology 147: 9-18 1985.
  • G. Sarkar, J. Pelletier, R. Bassel-Duby, A. Jayasuriya, B.N. Fields, and N. Sonenberg, Identification of a new polypeptide coded by reovirus gene S1, J. Virol., 54: 720-726 1986.
  • S.E. Rodgers, J.L. Connolly, J.D. Chappell, and T.S. Dermody, Reovirus growth in cell culture does not require the full complement of viral proteins: Identification of a s1s-null mutant. J. Virol 72: 8697-8704 1998.
  • S.J. Burstin, D.R. Spriggs, and B.N. Fields, Evidence for functional domains on the reovirus type 3 hemagglutinin, Virology 117: 146-166 1982.
  • P.W.K. Lee, E.G. Hayes, and W.K. Joklik, Characterization of anti-reovirus immunoglobulins secreted by cloned hybridoma cell lines, Virology 108: 134-146 1981.
  • H.L. Weiner, and B.N. Fields, Neutralization of reovirus: The gene responsible for the neutralization antigen, J. Exp. Med., 146: 1306-1310 1977.
  • M.A. McCrae, and W.K. Joklik, The nature of the polypeptide encoded by each of the ten double-stranded RNA segments of reovirus type 3, Virology 89: 678-693 1978.
  • T.A. Mustoe, R.F. Ramig, A.H. Sharpe, and B.N. Fields, Genetics of reovirus: Identification of the dsRNA segments encoding the polypeptides of the µ, and s size classes, Virology 89: 604-694 1978.
  • M.L. Nibert, L.A. Schiff, and B.N. Fields, Mammalian reoviruses contain a myristoylated structural protein, J. Virol., 65: 1960-1967 1991.
  • G.S. Baer, and T.S. Dermody, Mutations in reovirus outer-capsid protein s3 selected during persistent infections of L cells confer resistance to protease inhibitor E64, J. Virol., 71: 4921-4928 1997.
  • J.D. Chappell, V.L. Gunn, J.D. Wetzel, G.S. Baer, and T.S. Dermody, Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein s1, J. Virol., 71: 1834-1841 1997.
  • J.D. Chappell, J.L. Duong, B.W. Wright, and T.S. Dermody, Identification of carbohydrate-binding domains in the attachment proteins of type 1, and type 3 reoviruses, J. Virol., 74: 8472-8479 2000.
  • E.S. Barton, J.L. Connolly, J.C. Forrest, J.D. Chappell, and T.S. Dermody, Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening, J. Biol. Chem., 276: 2200-2211 2001.
  • E.S. Barton, B.E. Youree, D.H. Ebert, J.C. Forrest, J.L. Connolly, T. Valyi-Nagy, K Washington, J.D. Wetzel, and T.S. Dermody, Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease, J. Clin. Invest., 111: 1823-1833 2003.
  • T.S. Dermody, M.L. Nibert, R. Bassel-Duby, and B.N. Fields, A sigma 1 region important for hemagglutination by serotype 3 reovirus strains, J. Virol., 64: 5173-5176 1990.
  • I. Martin-Padura, S. Lostaglio, M. Schneemann, L. Williams, M. Romano, P. Fruscella, C. Panzeri, A. Stoppacciaro, L. Ruco, A. Villa, D. Simmons, and E. Dejana, Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions, and modulates monocyte transmigration, J. Cell Biol., 142: 117-127 1998.
  • Y. Liu, A. Nusrat, F.J. Schnell, T.A. Reaves, S. Walsh, M. Ponchet, and C.A. Parkos, Human junction adhesion molecule regulates tight junction reseating in epithelia, J. Cell Sci., 113: 1-11 2000.
  • G. Bazzoni, O.M. Martinez-Estrada, F. Orsenigo, M. Cordenonsi, S. Cita, and E. Dejana, Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin, J. Biol. Chem., 276: 20520-20526 2000.
  • K Ebnet, C.U. Schulz, M.K Meyer Zu Brickwedde, G.G. Pendl, and D. Vestweber, Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6, and ZO-1, J. Biol. Chem., 276: 27979-27988 2000.
  • A. Del Maschio, A. De Luigi, I. Martin-Padura, M. Brockhaus, T. Bartfai, P. Fruscella, L. Adorini, G. Martino, R. Furlan, M.G. De Simoni, and E. Dejana, Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM), J. Exp. Med., 190: 1351-1356 1999.
  • F. Lechner, U. Sahrbacher, T. Suter, K Frei, M. Brockhaus, U. Koedel, and A. Fontana, Antibodies to the junctional adhesion molecule cause disruption of endothelial cells, and do not prevent leukocyte influx into the meninges after viral or bacterial infection, J. Infect. Dis., 182: 978-982 2000.
  • I. Martin-Padura, S. Lostaglio, M. Schneemann, L. Williams, M. Romano, P. Fruscella, C. Panzeri, A Stoppacciaro, L. Ruco, A. Villa, D. Simmons, and E. Dejana, Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions, and modulates monocyte transmigration, J. Cell Biol., 142:117-127 1998.
  • W.M. Canning, and B.N. Fields, Ammonium chloride prevents lytic growth of reovirus, and helps to establish persistent infection in mouse L cells, Science 219: 987-988 1983.
  • D.H. Ebert, J. Deussing, C. Peters, and T.S. Dermody, L. Cathepsin, and B cathepsin, mediate reovirus disassembly in murine fibroblast cells, J. Biol. Chem., 277: 24609-24617 2002.
  • J.L. Connolly, and T.S. Dermody, Virion disassembly is required for apoptosis induced by reovirus, J. Virol., 76: 1632-1641 2002.
  • P. Baeuerle, and D. Baltimore, A 65-kD subunit of active NF-?B is required for inhibition of NF-?B by I?B. Genes Dev., 3: 1689-1698 1989.
  • V. Palombella, O. Rando, A. Goldberg, and T. Maniatis, The ubiquitin-proteasome pathway is required for processing the NF-kappa Bl precursor protein, and the activation of NF-kappa B, Cell 78: 773-785 1994.
  • A.A. Beg, S.M. Ruben, R.I. Scheinman, S. Haskill, C.A Rosen, and A.J. Baldwin, I?B interacts with the nuclear localization sequences of the subunits of NF-?B: A mechanism for cytoplasmic retention, Genes Dev., 6: 1899-1913 1992.
  • C. Abbadie, N. Kabrun, F. Bouali, B. Vandenbunder, and P. Enrietto, High levels of c-rel expression are associated with programmed cell death in the developing avian embryo, and in bone marrow cells in vitro, Cell 75: 899-912 1993.
  • S. Grimm, M.K.A. Bauer, P.A. Baeuerle, and K Schulze-Osthoff, Bcl-2 down-regulates the activity of transcription factor NF-?B induced upon apoptosis, J. Cell Biol., 134:13-23 1996.
  • M. Jung, Y. Zhang, S. Lee, and A. Dritschilo, Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I?B-a, Science, 268:1619-1621 1995.
  • A. Beg, and D. Baltimore, An essential role for NF-?B in preventing TNF-a-induced cell death, Science 274: 782-784 1996.
  • Z.-G. Liu, H. Hsu, D. Goeddel, and M. Karin, Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-?B activation prevents cell death, Cell 87: 565-576 1996.
  • D. Van Antwerp, S. Martin, T. Kafri, D. Green, and I. Verma, Suppression of TNF-a-induced apoptosis by NF-?B, Science 274: 787-789 1996.
  • J.T. Jan, B.H. Chen, S.H. Ma, C.I. Liu, H.P. Tsai, H.C. Wu, S.Y. Jiang, KD. Yang, and M.F. Shaio, Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: Arachidonic acid, Superoxide anion, and NF-kappaB are sequentially involved, J. Viral., 74: 8680-8691 2000.
  • H.L. Pahl, and P.A. Baeuerle, Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B, J. Virol., 69:1480-1484 1995.
  • J.G. Mastronarde, B. He, M.M. Monick, N. Mukaida, K Matsushima, and G.W. Hunninghake, Induction of interleukin (IL)-8 gene expression by respiratory syncytial virus involves activation of nuclear factor (NF)-kappa B, and NF-IL-6, J. Infect. Dis., 174: 262-267 1996.
  • K.I. Lin, S.H. Lee, R. Narayanan, J. Baraban, J. Hardwick, and R. Ratan, Thiol agents, and Bcl-2 identify an alphavirus-induced apoptotic pathway that requires activation of the transcription factor NF-kappa B, J. Cell Bull., 131: 1149-1161 1995.
  • P. Marianneau, A. Cardona, L. Edelman, V. Deubel, and P. Despres, Dengue virus replication in human hepatoma cells activates NF-kappaB which in turn induces apoptotic cell death, J. Virol 71: 3244-3249 1997.
  • A. Beg, T. Finco, P. Nantermet, and A. Baldwin, Tumor necrosis factor, and interleukin-1 lead to phosphorylation, and loss of I?BBa: A mechanism for NF-?B activation, Molec. Cell. Biol 13: 3301-3310 1993.
  • S.M. Richardson-Burns, D.J. Kominsky, and K.L. Tyler, Reovirus-induced neuronal apoptosis is mediated by caspase 3, and is associated with the activation of death receptors, J. Neurovirol., 8: 365-380 2002.
  • R. Ravi, G.G. Bedi, L.W. Engstrom, Q. Zeng, B. Mookerjee, C. Gelinas, E.J. Fuchs, and A. Bedi, Regulation of death receptor expression, and TRAIL/Apo2L-induced apoptosis by NF-kappaB, Nat. Cell. Biol., 3: 409-416 2001.
  • A.C. Spaltung, R.M. Jotte, R.I. Scheinman, M.W. Geraci, P. Clarke, K.L. Tyler, and G.L. Johnson, TRAIL, and inhibitors of apoptosis are opposing determinants for NF-kappaB-dependent, genotoxin-induced apoptosis of cancer cells, Oncogens 21: 260-271 2002.
  • I. Rivera-Walsh, M. Waterfield, G. Xiao, A Fong, and S.O. Sun, NF-kappaB signaling pathway governs TRAIL gene expression, and human T-cell leukemia virus-I Tax-induced T-cell death, J. Biol. Chem., 276: 40385-40388 2001.
  • R.L. Debiasi, M.KT. Squier, B. Pike, M. Wynes, TS. Dermody, J.J. Cohen, and K.L. Tyler, Reovirus-induced apoptosis is preceded by increased cellular calpain activity, and is blocked by calpain inhibitors. J. Virol., 73: 695-701 1999.
  • M.K Squier, A.J. Sehnert, KS. Sellins, A.M. Malkinson, E. Takano, and J.J. Cohen, Calpain, and calpastatin regulate neutrophil apoptosis, J. Cell Physiol., 178: 311-319 1999.
  • R. Nath, K.J. Raser, D. Stafford, I. Hajimohammadreza, A. Posner, H. Allen, R.V. Talanian, P. Yuen, R.B. Gilbertsen, and K.K Wang, Non-erythroid alpha-spectrin breakdown by calpain, and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: Contributory roles of both protease families in neuronal apoptosis, Biochem. J., 319 (Pt 3): 683-690 1996.
  • S.J. Chen, M.E. Bradley, and T.C. Lee, Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: Modulation by calcium-regulated proteases, and protein kinases, Mol. Cell. Biochem. 178: 141-149 1998.
  • S. Baghdiguian, M. Martin. I. Richard, F. Pons, C. Astier, N. Bourg, R.T. Hay, R. Chemaly, G. Halaby, J. Loiselet, L.V., anderson, A. Lopez de Munain, M. Fardeau, P. Mangeat, J.S. Beckmann, and G. Lefranc, Calpain 3 deficiency is associated with myonuclear apoptosis, and profound perturbation of the IkappaB alpha/ NF-kappaB pathway in limb-girdle muscular dystrophy type 2A, Nat. Med., 5: 503-511 1999.
  • N.B. Blatt, and G.D. Glick, Signaling pathways, and effector mechanisms preprogrammed cell death, Bioorg. Med. Chem., B: 1371-1384 2001.
  • D.J. Kominsky, R.J. Bickel, and K.L. Tyler, Reovirus-induced apoptosis requires both death receptor-, and mitochondrial-mediated caspase-dependent pathways of cell death, Cell Death Differ B: 926-933 2002.
  • H. Wajant, F.J. Johannes, E. Haas, K Siemienski, R. Schwenzer, G. Schubert, T. Weiss, M. Grellurich, and P. Sehe, Dominant-negative FADD inhibits TNFR60-, Fas/Apol-, and TRAIL-R/Apo2-mediated cell death but not gene induction, Curr. Biol., 8:113-116 1998.
  • P. Li, D. Njjhawan, I. Budhardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, and X. Wang, Cytochrome c, and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade, Cell 91: 479-489 1997.
  • A.M. Verhagen, P.G. Ekert, M. Pakusch, J. Silke, L.M. Connolly, G.E. Reid, R.L. Moritz, R.J. Simpson, and D.L. Vaux, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to, and antagonizing IAP proteins, Cell 102: 43-53 2000.
  • C. Du, M. Fang, Y. Li, L. Li, and X. Wang, Smac, a mitochondria! protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell 102: 33-42 2000.
  • N. Joza, S.A. Susin, E. Daugas, W.L. Stanford, S.K Cho, C.Y. Li, T. Sasaki, A.J. Elia, H.Y. Cheng, L. Ravagnan, KF. Ferri, N. Zamzami, A. Wakeham, R. Hakem, H. Yoshida, YY. Kong, T.W Mak, J.C. Zuniga-Pfluoker, G. Kroemer, and J.M. Penninger, Essential role of the mitochondria! apoptosis-inducing factor in programmed cell death, Nature 410: 549-554 2001.
  • H. Li, H. Zhu, C. J. Xu, and J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondria! damage in the Fas pathway of apoptosis, Cell 94: 491-501 1998.
  • D.J. Kominsky, R.J. Bickel, and K.L. Tyler, Reovirus-induced apoptosis requires mitochondria! release of Smac/DIABLO, and involves reduction of cellular inhibitor of apoptosis protein levels, J. Virol., 76: 11414-11424 2002.
  • X. Luo, I. Budihardjo, H. Zou, C. Slaughter, and X Wang, Bid, a Bc12 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell 94: 481-490 1998.
  • V.E. Centonze, Y. Chen, T.F. Severson, G.G. Borisy, and M.L. Nibert, Visualization of single reovirus particles by low-temperature, high-resolution scanning electron microscopy, J. Struct. Biol. 115: 215-225 1995.
  • R. Bassel-Duby, A. Jayasuriya, D. Chatterjee, N. Sonenberg, J.V Maizel, Jr., and B.N. Fields, Sequence of reovirus haemagglutinin predicts a coiled-coil structure, Nature 315: 421-423 1985.
  • R. Duncan, D. Home, L.W Cashdollar, W.K Joklik, and P.W.K Lee, Identification of conserved domains in the cell attachment proteins of the three serotypes of reovirus, Virology 174, 399-409 1990.
  • M.L. Nibert, T.S. Dermody, and B.N. Fields, Structure of the reovirus cell-attachment protein: A model for the domain organization of s1, J. Virol., 64: 2976-2989 1990.
  • M. Carson, Ribbon models of macromolecules, J. Molecular Graphics 5: 103-106 1987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.