89
Views
6
CrossRef citations to date
0
Altmetric
Research Article

TRANSLATIONAL CONTROL IN T LYMPHOCYTES

Pages 347-363 | Published online: 03 Aug 2009

REFERENCES

  • V.M., Pain. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem.. 236: 747–771, 1996
  • N., Sonenberg. RNA 5′-cap-binding protein elF4E and control of cell growth. Translational Control, N., Sonenberg, J.W.B., Hershey, M.B., Mathews. Cold Spring Harbor Laboratory Press. 245–269, 1996
  • D.R., Morris. Growth control of translation in mammalian cells. Prog. Nucleic Acids Res. Mol. Biol.. 51: 339–363, 1995
  • V.A., Polunovsky, I.B., Rosenwald, A.T., Tan, J., White, L., Chiang, N., Sonenberg, P.B., Bitterman. Translational control of programmed cell death: Eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol. Cell. Biol.. 16: 6573–6581, 1996
  • W.E., Marissen, R.E., Lloyd. Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells. Mol. Cell. Biol.. 18: 7565–7574, 1998
  • M.E., Tome, S.M., Fiser, C.M., Payne, E.W., Gerner. Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (elF-5A) and induces apoptosis. Biochem. J.. 328: 847–854, 1997, [CSA]
  • J., Gil, J., Alcami, M., Esteban. Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol. Cell. Biol.. 19: 4653–4663, 1999
  • N., Sonenberg. Translation factors as effectors of cell growth and tumorigenesis. Curr. Opin.Cell Biol.. 5: 955–960, 1993, [CROSSREF]
  • A., Flynn, C.G., Proud. The role of elF4 in cell proliferation. Cancer Surv.. 27: 293–310, 1996, [CSA]
  • M., Kozak. An analysis of vertebrate mRNA sequences: Intimations of translational control. J. Cell. Biol.. 115: 887–903, 1991, [CROSSREF]
  • M., Kozak. An analysis of 5′-noncoding sequences from 699 vertebrate meesenger RNAs. Nucleic Acid. Res.. 15: 8125–8148, 1987
  • A.E., Willis. Translational control of growth factor and proto-oncogene expression. Int. J. Biochem. Cell. Biol.. 31: 73–86, 1999, [CSA], [CROSSREF]
  • R.C., Muise-Helmericks, H.L., Grimes, A., Bellacosa, S.E., Malstrom, P.N., Tsichlis, N., Rosen. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem.. 273: 29864–29872, 1998, [CROSSREF]
  • R.S., Allison, M.L., Mumy, L.M., Wakefield. Translational control elements in the major human transforming growth factor-beta 1 mRNA. Growth Factors. 16: 89–100, 1998, [CSA]
  • V., Kruys, O., Marinx, G., Shaw, J., Deschamps, G., Huez. Translational blockad¸e imposed by cytokine-derived UA-rich sequences. Science. 245: 852–855, 1989
  • J.A., Garcia-Sanz, D., Lenig. Translational control of interleukin-2 messenger RNA as a molecular mechanism of T cell energy. J. Exp. Med.. 184: 159–164, 1996, [CROSSREF]
  • E., Espel, J.A., Garcia-Sanz, V., Aubert, V., Menoud, P., Sperisen, N., Fernandez, F., Spertini. Transcriptional and translational control of TNF-alpha gene expression in human monocytes by major histocompatibility complex class II ligands. Eur. J. Immunol.. 26: 2417–2424, 1996, [CSA]
  • T., Raabe, M., Bukrinsky, R.A., Currie. Relative contibution of transcription and translation to the induction of tumor necrosis factor-alpha by lipopolyscharide. J. Biol. Chem.. 273: 974–980, 1998, [CROSSREF]
  • C., Gueydan, L., Droogmams, P., Chalon, G., Huez, D., Caput, V., Kruys. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J. Biol. Chem.. 274: 2322–2326, 1999, [CROSSREF]
  • E., Gonalons, M., Barrachina, J.A., Garcia-Sanz, A., Celada. Translational contol of MHC class II I-A molecules by IFN-gamma. J. Immunol.. 161: 1837–1843, 1998
  • W.C., Merrick, J.W.B., Hershey. The pathway and mechanism of eukaryotic protein synthesis. J.W.B., Hershey, M.B., Mathews, N., Sonenberg. Translational Control. Cold Spring Harbor, CSHL Press. 31–69, 1996
  • A.J., Shatkin. mRNA cap binding proteins: Essential factors for initiation translaţion. Cell. 40: 223–224, 1985, [CROSSREF]
  • N., Sonenberg, M.A., Morgan, W.C., Merrick, A.J., Shatkin. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proc. Natl. Acad. Sci.. 75: 4843–4847, 1978
  • A., Lazaris-Karatzas, K.S., Montine, N., Sonenberg. Malignant transformation by a eukarotic initiation factor subunits that binds to mRNA 5′ cap. Nature. 345: 44–547, 1990
  • V.A., Polunovsky, I.B., Rosenwald, A.T., Tan, J., White, L., Chiang, N., Sonenberg, P.B., Bitterman. Translational control of programmed cell death: Eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated, Myc. Mol. Cell. Biol.. 16: 6573–6581, 1996
  • A., Tan, P., Bitterman, N., Sonenberg, M., Peterson, V., Polunovsky. Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene. 19: 1437–1447, 2000, [CSA], [CROSSREF]
  • R.M., Jones, J., Branda, K.A., Johnston, M., Polymenis, M., Gadd, A., Rustgi, L., Callanan, E.V., Schmidt. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol. Cell. Biol.. 16: 4754–4764, 1996
  • S., Joshi-Barve, W., Rychlik, R.E., Rhoads. Alteration of the major phosphorylation site of eukaryotic protein synthesis initiation factor 4E prevents its association with the 48 S initiation complex. J. Biol. Chem.. 265: 2979–2983, 1990
  • S.J., Morley, T.E., Dever, D., Etchison, J.A., Traugh. Phosphorylation of elF4F by protein kinase C or multipotential S6 kinase stimulates protein synthesis at initiation. J. Biol. Chem.. 266: 4669–4672, 1991
  • A.J., Waskiewicz, A., Flynn, C.G., Proud, J.A., Proud, J.A., Cooper. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J.. 16: 1909–1920, 1997, [CSA], [CROSSREF]
  • R., Fukunaga, T., Hunter. MNK1, a new MAP-kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrate. EMBO J.. 16: 1921–1933, 1997, [CSA], [CROSSREF]
  • T.-A., Lin, X., Kong, T.A.J., Haystead, A., Pause, G., Belsham, N., Sonenberg, J.C., Lawrence, Jr.. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 266: 653–656, 1994
  • A., Pause, G.J., Belsham, A.C., Gingras, O., Donze, T.A., Lin, J.C., Lawrence, Jr., N., Sonenberg. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 371: 762–767, 1994, [CROSSREF]
  • A., Haghighat, S., Mader, A., Pause, N., Sonenberg. Represson of cap-dependent translation by 4E-binding protein 1: Competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J.. 14: 5701–5709, 1995, [CSA]
  • A., De Benedetti, S., Joshi-Barve, C., Rinker-Schaeffer, R. E., Rhoads. Mol. Cell. Biol.. 11: 5435–5445, 1991
  • D., Rousseau, A. C., Gingras, A., Pause, N., Sonenberg. The elF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene. 13: 2415–2420, 1996, [CSA]
  • V.A., Polunovsky, A.C., Gingras, N., Sonenberg, M., Peterson, A., Tan, J.B., Rubins, J.C., Manivel, P.B., Bitterman. Translational control of the antiapoptotic function of Ras. J. Biol. Chem.. 275: 24776–24780, 2000, [CROSSREF]
  • A.E., Koromilas. A. Lazaris-Karatzas, and N. Sonenberg, mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor elF-4E. EMBO J.. 11: 4153–4158, 1992, [CSA]
  • I.B., Rosenwald, A., Lazaris-Karatzas, N., Sonenberg, E.V., Schmidt. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol. Cell. Biol.. 13: 7358–7363, 1993
  • I.B., Rosenwald, R., Kaspar, D., Rousseau, L., Gehrke, P., Leboulch, J.J., Chen, E.V., Schmidt, N., Sonenberg, I.M., London. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem.. 270: 21176–21180, 1995, [CROSSREF]
  • D., Rousseau, R., Kaspar, I., Rosenwald, L., Gehrke, N., Sonenberg. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. USA. 93: 1065–1070, 1996, [CSA], [CROSSREF]
  • L.M., Shantz, R.H., Hu, A.E., Pegg. Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor elF-4E. Cancer Res.. 56: 3265–3269, 1996
  • J.R., Graff, A., De Benedetti, J.W., Olson, P., Tamez, R.A., Casero, Jr., S.G., Zimmer. Translation of ODC mRNA and polyamine transport are suppressed in ras-transformed CREF cells by depleting translation initiation factor 4E. Biochem. Biophys. Res. Commun.. 240: 15–20, 1997, [CSA], [CROSSREF]
  • S.R., Kimball. Eukaryotic initiation factor elF2. Int. J. Biochem. Cell Biol.. 31: 25–29, 1999, [CSA], [CROSSREF]
  • C., De. Haro, R. Mendez, and J. Santoyo, The elF-2alpha kinases and the control of protein synthesis. FASEB J.. 10: 1378–1387, 1996, [CSA]
  • A.G., Hovanessian. dsRNA-activated protein kinase (PKR): Antiproliferative antiviral and antitumoral functions. Semin. Virol.. 4: 237–245, 1993, [CSA], [CROSSREF]
  • M.J., Clemens, A., Elia. The double stranded RNA-dependent protein kinase PKR: Structure and function. J. Interferon Cytokine Res.. 17: 503–524, 1997, [CSA]
  • R., Jagus, B., Joshi, G. N., Barber. PKR apoptosis and cancer. Int. J. Biochem. Cell Biol.. 31: 123–138, 1999, [CSA], [CROSSREF]
  • R., Kaufman, S.P., Srivasyava. PKR: A general transducer of the cellular stress response leading to apoptosis. Translational Control, Sonenberg N., Hershey J.W.B., Mathews M.B., Cold Spring Harbor, NY, Cold Spring Harbor Laboratory. 1996
  • A.E., Koromilas, S., Roy, G.N., Barber, M., Katze, N., Sonenberg. Malignant transormation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science. 257: 5041–5044, 1992
  • K.L., Chong, L., Feng, K., Schappert, E., Meurs, T.F., Donohue, J.D., Friesen, A.G., Hovanessian, B.R.G., Williams. Human p68 kinase (PKR) exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J.. 11: 1553–1562, 1992, [CSA]
  • S.B., Lee, M., Esteban. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology. 199: 491–496, 1994, [CSA], [CROSSREF]
  • M.C., Yeung, J., Liu, A.S., Lau. An essential role for the interferon-inducible, dsRNA-activated protein kinase, PKR, in the tumor necrosis factor-induced apoptosis in U937 cells. Proc. Natl. Acad. Sci.. 93: 12451–12455, 1996, [CSA], [CROSSREF]
  • S.D., Der, Y.L., Yang, C., Weissman, B.R., Williams. A dsRNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc. Natl. Acad. Sci.. 94: 3279–3283, 1997, [CSA]
  • S.B., Lee, D., Rodriguez, J.R., Rodriguez, M., Esteban. The apoptosis pathway triggered by the interferon-induced protein kinase, PKR requires the third basic domain, initiates upstream of Bcl-2, and involves ICE-like proteases. Virology. 231: 81–88, 1997, [CSA]
  • S.P., Srivastava, K.U., Kumar, R.J., Kaufman. Phosphorylation of elF2 mediates apoptosis in response to activation of PKR. J. Biol. Chem.. 273: 2416–2423, 1998, [CROSSREF]
  • O., Donze, J., Dostie, N., Sonenberg. Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and Fas receptor expression. Virology. 256: 322–329, 1999, [CSA], [CROSSREF]
  • S., Balachandran, N., Kim, W.-C., Yeh, T.W., Mak, K., Bhalla, G.N., Barber. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J.. 17: 6888–6902, 1998, [CSA], [CROSSREF]
  • P., Jedlicka, R., Panniers. Mechanism of activation of protein synthesis initiation in mitogen-stimulated T lymphocytes. J. Biol. Chem.. 266: 15663–15669, 1991
  • R.B., Cohen, T.R., Boal, B., Safer. Increased elF-2 alpha expression in mitogen-activated primary T lymphocytes. EMBO J.. 9: 3831–3837, 1990, [CSA]
  • X., Mao, J.M., Green, B., Safer, T., Lindsten, R.M., Frederickson, S., Miyamoto, N., Sone¸nberg, C.B., Thompson. Regulation of translation initiation factor gene expression during human T cell activation. J. Biol. Chem.. 267: 20444–20450, 1992
  • T.R., Boal, J.A., Chiorini, R.B., Cohen, S., Miyamoto, R.M., Frederickson, N., Sonenberg, B., Safer. Regulation of eukaryotic translation initiation factor expression during T-cell activation. Biochim. Biophys. Acta.. 1176: 257–264, 1993, [CROSSREF]
  • J.A., Garcia-Sanz, W., Mikulits, A., Livingstone, I., Lefkovits, E.W., Mullner. Translational control: A general mechanism for gene regulation during T cell activation. FASEB J.. 12: 299–306, 1998, [CSA]
  • S.J., Morley. Signalling through either the p38 or ERK mitogen-activated protein (MAP) kinase pathway is obligatory for phorbol ester and T cell receptor complex (TCR-CD3)-stimulated phosphorylation of initiation factor (elF) 4E in jurkat T cells. FEBS Lett.. 418: 327–332, 1997, [CSA], [CROSSREF]
  • M.J., Clemens, M., Bushell, S.J., Morley. Degradation of eukaryotic polypeptide chain initiation factor (elF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene. 17: 2921–2931, 1998, [CSA], [CROSSREF]
  • S.J., Morley, L., McKendrick, M., Bushell. Cleavage of translation initiation factor 4G (elF4G) during anti-Fas IgM-induced apoptosis does not require signalling through the p38 mitogen-activated protein (MAP) kinase. FEBS Lett.. 438: 41–48, 1998, [CSA], [CROSSREF]
  • E.J., Brown, M.W., Albers, T.B., Shin, K., Ichikawa, C.T., Keith, W.S., Lane, S.L., Schreiber. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 369: 756–758, 1994, [CROSSREF]
  • D.M., Sabatini, H., Erdjument-Bromage, M., Lui, P., Tempst, S.H., Snyder. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 78: 35–43, 1994, [CROSSREF]
  • R., Stan, M.M., McLaughlin, R., Cafferkey, R.K., Johnson, M., Rosenberg, G.P., Livi. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J. Biol. Chem.. 269: 32027–32030, 1994
  • C.J., Sabers, M.M., Martin, G.J., Brunn, J.M., Williams, F.J., Dumont, G., Wiederrecht, R.T., Abraham. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem.. 270: 815–822, 1995, [CROSSREF]
  • L., Beretta, A.C., Gingras, Y., Svitkin, M.N., Hall, N., Sonenberg. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J.. 15: 658–664, 1996, [CSA]
  • L., Beretta, A., Grolleau. Rapamycin selectively inhibits a growth-dependent activation of the initiation step of translation. Med. Sci.. 5: 600–602, 1998
  • E.J., Brown, S.L., Schreiber. A signaling pathway to translational control. Cell. 86: 517–520, 1996, [CROSSREF]
  • T.F., Franke, D.R., Kaplan, L.C., Cantley. PI3K: Downstream AKTion blocks apoptosis. Cell. 88: 435–437, 1997, [CROSSREF]
  • J., Downward. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell. Biol.. 10: 262–267, 1998, [CSA], [CROSSREF]
  • L., Beretta, N.G., Singer, R., Hinderer, A.C., Gingras, B., Richardson, S.M., Hanash, N., Sonenberg. Differential regulation of translation and elF4E phosphorylation during human thymocyte maturation. J. Immunol.. 160: 3269–3273, 1998
  • B.J., Fowlkes, D.M., Pardoll. Molecular and cellular events of T cell development. Adv. Immunol.. 44: 207–264, 1989
  • L.A., Husman, R.P., Shimonkevitz, I.N., Crispe, M.J., Bevan. Thymocyte subpopulations during early fetal development in the BALB/c mouse. J. Immunol.. 141: 736–740, 1988
  • E.L., Reinherz, P.C., Kung, G., Goldstein, R.H., Levey, S.F., Schlossman. Discrete stages of human intrathymic differentiation: Analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. USA. 77: 1588–1592, 1980
  • D., Campana, G., Janossy, E., Coustan-Smith, P.L., Amlot, W.T., Tian. S. lp, and L. Wong, The expression of T cell receptor-associated proteins during T cell ontogeny in man. J. Immunol.. 142: 57–66, 1989
  • R.L., Boyd, P., Hugo. Towards an integrated view of thymopoiesis. Immunol. Today. 12: 71–79, 1991, [CSA], [CROSSREF]
  • A., Kumar, J., Haque, J., Lacoste, J., Hiscott, B.R., Williams. The dsRNA-dependent protein kinase, PKR, activates transcription factor NF-kB by phosphorylating lkB. Proc. Natl. Acad. Sci. USA. 91: 6288–6292, 1994, [CSA]
  • A., Kumar, Y.L., Yang, V., Flati, S., Der, S., Kadereit, A., Deb, J., Haque, L., Reis, C., Weissmann, B.R., Williams. Deficient cytolkine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: Role of IRF-1 and NF-kappaB. EMBO J.. 16: 406–416, 1997, [CSA], [CROSSREF]
  • A.H.T., Wong, N.W.N., Tam, Y.L., Yang, A.R., Cuddihy, S., Li, S., Kirchhoff, H., Hauser, T., Decker, A.E., Koromilas. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and douvle-stranded RNA signaling pathways. EMBO J.. 16: 1291–1304, 1997, [CSA], [CROSSREF]
  • T., Ito, R., Jagus, W.S., May. Interleukin 3 stimulates protein synthesis by regulating double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 91: 7455–7459, 1994
  • K., Nagai, A.H.T., Wong, S., Li, N.W.N., Tam, A.R., Cuddihy, N., Sonenberg, M.B., Mathews, J., Hiscott, M.A., Wainberg, A.E., Koromilas. Induction of CD4 expression and human immunodeficiency virus type 1 replication by mutants of the interferon-inducible protein kinase PKR. J. Virol.. 71: 1718–1725, 1997, [CSA]
  • S., Kadereit, H., Xu, T.M., Engeman, Y.L., Yang, R.L., Fairchild, B.R.G., Williams. Negative regulation of CD8 + T cell function by the IFN-induced and double-stranded RNA-activated kinase PKR. J. Immunol.. 165: 6896–6901, 2001
  • A.K., Dayal, G.M., Kammer. The T cell enigma in lupus. Arthritis Rheum.. 39: 23–33, 1996
  • G.C., Tsokos. Lymphocyte abnormalities in human lupus. Clin. Immunol. Immunopathol.. 63: 7–9, 1992, [CROSSREF]
  • G.M., Kammer, A., Perl, B.C., Richardson, G.C., Tsokos. Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum.. 46: 1139–1154, 2002, [CROSSREF]
  • G.M., Kammer, I., Khan, C., Malemud. Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes. J. Clin. Invest.. 94: 422–430, 1994, [CSA]
  • I.U., Khan, D., Laxminarayana, G.M., Kammer. Protein kinase A RIβ subunit deficiency in lupus T lymphocytes: Bypassing a block in RIβ translation reconstitutes protein kinase A activity and augments IL-2 production. J. Immunol.. 166: 7600–7605, 2001
  • G.C., Tsokos, B., Kovacs, P.P., Sfikakis, S., Theocharis, S.A., Vogelgesang, C.S., Via. Defective antigen-presenting cell function in patients with systemic lupus erythematosus: Role of the B7-1 (CD80) costimulatory molecule. Arthritis Rheum.. 39: 600–609, 1996
  • M., Koshy, D., Berger, M.K., Crow. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J. Clin. Invest.. 98: 826–837, 1996, [CSA]
  • H.K., Wong, G.M., Kammer, G., Dennis, G.C., Tsokos. Abnormal NF-KappaB activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein expression. J. Immunol.. 163: 1682–1689, 1999
  • Y.T., Juang, K., Tenbrock, M.P., Nambiar, M.F., Gourley, G.C., Tsokos. Defective production of functional 98-kDa form of Elf-1 is responsible for the decreased expression of TCR zeta-chain in patients with systemic lupus erythematosus. J. Immunol.. 169: 6048–6055, 2002
  • B., Richardson, L., Scheinbart, J., Strahler, L., Gross, S., Hanash, M., Johnson. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum.. 33: 1665–1673, 1990
  • C., Deng, M.J., Kaplan, J., Yang, D., Ray, Z., Zhang, W.J., McCune, S.M., Hanash, B.C., Richardson. Decreased Ras-mitogen-activated protein kinase signalling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum.. 44: 397–407, 2001, [CROSSREF]
  • A., Grolleau, M.J., Kaplan, S.M., Hanash, L., Beretta, B., Richardson. Impaired translational response and increased protein kinase PKR expression in T cells from lupus patients. J. Clin. Invest.. 106: 1561–1568, 2000, [CSA]
  • D.W., Stacey, S., Shelly, T., Watson, K., Elkon, H., Weissbach, N., Brot. The inhibition of protein synthesis by IgG containing anti-ribosome P autoantibodies from systemice lupus erythematosus patients. Arch. Biochem. Biophys.. 267: 398–403, 1988, [CROSSREF]
  • Q.M., Zong, L., Schummer, L., Hood, D.R., Morris. Messenger RNA translation state: The second dimension of high-throughout expression screening. Proc. Natl. Acad. Sci. USA. 96: 10362–10636, 1999
  • G., Johannes, M.S., Carter, M.B., Eisen, P.O., Brown, P., Sarrow. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex elF4F concentrations using a cDNA microarray. Proc. Natl. Acad. Sci. USA. 96: 13118–13123, 1999, [CSA], [CROSSREF]
  • A., Grolleau, J., Bowman, B., Pradet-Balade, E., Puravs, S., Hanash, J.A., Garcia-Sanz, L., Beretta. Global and specific translational control in T cells in response to rapamycin treatment. J. Biol. Chem.. 277: 22175–22184, 2002, [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.