130
Views
29
CrossRef citations to date
0
Altmetric
Research Article

DECREASED T CELL ERK PATHWAY SIGNALING MAY CONTRIBUTE TO THE DEVELOPMENT OF LUPUS THROUGH EFFECTS ON DNA METHYLATION AND GENE EXPRESSION

&
Pages 315-331 | Published online: 03 Aug 2009

REFERENCES

  • G.M., Kammer, A., Perl, B.C., Richardson, G.C., Tsokos. Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum.. 46: 1139–1154, 2002
  • A., Desai-Mehta, L., Lu, R., Ramsey-Goldman, S.K., Datta. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Invest.. 97: 2063–2073, 1996, [CSA]
  • E.J., Enyedy, M.P., Nambiar, S.N., Liossis, G., Dennis, G.M., Kammer, G.C., Tsokos. Fc epsilon receptor type I gamma chain replaces the deficient T cell receptor zeta chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum.. 44: 1114–1121, 2001, [CROSSREF]
  • A., Grolleau, M.J., Kaplan, S.M., Hanash, L., Beretta, B., Richardson. Impaired translational response and increased protein kinase PKR expression in T cells from lupus patients. J. Clin. Invest.. 106: 1561–1568, 2000, [CSA]
  • S.L., Richardson, J., Strahler, L., Gross, S., Hanaxh, M., Johnson. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum.. 33: 1665–1673, 1990
  • P., Gergely, Jr., C., Grossman, B., Niland, F., Puskas, H., Neupane, F., Allam, K., Banki, P., Phillips, A., Perl. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum.. 46: 175–190, 2002, [CROSSREF]
  • S.N., Liossis, X.Z., Ding, G.J., Dennis, G.C., Tsokos. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J. Clin. Invest.. 101: 1448–1457, 1998, [CSA]
  • G.C., Tsokos, S.N., Liossis. Immune cell signaling defects in lupus: Activation, anergy and death. Immunol Today. 20: 119–124, 1999, [CSA], [CROSSREF]
  • G.M., Kammer, I.U., Khan, C.J., Malemud. Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes. J. Clin. Invest.. 94: 422–430, 1994, [CSA]
  • C., Deng, M.J., Kaplan, J., Yang, D., Ray, Z., Zhang, W.J., McCune, S., Hanash, B., Richardson. Decreased Rasmitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum.. 44: 397–407, 2001, [CROSSREF]
  • M., Karin. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem.. 270: 16483–16486, 1995
  • B., Richardson, R., Yung. Role of DNA methylation in the regulation of cell function. J. Lab. Clin. Med.. 134: 333–340, 1999, [CSA], [CROSSREF]
  • H., Leonhardt, A.W., Page, H.U., Weier, T.H., Bestor. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 71: 865–873, 1992, [CROSSREF]
  • J.T., Attwood, R.L., Yung, B.C., Richardson. DNA methylation and the regulation of gene transcription. Cell Mol. Life Sci.. 59: 241–257, 2002, [CSA], [CROSSREF]
  • W., Reik, W., Dean, J., Walter. Epigenetic reprogramming in mammalian development. Science. 293: 1089–1093, 2001, [CROSSREF]
  • M., Comb, H.M., Goodman. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res.. 18: 3975–3982, 1990
  • S.J., Clark, J., Harrison, P.L., Molloy. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene. 195: 67–71, 1997, [CROSSREF]
  • P.L., Jones, G.J., Veenstra, P.A., Wade, D., Vermaak, S.U., Kass, N., Landsberger. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet.. 19: 187–191, 1998, [CROSSREF]
  • M., Okano, D.W., Bell, D.A., Haber, E., Li. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99: 247–257, 1999, [CROSSREF]
  • E., Li, T.H., Bestor, R., Jaenisch. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69: 915–926, 1992, [CROSSREF]
  • S.M., Taylor, P.A., Jones. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5- azacytidine. Cell. 17: 771–779, 1979, [CROSSREF]
  • R.E., Amir, I.B., Van den Veyver, M., Wan, C.Q., Tran, U., Francke, H.Y., Zoghbi. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.. 23: 185–88, 1999, [CROSSREF]
  • R.S., Hansen, C., Wijmenga, P., Luo, A.M., Stanek, T.K., Canfield, C.M., Weemaes, S., Gartler. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA. 96: 14412–14417, 1999, [CSA], [CROSSREF]
  • R.S., Hansen, T.K., Canfield, M.M., Lamb, S.M., Gartler, C.D., Laird. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell. 73: 1403–1409, 1993, [CROSSREF]
  • J.H., Knoll, R.D., Nicholls, R.E., Magenis, J.M., Graham, Jr., M., Lalande, S.A., Latt. Angelman, and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J. Med. Genet.. 32: 285–290, 1989, [CROSSREF]
  • S.B., Baylin, J.G., Herman. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet.. 16: 168–174, 2000, [CSA], [CROSSREF]
  • J.F., Costello, C., Plass. Methylation matters. J. Med. Genet.. 38: 285–303, 2001, [CROSSREF]
  • B., Richardson. Role of DNA methylation in the regulation of cell function: Autoimmunity, aging and cancer. J. Nutr.. 2002; 132: 2401S–2405S
  • A.R., MacLeod, J., Rouleau, M., Szyf. Regulation of DNA methylation by the Ras signaling pathway. J. Biol. Chem.. 270: 11327–11337, 1995, [CROSSREF]
  • J., Yang, C., Deng, N., Hemati, S.M., Hanash, B.C., Richardson. Effect of mitogenic stimulation and DNA methylation on human T cell DNA methyltransferase expression and activity. J. Immunol.. 159: 1303–1309, 1997
  • C., Deng, J., Yang, J., Scott, S., Hanash, B.C., Richardson. Role of the ras-MAPK signaling pathway in the DNA methyltransferase response to DNA hypomethylation. Biol. Chem.. 379: 1113–1120, 1998, [CSA]
  • C., Deng, M.J., Kaplan, J., Yang, D., Ray, Z., Zhang, W.J., McCune, S., Hanash, B., Richardson. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum.. 44: 397–407, 2001, [CROSSREF]
  • C., Deng, Z., Zhang, T., Rao, J., Attwood, R., Yung, B., Richardson. Hydralazine induces autoimmunity by inhibiting erk pathway signaling in human t cells. Arthritis Rheum.. 2003; 48: 746–756
  • B., Richardson. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4 + cells. Hum. Immunol.. 17: 456–470, 1986, [CSA], [CROSSREF]
  • R., Yung, M., Kaplan, D., Ray, K., Schneider, R.R., Mo, K., Johnson. Autoreactive murine Th1 and Th2 cells kill syngeneic macrophages and induce autoantibodies. Lupus. 10: 539–546, 2001, [CSA], [CROSSREF]
  • R.L., Yung, J., Quddus, C.E., Chrisp, K.J., Johnson, B.C., Richardson. Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J. Immunol.. 154: 3025–3035, 1995
  • B.C., Richardson, J.R., Strahler, T.S., Pivirotto, J., Quddus, G.E., Bayliss, L.A., Gross, K.O., Rourke, D., Powers, S., Hanash, M., Johnson. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum.. 35: 647–662, 1992
  • J., Quddus, K.J., Johnson, J., Gavalchin, E.P., Amento, C.E., Chrisp, R.L., Yung. Treating activated CD4 + T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin. Invest.. 92: 38–53, 1993
  • B.C., Richardson, M.R., Liebling, J.L., Hudson. CD4 + cells treated with DNA methylation inhibitors induce autologous B cell differentiation. Clin. Immunol. Immunopathol.. 55: 368–381, 1990, [CSA], [CROSSREF]
  • R., Yung, D., Powers, K., Johnson, E., Amento, D., Carr, T., Laing, J., Yang, S., Chang, N., Hemati, B., Richardson. Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J. Clin. Invest.. 97: 2866–2871, 1996, [CSA]
  • B., Richardson, D., Powers, F., Hooper, R.L., Yung, K., O′Rourke. Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum.. 37: 1363–1372, 1994
  • M.J., Kaplan, L., Beretta, R.L., Yung, B.C., Richardson. LFA-1 overexpression and T cell autoreactivity: Mechanisms. Immunol. Invest.. 29: 427–442, 2000, [CSA]
  • M.J., Kaplan, C., Deng, J., Yang, B.C., Richardson. DNA methylation in the regulation of T cell LFA-1 expression. Immunol. Invest.. 29: 411–425, 2000, [CSA]
  • R.Y., Wang, C.W., Gehrke, M., Ehrlich. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res.. 8: 4777–4790, 1980
  • Q., Lu, M., Kaplan, D., Ray, D., Ray, S., Zacharek, D., Gutsch, B., Richardson. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosuse. Arthritis Rheum.. 46: 1282–1291, 2002, [CROSSREF]
  • A., Bird. Essentials of DNA Methylation. Cell. 70: 5–8, 1992, [CROSSREF]
  • F.M., van der Veen, A.G., Rolink, E., Gleichmann. Autoimmune disease strongly resembling systemic lupus erythematosus (SLE) in F1 mice undergoing graft-versus-host reaction (GVHR). Adv. Exp. Med. Biol.. 149: 669–677, 1982
  • R., Yung, B., Richardson. Drug-Induced Lupus. S.A., Hochberg, M. J., Smolen, M., Weinblatt, M., Weisman. Rheumatology. LondonHarcourt, Health Sciences. 2002
  • E., Cornacchia, J., Golbus, J., Maybaum, J., Strahler, S., Hanash, B., Richardson. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol.. 140: 2197–2200, 1988
  • R., Yung, S., Chang, N., Hemati, K., Johnson, B., Richardson. Mechanisms of drug-induced lupus. IV. Comparison of procainamide and hydralazine with analogs in vitro and in vivo. Arthritis Rheum.. 40: 1436–1443, 1997
  • R.L., Yung, J., Quddus, C.E., Chrisp, K.J., Johnson, B.C., Richardson. Mechanism of drug-induced lupus 1. Cloned Th2 cells modified with DNA methylation inhibitors in vitro casu autoimmunity in vivo. J. Immunol.. 154: 3025–3035, 1995
  • B., Richardson, L., Scheinbart, J., Strahler, L., Gross, S., Hanash, M., Johnson. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum.. 33: 1665–1673, 1990
  • H., Kaneko, Y., Tokano, H., Hashimoto, S., Hirose. The expression of lymphocyte function associated antigen-1, intercellular adhesion molecule-1 on peripheral blood lymphocytes in patients with systemic lupus erythematosus. Nihon Rinsho Meneki Gakkai Kaishi. 19: 60–68, 1996, [CSA]
  • F., Kern, W.D., Docke, P., Reinke, H.D., Volk. Discordant expression of LFA-1, VLA-4alpha, VLA-beta 1, CD45RO and CD28 on T-cell subsets: Evidence for multiple subsets of ‘memory’ T cells. Int. Arch. Allergy Immunol.. 104: 17–26, 1994, [CSA]
  • T., Takeuchi, K., Amano, H., Sekine, J., Koide, T., Abe. Upregulated expression and function of integrin adhesive receptors in systemic lupus erythematosus patients with vasculitis. J. Clin. Invest.. 92: 3008–3016, 1993
  • A.M., Blasini, S., Cedeno, M., Paris, M.A., Rodriguez. Activation via the TCR/CD3 pathway leads to diminished mitogen activated protein kinase (MAPK) activity in peripheral blood (PB) T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum.. 43: S239, 2000, [CROSSREF]
  • R.A., Franklin, A., Tordai, H., Patel, A.M., Gardner, G.L., Johnson, E.W., Gelfand. Ligation of the T cell receptor complex results in activation of the Ras/Raf-1/MEK/MAPK cascade in human T lymphocytes. J. Clin. Invest.. 93: 2134–2140, 1994, [CSA]
  • H., Becker, G., Stengl, M., Stein, K., Federlin. Analysis of proteins that interact with the IL-2 regulatory region in patients with rheumatic diseases. Clin. Exp. Immunol.. 99: 325–330, 1995, [CSA]
  • F.J., Dumont, M.J., Staruch, P., Fischer, C., DaSilva, R., Camacho. Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production. J. Immunol.. 160: 2579–2589, 1998
  • B., Handwerger, I., Luzina, L., Da Silva, C., Storrer, C., Via. Cytokines in the immunopathogenesis of lupus. G.M., Kammer, G.C., Tsokos. Lupus. Molecular and Cellular Pathogenesis. Totawa, NJ, Humana Press. 321–340, 1999
  • L.S., Scheinbart, M.A., Johnson, L.A., Gross, S.R., Edelstein, B.C., Richardson. Procainamide inhibits DNA methyltransferase in a human T cell line. J. Rheumatol.. 18: 530–534, 1991
  • C., Deng, Z., Zhang, T., Rao, J., Attwood, R., Yung, B., Richardson. Hydralazine induces autoimmunity by inhibiting erk pathway signaling in human t cells. Arthritis Rheum.. 48: 746–756, 2003, [CROSSREF]
  • E.R., Podack, D.M., Lowrey, M., Lichtenheld, K.J., Olsen, T., Aebischer, D., Binder, F., Rupp, H., Hengartner. Structure, function and expression of murine and human perforin 1 (P1). Immunol Rev.. 103: 203–211, 1988
  • T., Kobata, S., Jacquot, S., Kozlowski, K., Agematsu, S.F., Schlossman, C., Morimoto. CD27-CD70 interactions regulate B-cell activation by T cells. Proc. Natl. Acad. Sci. USA. 92: 11249–11253, 1995, [CSA]
  • C., Cabanas, F., Sanchez-Madrid. CD11c (leukocyte integrin CR4 alpha subunit). J. Biol. Regul. Homeost. Agents. 13: 134–136, 1999, [CSA]
  • B., Richardson, J., Attwood, D., Ray, D., Richardson, C., Deng. Identification of methylation sensitive T cell genes capable of paraticipating in autoimmunity. Arthritis Rheum.. 44: S201, 2001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.