36
Views
4
CrossRef citations to date
0
Altmetric
Original

Feedback Regulation of Autoimmunity via TCR-Centered Regulation

&
Pages 199-209 | Published online: 03 Aug 2009

REFERENCES

  • L. Gorini and M. Bissell, Gene expression and regulation: The legacy of Luigi Gorini, In Proceedings of the symposium held in Milan, Italy, 12–14 October 1987. International Congress Series. Vol. 874. 1988, Amsterdam, New York: Excerpta Medica; New York: Elsevier, 1988, 386.
  • F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol., 3: 318, 1961.
  • S. Sakaguchi, , et al, T cell-mediated maintenance of natural self-tolerance: Its breakdown as a possible cause of various autoimmune diseases, J. Autoimmun., 9: 211–220, 1996. [CSA], [CROSSREF]
  • E. Suri-Payer, , et al, CD4 + CD25 + T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells, J. Immunol., 160: 1212–1218, 1998.
  • B. Sadlack, , et al, Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene, Cell, 75: 253–261, 1993. [CROSSREF]
  • H. Suzuki, , et al, Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta, Science, 268: 1472–1476, 1995.
  • D.M. Willerford, , et al, Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment, Immunity, 3: 521–530, 1995. [CSA], [CROSSREF]
  • P. Denny, , et al, Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 gene, Diabetes, 46: 695–700, 1997.
  • T.J. Vyse and J.A. Todd, Genetic analysis of autoimmune disease, Cell, 85: 311–318, 1996. [CROSSREF]
  • A.M. Faria and H.L. Weiner, Oral tolerance: Mechanisms and therapeutic applications, Adv. Immunol., 73: 153–264, 1999. [CSA]
  • H. Groux, , et al, A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis, Nature, 389: 737–742, 1997. [CROSSREF]
  • D.R. Green, P.M. Flood, and R.K. Gershon, Immunoregulatory T-cell pathways, Annu. Rev. Immunol., 1: 439–463, 1983. [CSA], [CROSSREF]
  • V. Kumar and E. Sercarz, T cell regulatory circuitry: Antigen-specific and TCR-idiopeptide-specific T cell interactions in EAE, Int. Rev. Immunol., 9: 287–297, 1993.
  • V. Kumar and E.E. Sercarz, The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease, J. Exp. Med., 178: 909–916, 1993. [CROSSREF]
  • V. Kumar, , et al, Immunodominant framework region 3 peptide from TCR V beta 8.2 chain controls murine experimental autoimmune encephalomyelitis, J. Immunol., 154(4): 1941–1950, 1995.
  • V. Kumar and E. Sercarz, Dysregulation of potentially pathogenic self reactivity is crucial for the manifestation of clinical autoimmunity, J. Neurosci. Res., 45: 334–339, 1996. [CSA], [CROSSREF]
  • V. Kumar, K. Stellrecht, and E. Sercarz, Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE), J. Exp. Med., 184: 1609–1617, 1996. [CROSSREF]
  • M.D. Howell, , et al, Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides, Science, 246: 668–670, 1989.
  • M. Vainiene, , et al, Neonatal injection of Lewis rats with recombinant V beta 8.2 induces T cell but not B cell tolerance and increased severity of experimental autoimmune encephalomyelitis, J. Neurosci. Res., 45: 475–486, 1996. [CSA], [CROSSREF]
  • A.A. Vandenbark, G. Hashim, and H. Offner, Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis, Nature, 341: 541–544, 1989. [CROSSREF]
  • C.P. Broeren, , et al, CDR1 T-cell receptor beta-chain peptide induces major histocompatibility complex class II-restricted T-T cell interactions, Proc. Natl. Acad. Sci. USA, 91: 5997–6001, 1994. [CSA]
  • E.F. Rosloniec, , et al, Vaccination with a recombinant V alpha domain of a TCR prevents the development of collagen-induced arthritis, J. Immunol., 155: 4504–4511, 1995.
  • V. Kumar, , et al, Regulatory T cells specific for the same framework 3 region of the Vbeta8.2 chain are involved in the control of collagen II-induced arthritis and experimental autoimmune encephalomyelitis, J. Exp. Med., 185: 1725–1733, 1997. [CROSSREF]
  • D. Elias, , et al, Regulation of NOD mouse autoimmune diabetes by T cells that recognize a TCR CDR3 peptide, Int. Immunol., 11: 957–966, 1999. [CROSSREF]
  • I.R. Cohen, The Th1/Th2 dichotomy, hsp60 autoimmunity, and type I diabetes, Clin. Immunol. mmunopathol., 84: 103–106, 1997. [CROSSREF]
  • A. Ben-Nun, H. Wekerle, and I.R. Cohen, Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein, Nature, 292: 60–61, 1981. [CROSSREF]
  • S.K. Chunduru, , et al, Exploitation of the Vbeta8.2 T cell receptor in protection against experimental autoimmune encephalomyelitis using a live vaccinia virus vector, J. Immunol., 156: 4940–4945, 1996.
  • A. Waisman, , et al, Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity, Nat. Med., 2: 899–905, 1996. [CSA], [CROSSREF]
  • A.A. Vandenbark, , et al, Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial, Nat. Med., 2: 1109–1115, 1996. [CSA], [CROSSREF]
  • D.P. Gold, , et al, T-cell receptor peptides as immunotherapy for autoimmune disease, Crit. Rev. Immunol., 17: 507–510, 1997. [CSA]
  • V. Kumar, , et al, Recombinant T cell receptor molecules can prevent and reverse experimental autoimmune encephalomyelitis: dose effects and involvement of both CD4 and CD8 T cells, J. Immunol., 159: 5150–5156, 1997.
  • K.C. Garcia, , et al, Kinetics and thermodynamics of T cell receptor- autoantigen interactions in murine experimental autoimmune encephalomyelitis, Proc. Natl. Acad. Sci. U.S.A., 98: 6818–6823, 2001. [CSA], [CROSSREF]
  • R. Cibotti, , et al, Public and private V beta T cell receptor repertoires against hen egg white lysozyme (HEL) in nontransgenic versus HEL transgenic mice, J. Exp. Med., 180: 861–872, 1994. [CROSSREF]
  • E.E. Sercarz Dominance and crypticity of T cell antigenic determinants, Annu. Rev. Immunol., 11: 729–766, 1993. [CSA], [CROSSREF]
  • I.R. Cohen and D.B. Young, Autoimmunity, microbial immunity and the immunological homunculus, Immunol. Today, 12: 105–110, 1991. [CSA], [CROSSREF]
  • I.R. Cohen, The cognitive paradigm and the immunological homunculus, Immunol. Today, 13: 490–494, 1992. [CSA], [CROSSREF]
  • L.T. Madakamutil, , et al, Regulatory T cells control autoimmunity in vivo by inducing apoptotic depletion of activated pathogenic lymphocytes, J. Immunol., 170: 2985–2992, 2003.
  • V. Kumar and E. Sercarz, Induction or protection from experimental autoimmune encephalomyelitis depends on the cytokine secretion profile of TCR peptide-specific regulatory CD4 T cells, J. Immunol., 161: 6585–6591, 1998.
  • V. Kumar and E. Sercarz, An integrative model of regulation centered on recognition of TCR peptide/MHC complexes, Immunol. Rev., 182: 113–121, 2001. [CSA], [CROSSREF]
  • X. Zhang, , et al, Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis, J. Exp. Med., 185: 1837–1849, 1997. [CROSSREF]
  • E. Sercarz, Distributed, anarchic immune organization: Semi-autonomous golems at work, In L.A. Segel and I.R. Cohen (Eds.), Design Principles for the Immune System and Their Distributed Autonomous Systems, Oxford: Oxford University Press, 2000.
  • S. Sakaguchi, , et al, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J. Immunol., 155: 1151–1164, 1995.
  • M.E. Csete and J.C. Doyle, Reverse engineering of biological complexity, Science, 295: 1664–1669, 2002. [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.