52
Views
3
CrossRef citations to date
0
Altmetric
Original

Translating the Concept of Suppressor/Regulatory T Cells to Clinical Applications

&
Pages 27-47 | Published online: 03 Aug 2009

REFERENCES

  • K.C. Garcia, M. Degano, R.L. Stanfield, A. Brunmark, M.R. Jackson, P.A. Peterson, L. Teyton, and I.A. Wilson, An alpha/beta T cell receptor structure at 2.5 A and its orientation in the TcR-MHC complex, Science, 274: 209–219, 1996, [CSA]
  • B.P. Babbitt, P.M. Allen, G. Matsueda, E. Haber, and E.R. Unanue, Binding of immunogenic peptides to Ia histocompatibility molecules, Nature, 317: 359–361, 1985, [CROSSREF], [CSA]
  • S. Buus, A. Sette, S.M. Colon, D.M. Jenis, and H.M. Grey, Isolation and characterization of antigen-Ia complexes involved in T cell recognition, Cell, 47: 1071, 1986, [CROSSREF], [CSA]
  • T.N. Schumacher, M.T. Heemels, J.J. Neefjes, W.M. Kast, C.J. Melief, and H.L. Ploegh, Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro, Cell, 62: 563–567, 1990, [CROSSREF], [CSA]
  • P.J. Bjorkman, M.A. Saper, B. Samraoui, W.S. Bennett, J.L. Strominger, and D.C. Wiley, The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens, Nature, 329: 512–518, 1987, [CROSSREF], [CSA]
  • D.H. Fremont, M. Matsumura, E.A. Stura, P.A. Peterson, and I.A. Wilson, Crystal structure of two viral peptides complex with murine class I H-2Kb, Nature, 257: 919–927, 1992, [CSA]
  • A.W. Goldrath and M.J. Bevan, Selecting and maintaining a divesre T cell repertoire, Nature, 402: 255–262, 1999, [CROSSREF], [CSA]
  • R.N. Germain and I. Stefanova, The dynamics of T cell receptor signaling: Complex orchestration and the key role of tempo and cooperation, Annu. Rev. Immunol., 17: 467–522, 1999, [CROSSREF], [CSA]
  • C.A.J. Janeway, Ligands for the T cell receptor: Hard time for avidity models, Immunol. Today, 16: 223–225, 1995, [CROSSREF], [CSA]
  • H.Y. Ding, B.M. Baker, D.N. Garboczi, W.E. Biddison, and D.C. Whiley, Four A6-TcR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical, Immunity, 11: 45–56, 1999, [CROSSREF], [CSA]
  • P.A. van der Merwe, S.J. Davis, A.S. Shaw, and M.L. Dustin, Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition, Semin. Immunol., 12: 5–21, 1997, [CROSSREF], [CSA]
  • A.S. Shaw and M.L. Dustin, Making the T cell receptor go the distance: A topological view of T cell activation, Immunity, 6: 361–369, 1997, [CROSSREF], [CSA]
  • S.J. Davis and P.A. van der Merwe, The structure and ligan interactions of CD2: implication for T cell function, Immunol. Today, 17: 177–187, 1996, [CROSSREF], [CSA]
  • A. Sette, J. Alexander, J. Ruppert, K. Snoke, A. Franco, G. Ishioka, and H.M. Grey, Antigen analogs MHC complexes as specific T cell receptor antagonists, Ann. Rev. Immunol., 12: 413–431, 1994, [CROSSREF], [CSA]
  • M.F. Bachmann and P.S. Ohashi, The role of T-cell receptor dimerization in T cell activation, Immunol. Today, 20: 568–576, 1999, [CROSSREF], [CSA]
  • J.H. Brown, T.S. Jardetzky, J.C. Gorga, L.J. Stern, R.G. Uran, J.L. Strominger, and D.C. Wiley, Three dimensional structure of the human class II histocompatibility antigen HLA-DR1, Nature, 364: 33–39, 1993, [CROSSREF], [CSA]
  • F. Giannoni, J. Barnett, K. Bi, R. Samodal, P. Lanza, P. Marchese, R. Billetta, R. Vita, M.R. Klein, B. Prakken, W.W. Kwok, E. Sercaz, A. Altman, and S. Albani, Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C Theta translocation to the T cell plasma membrane, J. Immunol., 176: 3204–3211, 2005, [CSA]
  • S. Valitutti, S. Muller, M. Dessing, and A. Lanzavecchia, Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy, J. Exp. Med., 183: 1917–1921, 1996, [CROSSREF], [CSA]
  • C. Rosette, G. Werlen, M.A. Daniels, P.O. Holman, S.M. Alam, P.J. Travers, N.R.J. Gascoigne, E. Palmer, and S.C. Jameson, The impact od duration versus extent of TcR occupancy on T cell activation: a revision of the kinetic proofreading model, Immunity, 15: 59–70, 2001, [CROSSREF], [CSA]
  • S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, Distinct T cell dynamics in lymph nodes during the induction of tolerance immunity, Nat. Immunol., 5: 1201–1202, 2004, [CROSSREF], [CSA]
  • C.V. Harding and E.R. Unanue, Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation, Nature, 346: 574–576, 1990, [CROSSREF], [CSA]
  • S. Demotz, H.M. Grey, and A. Sette, The minimal number of class II MHC-antigen complexes needed for T cell activation, Science, 249: 1028–1030, 1990, [CSA]
  • A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, A.S. Shaw, P.M. Allen, and M.L. Dustin, The immunological synapse: a molecular machine controlling T cell activation, Science, 285: 221–227, 1999, [CROSSREF], [CSA]
  • S. Valitutti, S. Muller, M. Cella, E. Padovan, and A. Lanzavecchia, Serial triggering of many T-cell receptors by a few peptide-MHC complexes, Nature, 375: 148–151, 1995, [CROSSREF], [CSA]
  • A. Lanzavecchia, G. Iezzi, and A. Viola, From TCR engagement to T cell activation: A kinetic view of T cell behaviour, Cell, 96: 1–4, 1999, [CROSSREF], [CSA]
  • A. Lanzavecchia and F. Sallusto, Antigen decoding by T lymphocytes: From synapses to fate determination, Nat. Immunol., 2: 487–492, 2001, [CROSSREF], [CSA]
  • P. Matzinger, Tolerance, danger and the extended family, Annu. Rev. Immunol., 12: 991–1045, 1994, [CSA]
  • H. Jiang and L. Chess, An integrated view of suppressor T cell subsets in immunoregulation, J. Clin. Invest., 114: 1198–1208, 2004, [CROSSREF], [CSA]
  • S. Paust and H. Cantor, Regulatory T cells and autoimmune diseases, Immunol. Rev., 204: 195–207, 2005, [CROSSREF], [CSA]
  • R.K. Gershon and K. Kondo, Cell interactions in the induction of tolerance: The role of thymic lymphocytes, Immunology, 18: 723–737, 1970, [CSA]
  • H. Cantor and E.A. Boyse, Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly + cells in the geneation of killer activity, J. Exp. Med., 141: 1390–1399, 1975, [CROSSREF], [CSA]
  • H. Cantor and R.K. Gerhon, Immunological circuits: Cellular composition, Fed. Proc., 38: 2058–2064, 1979, [CSA]
  • D.D. Eardley and R.H. Gershon, Feedback induction of suppressor T cell activity, J. Exp. Med., 142: 524–529, 1975, [CROSSREF], [CSA]
  • H. Kimura and D.B. Wilson, Anti-idiotypic cytotoxic T cells in rats with graft-versus-host disease, Nature, 308: 463–464, 1984, [CROSSREF], [CSA]
  • D. Sun, Y. Qin, J. Chluba, J.T. Epplen, and H. Wekerle, Suppression of experimentally induced autoimmune encephalomyelitis by cytolytic T-T interactions, Nature, 332: 843–845, 1988, [CROSSREF], [CSA]
  • H. Jiang, S.I. Zhang, and B. Pernis, Role of CD8 + T cells in murine experimental allergic encepaholomyelitis, Science, 256: 1213–1215, 1992, [CSA]
  • D. Koh, , et al., Less mortality but more relapses in experimental allergic encephalomyelitis in CD8 − / − mice, Science, 256: 1210–1213, 1992, [CSA]
  • H. Jiang, , et al., Murine CD8 + T cells that specifically delete autologous CD4 + T cells expressing V beta 8 TcR: A role for the Qa-1 molecule, Immunity, 2: 185–194, 1995, [CROSSREF], [CSA]
  • H. Jiang, , et al., Regulatory CD8 + T cells fine-tune the myelin basic protein reactive T cell receptor V beta repertoire during experimental autoimmune encephalomyelitis, Proc. Natl. Acad. Sci. USA, 100: 8378–8383, 2003, [CROSSREF], [CSA]
  • T.H. Stanton, C.E. Calkins, J. Jandinski, D.J. Schendel, O. Stutman, and H. Cantor, The Qa-1 antigenic system. Relation of Qa-1 phenotypes to lymphocytes sets, mitogen responses, and immune functions, J. Exp. Med., 148: 963–973, 1978, [CROSSREF], [CSA]
  • H. Cantor, J. Hugenberger, L. McVay-Boudreau, D.D. Eardly, J. Kemp, F.W. Shen, and R.K. Gershon, Immunoregulatory circuits among T-cell sets. Identification of a subpopulation of T-helper cells that induces feedback inhibition, J. Exp. Med., 148: 963–973, 1978, [CROSSREF], [CSA]
  • D. Hu, K. Ikizawa, L. Lu, M.E. Sanchirico, M.L. Shinoara, and H. Cantor, Analysis of regulatory CD8 + T cells in Qa-1-deficient mice, Nat. Immunol., 5: 516–523, 2004, [CROSSREF], [CSA]
  • H. Jiang and L. Chess, The specific regulation of immune responses by CD8 + T cells restricted by the MHC class Ib molecule, Qa-1, Annu. Rev. Immunol., 18: 185–216, 2000, [CROSSREF], [CSA]
  • V. Panautsakopoulou, K.M. Huster, N. McCarty, E. Feinberg, R. Wang, K.W. Wucherpfenning, and H. Cantor, Suppression of autoimmune disease after vaccination with autoreactive T cells that express Qa-1 peptide complexes, J. Clin. Invest., 113: 1218–1224, 2004, [CROSSREF], [CSA]
  • R.S. McHughs, , et al., Immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor, Immunity, 2002: 1174–1182, 2002, [CSA]
  • J. Shimuzu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, Stimulation of CD25 + CD4 + regulatory T cells through GITR breaks immunological self-tolerance, Nat. Immunol., 3: 132–142, 2002, [CSA]
  • L.A. Stephens and D. Mason, CD25 is a marker for CD4 + thymocytes that prevent autoimmune diabetis in rats, but peripheral T cells with this function are found in both CD25 + and CD25 − subpopulations, J. Immunol., 165: 3105–3110, 2005, [CSA]
  • S.J. Bensinger, A. Bandeira, M.S. Jordan, A.J. Canton, and T.M. Laufer, Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4 + CD25 + immunoregulatory T cells, J. Exp. Med., 194: 427–438, 2001, [CROSSREF], [CSA]
  • J.D. Fontenot, M.A. Gavin, and A.Y. Rudensky, Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells, Nat. Immunol., 4: 330–336, 2003, [CROSSREF], [CSA]
  • S. Hori, T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3, Science, 299: 1057–1061, 2003, [CROSSREF], [CSA]
  • D. Bruder, , et al., Neropilin-1: A surface marker of regulatory T cells, Eur. J. Immunol., 34: 623–630, 2004, [CSA]
  • I. Apostolou, A. Sarukhan, L. Klein, and H. von Boehmer, Origin of regulatory T cells with known specificity for antigens, Nat. Immunol., 3: 756–763, 2002, [CSA]
  • I. Apostolou and H. von Boemer, In vivo instruction od suppressor committment in naive T cells, J. Exp. Med., 199: 1401–1408, 2004, [CROSSREF], [CSA]
  • G.C. Furtado, D. Olivares-Villagomez, M.A. Curotto de Lafaille, A.K. Wensky, J.A. Latkowski, and J.J. Lafaille, Regulatory T cells in spontaneous autoimmune encephalomyelitis, Immunol. Rev., 182: 122–134, 2001, [CROSSREF], [CSA]
  • A. Gonzales, I. Andre-Schmutz, C. Carnaud, D. Mathis, and C. Benoist, Damage control, rather than unresonsiveness, effected by protective DX5 + T cells in autoimmune diabetes, Nat. Immunol., 2001: 1117–1125, [CROSSREF], [CSA]
  • M.A. Curotto de Lafaille and J.J. Lafaille, CD4 + regulatory T cells in autoimmunity and allergy, Curr. Opin. Immunol., 14: 771–778, 2002, [CROSSREF], [CSA]
  • K. Kretschmer, I. Apostolou, D. Hawiger, K. Khazaie, M. Nussenzweig, and H. von Boehmer, Inducing and expanding regulatory T cell populations by foreign antigen, Nat. Immunol., 6: 1–9, 2005, [CROSSREF], [CSA]
  • J.D. Fontenot, J.P. Rasmussen, M.A. Gavin, and A.Y. Rudensky, A function for interleukin 2 in Foxp3-expressing regulatory T cells, Nat. Immunol., 6: 1142–1151, 2005, [CROSSREF], [CSA]
  • P. Paharam, C.E. Lomen, D.A. Lawlor, J.P. Ways, N. Holmes, H.L. Coppin, R.D. Salter, A.M. Wan, and P.D. Ennis, Nature of polymorphism in HLA-A-B and -C molecules, Proc. Natl. Acad. Sci., 85: 4005–4009, 1988, [CSA]
  • K. Falk, O. Rotzschke, Stevanovi, G. Jung, and H.-G. Rammensee, Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules, Nature, 351: 290–296, 1991, [CROSSREF], [CSA]
  • M. Matsumura, D.H. Fremont, P.A. Peterson, and I.A. Wilson, Emerging principles for the recognition of peptides antigens by MHC class I molecules, Science, 257: 927–934, 1992, [CSA]
  • W.D. Madden DR, Peptide binding to the major histocompatibility complex molecules, Curr. Opin. Struct. Biol., 2: 300–304, 1992, [CROSSREF], [CSA]
  • W. Zhang, A.C. Young, M. Imarai, S.G. Nathenson, and J.C. Sacchettini, Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition, Proc. Natl. Acad. Sci. USA, 89: 8403–8407, 1992, [CSA]
  • H.C. Guo, T.S. Jardetzky, T.P. Garrett, W.S. Lane, J.L. Strominger, and D.C. Wiley, Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle, Nature, 360: 364–366, 1992, [CROSSREF], [CSA]
  • D.R. Madden, D.N. Garbogzi, and D.C. Wiley, The antigenic identify of peptide-MHC complexes: A comparison of the conformation of five viral peptides presented by HLA A2, Cell, 75: 693–708, 1993, [CROSSREF], [CSA]
  • M.A. Saper, P.J. Bjorkman, and D.C. Wiley. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution, J. Mol. Biol., 219: 277–319, 1991, [CROSSREF], [CSA]
  • A. Sette, S. Buus, S. Colon, J.A. Smith, C. Miles, and H.M. Grey, Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells, Nature, 328: 395–399, 1987, [CROSSREF], [CSA]
  • J. Sloan-Lancaster, A.S. Shaw, J.B. Rothbard, and P.M. Allen, Partial T cell signaling: altered phospho-zeta and lack of Zap 70 recruitment in APL-induced T cell anergy, Cell, 79: 913–922, 1994, [CROSSREF], [CSA]
  • J. Madrenas, R.L. Wange, J.L. Wang, N. Isakov, L.E. Samelson, and R.N. Germain, Z phosphorylation without Zap 70 activation induced by TcR antagonist and partial agonist, Science, 267: 515–518, 1995, [CSA]
  • M.T. De Magistris, J. Alexander, M. Coggeshal, A. Altman, F.C.A. Gaeta, H.M. Grey, and A. Sette, Analog/antigen/MHC complexes act as antagonist of the T cell receptor, Cell, 68: 625–634, 1992, [CROSSREF], [CSA]
  • B.D. Evavold and P.M. Allen, Separation of IL4 production fronm Th cell proliferation and lymphokine production using peptide analogs, Science, 252: 1308–1310, 1991, [CSA]
  • S.C. Jameson and M.J. Bevan, T cell receptor antagonists and partial agonists, Immunity, 2: 1–11, 1995, [CROSSREF], [CSA]
  • J. Sloan-Lancaster, B.D. Evavold, and P.M. Allen, Induction of T cell anergy by altrered T cell receptor ligand on live antigen presenting cells, Nature, 363: 156–159, 1993, [CROSSREF], [CSA]
  • A. Franco, S. Southwood, T. Arrhenius, V.J. Kuchroo, H.M. Grey, A. Sette, and G.Y. Ishioka, T cell receptor antagonist peptides are highly effective inhibitors of experimental allergic encephalomyelitis, Eur. J. Immunol., 24: 940, 1994, [CSA]
  • V.K. Kuchroo, G.M. Greer, D. Kaul, G. Ishioka, A. Franco, A. Sette, R.A. Sobel, and M.B. Less, A single TcR antagonist peptide inhibits experimental allergic encephalomyelitis by a diverse T cell repertoire, J. Immunol., 153: 3326–3336, 1994, [CSA]
  • L.B. Nicholson, J.M. Greer, R.A. Sobel, M.B. Lees, and V.K. Kuchroo, An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis, Immunity, 3: 397–405, 1995, [CROSSREF], [CSA]
  • A. Gaur, S.A. Boehme, D. Chalmers, P.D. Crowe, A. Pahuja, N. Ling, S. Brocke, L. Steinman, and P.J. Conlon, Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms, J. Neuroimmunol., 74: 149–158, 1997, [CROSSREF], [CSA]
  • S.M. Anderton, S. Kissler, A.G. Lamont, and D.C. Wraith, Therapeutic potential of TCR antagonists is determined by their ability to modulate a diverse repertoire of autoreactive T cells, Eur. J. Immunol., 29: 1850–1857, 1999, [CROSSREF], [CSA]
  • D.A. Young, L.D. Lowe, S.S. Booth, M.J. Whitters, L. Nicholson, V.K. Kuchroo, and M. Collins, IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis, J. Immunol., 164: 3563–3572, 2000, [CSA]
  • F.R. Fischer, L. Santambrogio, Y. Luo, M.A. Berman, W.W. Hancock, and M.E. Dorf, Modulation of experimental autoimmune encephalomyelitis: Effect of altered peptide ligand on chemokine and chemokine receptor expression, J. Neuroimmunol., 110: 195–208, 2000, [CROSSREF], [CSA]
  • N. Heijmans, P.A. Smith, M.M. Morris-Downes, G. Pryce, D. Baker, A.V. Donaldson, B. Hart, and S. Amor, Encephalitogenic and tolerogenic potential of altered peptide ligands of MOG and PLP in Biozzi ABH mice, J. Neuroimmunol., 167: 23–33, 2005, [CROSSREF], [CSA]
  • A. Lanzavecchia and F. Sallusto, Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol., 16: 82–89, 2005, [CROSSREF], [CSA]
  • R.M. Steinman, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol., 9: 271–296, 1991, [CROSSREF], [CSA]
  • J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.-J. Liu, B. Pulendran, and K. Palucka, Immunobiology of dendritic cells, Annu. Rev. Immunol., 18: 767–811, 2000, [CROSSREF], [CSA]
  • A. Lanzavecchia and F. Sallusto, Regulation of T cell immunity by dendritic cells, Cell, 106: 263–266, 2001, [CROSSREF], [CSA]
  • J.P. Ridge, E.J. Fuchs, and P. Matzinger, Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells, Science, 271: 1723–1726, 1996, [CSA]
  • A.E. Morelli, Dendritic cells: regulators of alloimmunity and opportunity for tolerance induction, Immunol. Rev., 196: 125–146, 2003, [CROSSREF], [CSA]
  • M.K. Jenkins, The ups and downs of T cell costimulation, Immunity, 443–446, 1994, [CROSSREF], [CSA]
  • R.M. Steinman, D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells, Annu. Rev. Immunol., 21: 685–711, 2003, [CROSSREF], [CSA]
  • S.K. Yoshinaga, J.S. Whoriskey, S.D. Khare, U. Sarmiento, G. Guo, T. Horan, G. Shih, M. Zhang, M.A. Coccia, T. Kohno, A. Tafuri-Bladt, D. Brankow, P. Campbell, D. Chang, L. Chiu, J. Dai, G. Duncan, G.S. Elliott, A. Hui, S.M. McCabe, S. Scully, A. Shainian, C.L. Shaklee, G. Van, T.M. Mak, and G. Senaldi, T-cell co-stimulation through B7RP-1 and ICOS, Nature, 402: 827–832, 1999, [CROSSREF], [CSA]
  • A. Hutloff, A.M. Dittrich, K.C. Beier, B. Eljaschewitsch, R. Kraft, I. Agnagnostopulos, and R.A. Kroczek, ICOS is an inducibile T cell co-stimulator structurally and functionally related to CD28, Nature, 397: 263–266, 1999, [CROSSREF], [CSA]
  • A. Tafuri, A. Shahinian, F. Bladt, S.K. Yoshinaga, M. Jordana, A. Wakeham, L.M. Boucher, D. Bouchard, V.S.F. Chan, G. Duncan, B. Odermatt, A. Ho, A. Itie, T. Horan, J.S. Whoriskey, T. Pawson, J.M. Penninger, P. Ohashi, and T.M. Mack, ICOS is essential for effective T-helper-cell responses, Nature, 409: 105–109, 2001, [CROSSREF], [CSA]
  • S.K. Yoshinaga, M. Zhang, J. Pistillo, T. Horan, S.D. Khare, K. Miner, M. Sonnemberg, T. Boone, D. Brankow, T. Dai, J. Delaney, H. Han, A. Hui, T. Kohno, R. Manoukian, J.S. Whoriskey, and M.A. Coccia, Characterization of a new human B7-related protein: B7RP-1 the ligand to the co-stimulatory protein ICOS, Int. Immunol., 12: 1439–1447, 2000, [CROSSREF], [CSA]
  • M.E. Keir and A.H. Sharpe, The B7/CD28 costimulatory family in autoimmunity, Immunol. Rev., 204: 128–143, 2005, [CROSSREF], [CSA]
  • L. Tuosto and O. Acuto, CD28 affects the earliest signaling events generated by TCR engagement, Eur. J. Immunol., 28: 2131–2142, 1998, [CROSSREF], [CSA]
  • U. Grohmann, , et al., CTL-4-Ig regulates tryptophan catabolism in vivo, Nat. Immunol., 3: 1097–1101, 2002, [CROSSREF], [CSA]
  • U. Grohmann, , et al., A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice, Nat. Immunol., 198: 153–160, 2003, [CSA]
  • F. Fallarino, , et al., Modulation of tryptophane metabolism by regulatory T cells, Nat. Immunol., 4: 1206–1212, 2003, [CROSSREF], [CSA]
  • P.H. Tan, J.B. Yates, S.A. Xue, C. Chan, W.J. Jordan, J.E. Harper, M.P. Watson, R. Dong, M.A. Ritter, R.I. Lechler, G. Lombardi, and A.J. George, Creation of tolerogenic human DC via intracellular CTLA4: A novel strategy with potential in clinical immunosuppression, Blood, 106: 2936, 2005, [CROSSREF], [CSA]
  • G. Vlad, R. Cortesini, and N. Suciu-Foca, Licence to heal: Bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC, J. Immunol., 174: 5907–5914, 2005, [CSA]
  • A. Mimran, F. Mor, F.J. Quintana, and I.R. Cohen, Anti-ergotypic T cells in naive rats, J. Autoimmun., 24: 191–201, 2005, [CROSSREF], [CSA]
  • I.R. Cohen, F. Quintana, and A. Mimran, Tregs in T cell vaccination: Exploring the regulation of the regulation, J. Clin. Invest., 114: 1227–1232, 2004, [CSA]
  • R.J. Greenwald, G.J. Freeman, and A.H. Sharpe, The B7 family revisited, Annu. Rev. Immunol., 23: 515–548, 2005, [CSA]
  • R.M. Locksley, N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: Integrating mammalian biology, Cell, 104: 487–501, 2001, [CROSSREF], [CSA]
  • S.P. Shoenberger, R.E.M. Toes, E.I.H. van der Voort, R. Offringa, and C.J.M. Melief, T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interaction, Nature, 393: 480–483, 1998, [CROSSREF], [CSA]
  • S.R. Bennett, F.R. Carbone, F. Karamalis, R.A. Flavell, J.F.P. Miller, and W.R. Heath, Help for cytotoxic T cells responses is mediated by CD40, Nature, 480: 393–483, 1998, [CSA]
  • J.P. Ridge, F. Di Rosa, and P. Matzinger, A conditioned dendritic cell can be a temporal bridge between a CD4 + T-helper and a T killer cell, Nature, 393: 474–477, 1998, [CROSSREF], [CSA]
  • T.H. Watts, TNF/TNFR family members in costimulation of T cell responses, Annu. Rev. Immunol., 23: 23–68, 2005, [CROSSREF], [CSA]
  • B. Salomon and J.A. Bluestone, Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation, Annu. Rev. Immunol., 19: 225–252, 2001, [CROSSREF], [CSA]
  • A.A. Itano and M.K. Jenkins, Antigen presentation to naive CD4 T cells in the lymph node, Nat. Immunol., 4: 733–739, 2003, [CROSSREF], [CSA]
  • P. Martin, G.M. Del Hoyo, F. Anjuere, C.V. Arias, H.H. Vargas, L.A. Fernandez V. Parrillas, and C. Ardavin, Characterization of a new subpopulation of mouse CD8alpha + B220 + dendritic cells endowed with type 1 interferon production capacity and tolerogenic potentials, Blood, 100: 390–393, 2002, [CROSSREF], [CSA]
  • L. Adorini, Immunotherapeutic approaches in multiple sclerosis, J. Neurol. Sci., 223: 13–24, 2004, [CROSSREF], [CSA]
  • M. Colonna, H. Nakajima, and M. Cella, A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells, Semin. Immunol., 12: 121–127, 1999, [CROSSREF], [CSA]
  • J.V. Ravatech and L.L. Lanier, Immune inhibitory receptors, Science, 290: 84–89, 2000, [CROSSREF], [CSA]
  • C.C. Chang, R. Ciubotariu, J.S. Manavalan, , et al., Tolerization of dendritic cells by Ts cells: The crucial role of inhibitory receptors ILT3 and ILT4, Nat. Immunol., 3: 237–243, 2002, [CROSSREF], [CSA]
  • J. Li, Z. Liu, Z. Jiang, R. Cortesini, S. Lederman, and N. Suciu-Foca, T suppressor lymphocytes inhibit NF-kB-mediated transcription of CD86 gene in APC, J. Immunol., 163: 6386–6392, 1999, [CSA]
  • D. Brown, J. Trowsdale, and R. Allen, The LILR family: Modulation of innate and adaptive immune pathways in health and disease, Tissue Antigens, 64: 215–225, 2004, [CROSSREF], [CSA]
  • H. Hackstein and A.W. Thomson, Dendritic cells: Emerging pharmacological targets of immunosuppressive drugs, Nat. Rev. Immunol., 4: 24–34, 2004, [CROSSREF], [CSA]
  • L. Adorini, G. Penna, N. Giarratana, and M. Uskokovic, Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases, J. Cell. Biochem., 88: 227–233, 2003, [CROSSREF], [CSA]
  • P.S. Piraino, T.A. Yednock, S.B. Freedman, E.K. Messersmith, M.A. Pleiss, and S.J. Karlik, Suppression of acute experimental allergic encephalomyelitis with a small molecule inhibitor of alpha4 integrin, Mult. Scler., 11: 683–690, 2005, [CROSSREF], [CSA]
  • P.S. Piraino, T.A. Yednock, E.K. Messersmith, M.A. Pleiss, S.B. Freedman, R.R. Hammond, and S.J. Karlik, Prolonged reversal of chronic experimental allergic encephalomyelitis using a small molecule inhibitor of alpha4 integrin, Neuroimmunology, 131: 147–159, 2002, [CROSSREF], [CSA]
  • L. Bertry-Coussot, B. Lucas, C. Danel, L. Halbwachs-Mecarelli, J.F. Bach, L. Chatenoud, and P. Lemarchand, Long-term reversal of established autoimmunity upon transient blockade of the LFA-1/intercellular adhesion molecule-1 pathway, J. Immunol. 168: 3641–3648, 2002, [CSA]
  • T.A. Yednock, C. Cannon, L.C. Fritz, F. Sanchez-Madrid, L. Steinman, and N. Karin, Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin, Nature, 356: 63–66, 1992, [CROSSREF], [CSA]
  • A.P. Cope and G. Sonderstrup, Evaluating candidate autoantigens in rheumatoid arthritis, Springer Semin. Immunopathol., 20: 23–39, 1998, [CROSSREF], [CSA]
  • V.M. Corrigal, M.D. Bodman-Smith, M.S. Fife, B. Canas, L.K. Myers, P. Wooley, , et al., The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis, J. Immunol., 166: 1492–1498, 2001, [CSA]
  • B. Prakken, W. Kuis, W. Van Eden, and S. Albani, Heatshock proteins in juvenile idiopathic arthritis: Keys for understanding remitting arthritis and candidate antigens for immunotherapy, Curr. Rheumatol. Rep., 4: 466–473, 2002, [CSA]
  • V. Van Eden, Z.R. van Der, and B. Prakken, Heat-shock proteins induce T cell regulation of chronic inflammation, Nat. Rev. Immunol., 5: 318–330, 2005, [CROSSREF], [CSA]
  • S. Albani, E.C. Keystone, J.L. Nelson, W.E.R. Ollier, A. La Cava, A.C. Montemayor, , et al., Positive selection in autoimmunity: Abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis, Nat. Med., 1: 448–452, 1995, [CROSSREF], [CSA]
  • S. Albani, A. Ravelli, M. Massa, F. De Benedetti, G. Andree, J. Roudier, , et al., Immune responses to the Escherichia coli dnaJ heat shock protein in juvenile rheumatoid arthritis and their correlation with disease activity, J. Pediatr., 124: 561–565, 1994, [CSA]
  • S. Albani and D.A. Carson, A multistep molecular mimicry hypothesis for the pathogenesis of rheumatoid arthritis, Immunol. Today, 17: 466–470, 1996, [CROSSREF], [CSA]
  • A.B.J. Prakken, W. van Eden, G.T. Rijkers, W. Kuis, E.A. Toebes, E.R. de Graeff-Meeder, , et al., Autoreactivity to human heat-shock protein 60 predicts isease remission in oligoarticular juvenile rheumatoid arthritis, Arthritis Rheum., 39: 1826–1832, 1996, [CSA]
  • E.R. de Graeff-Meeder, W. Van Eden, G.T. Rijkers, A.B.J. Prakken, W. Kuis, M.W. Voorhost-Ogink, , et al., Juvenile chronic arthritis: T cell reactivity to Human HSP60 in patients with favourable course of arthritis, J. Clin. Invest., 95: 934–940, 1995, [CSA]
  • A.G. Pockley, Heat shock proteins as regulators of the immune response, Lancet, 362: 469–476, 2003, [CROSSREF], [CSA]
  • A.P. Cope, S.D. Patel, F. Hall, M. Congia, H.A. Hubers, G.F. Verheijden, , et al., T cell responses to a human cartilage autoantingen in the context of rheumatoid arthritis-associated and non associated HLA-DR4 alleles, Arthritis Rheum., 42: 1497–1507, 1999, [CROSSREF], [CSA]
  • G.A. Rook, G. Ristori, M. Salvetti, G. Giovannoni, E.J. Thomson, and J.L. Stanford, Bacterial vaccines for the treatment of multiple sclerosis and other autoimmune disorders, Immunol. Today, 21: 503–508, 2000, [CROSSREF], [CSA]
  • L. Steinman, Myelin-specific CD8 + T cells in multiple sclerosis, J. Exp. Med., 194: F27–F30, 2001, [CROSSREF], [CSA]
  • B.J. Prakken, R. Samodal, T.D. Le, F. Giannoni, G. Puga Yung, J. Scavulli, D. Amox, S. Roord, I. de Kleer, D. Bonnin, P. Lanza, C. Berry, M. Massa, R. Billetta, and S. Albani, Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis, Proc. Natl. Acad. Sci. USA, 101: 4228–4233, 2004, [CROSSREF], [CSA]
  • A. La Cava, J.L. Nelson, W.E.R. Ollier, A. MacGregor, E.C. Keystone, and J.C. Thorne, Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis, J. Clin. Invest., 100: 658–663, 1997, [CSA]
  • A. Holz, B. Bielekova, R. Martin, and M.B. Oldstone, Myelin-associated oligodendrocytic basic protein: Identification of an encephalitogenic epitope and association with multiple sclerosis, J. Immunol., 164: 1103–1109, 2000, [CSA]
  • B. Bielekova, P.A. Muraro, L. Golestaneh, J. Pascal, H.F. McFarland, and R. Martin, Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7, J. Neuroimmunology, 100: 115–123, 1999, [CROSSREF], [CSA]
  • M. Massa, R. Campanelli, A. Uccelli, V. Meli, P. Lanza, R. Billetta, , et al., Identification of novel lead compounds in modulation of pathogenic immune responses in multiple sclerosis, [Abstract]. International Conference on Autoimmunity, Budapest, 2004.
  • I.M. de Kleer, S.M. Kamphuis, G.T. Rijekers, L. Scholtens, G. Gordon, W. de Jager, , et al., The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30 + T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10, Arthritis Rheum., 48: 2001–2010, 2003, [CROSSREF], [CSA]
  • S. Kamphuis, W. Kuis, W. de Jager, G. Teklenburg, M. Massa, G. Gordon, M. Boerhof, G.T. Rijkers, C.S. Uiterwaal, H.G. Otten, A. Sette, S. Albani, and B.J. Prakken, Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 juvenile idiopathic arthritis, Lancet, 366: 50–56, 2005, [CROSSREF], [CSA]
  • G. Teklenburg and S. Albani, The role of immune tolerance in preventing and treating arthritis, Curr. Rheum. Rep., 6: 434–441, 2004, [CSA]
  • B.J. Prakken, D.A. Carson, and S. Albani, T cell repertoire formation and molecular mimicry in rheumatoid arthritis, Curr. Directions Autoimmun., 3: 51–63, 2001, [CSA]
  • J.A. Smith, J.Y. Tso, M.L. Clark, M.S. Cole, and J.A. Bluestone, Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy, J. Exp. Med., 185: 1413–1422, 1997, [CROSSREF], [CSA]
  • Q. Tang, K.J. Henriksen, M. Bi, E.B. Finger, G. Szot, J. Ye, E.L. Masteller, H. McDevitt, M. Bonyhadi, and J.A. Bluestone, In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes, J. Exp. Med., 199: 1455–1465, 2004, [CROSSREF], [CSA]
  • K.C. Herold, , et al., A single corse of anti-CD3 monoclonal antibody hOKT3gamma (AlaAla) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes, Diabetes, 54: 1763–1769, 2005, [CSA]
  • B. Bisikirska, J. Colgan, J. Luban, J.A. Bluestone, and K.C. Herold, In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes, J. Exp. Med., 199: 1455–1465, 2005, [CROSSREF], [CSA]
  • E.S. Woodle, D. Xu, R.A. Zivin, J. Auger, J. Charette, R. O'Laughlin, D. Peace, L.K. Jollife, T. Haverty, J.A. Bluestone, and J.R. Thistlethwaite, Jr., Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection, Transplantation, 68: 608–616, 1999, [CROSSREF], [CSA]
  • B.J. Hering, R. Kandaswamy, J.V. Harmon, J.D. Ansite, S.M. Clemmings, T. Sakai, S. Paraskevas, P.M. Eckman, J. Sageshima, M. Nakano, T. Sawada, I. Matsumoto, H.J. Zhang, D.E. Sutherland, and J.A. Bluestone, Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 antibody, Am. J. Transplant., 4: 295–298, 2004, [CROSSREF], [CSA]
  • T.O. Utset, J.A. Auger, D. Peace, R.A. Zivin, D. Xu, L. Jolliffe, M.L. Alegre, J.A. Bluestone, and M.R. Clark, Modified anti-CD3 therapy in psoriatic arthritis: A phase I/II clinical trial, J. Rheumatol., 29: 1907–1913, 2002, [CSA]
  • M.A. Cheever and W. Chen, Therapy with cultured T cells: Principles revisited, Immunol. Rev., 157: 177–194, 1997, [CSA]
  • A. Lanzavecchia, Identifying strategy for immune intervention, Science, 260: 937–944, 1993, [CSA]
  • J. Zhang, R. Medaer, P. Stinissen, D. Hafler, and J. Raus, MHC-restricted depletion of human basic protein-reactive T cells by T cell vaccination, Science, 261: 1451–1454, 1993, [CSA]
  • V. Kumar, R. Tabibiazar, H.M. Geysen, and E. Sercaz, Immunodominant framework region 3 peptide from TcR beta 8.2 chain controls murine experimental immune encephalomyelitis, J. Immunol., 154: 1941–1950, 1995, [CSA]
  • V. Kumar, Homeostatic control of immunity by TcR peptide-specific T regs, J. Clin. Invest., 114: 1222–1226, 2004, [CROSSREF], [CSA]
  • P. Hutchings, N.M. Parish, H. Waldmann, and A. Cooke, The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to beta cells in NOD mice, Eur. J. Immunol., 22: 1913–1918, 1992, [CSA]
  • S.X. Qin, M. Wise, S.P. Cobbold, L. Leong, Y.C. Kong, J.R. Parnes, and H. Waldmann, Induction of tolerance in peripheral T cells with monoclonal antibodies, Eur. J. Immunol., 20: 2737–2745, 1990, [CSA]
  • A. O'Garra, P.L. Vieira, P. Vieira, and A.E. Goldfeld, IL-10 producing and natural occurring CD4 + Tregs: Limiting collateral damage, J. Clin. Invest., 114: 1372–1378, 2004, [CROSSREF], [CSA]
  • P. Tan, A.C. Hansen, J. Melrose, M. Brunvand, J. Bradshaw, J.A. Ledbetter, and P.S. Linsley, Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1, J. Exp. Med., 177: 165–173, 1993, [CROSSREF], [CSA]
  • E. Boden, Q. Tang, H. Bour-Jordan, and J.A. Bluestone, The role of CD28 and CTLA4 in the function and homeostasis of CD4 + CD25 + regulatory T cells, Novartis Found. Symp., 252: 55–63, 2003, [CSA]
  • L. Guo, M. Fujino, H. Kimura, N. Funeshima, Y. Kitazawa, Y. Harihara, K. Tezuka, M. Makuuki, S. Suzuki, and S.K. Li, Simultaneous blockade of co-stimulatory signals, CD28 and ICOS, induced a stable tolerance in rat heart transplantation, Transplant Immunol., 12: 41–48, 2003, [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.