425
Views
156
CrossRef citations to date
0
Altmetric
Original

Regulatory T Cells in Immunologic Self-Tolerance and Autoimmune Disease

&
Pages 211-226 | Published online: 03 Aug 2009

REFERENCES

  • L.S. Walker and A.K. Abbas, The enemy within: keeping self-reactive T cells at bay in the periphery, Nat. Rev. Immunol., 2: 11–19, 2002. [CSA]
  • B.L. Kotzin, Systemic lupus erythematosus. Cell, 85: 303–306, 1996. [CROSSREF]
  • H. McDevitt, The role of MHC class II molecules in the pathogenesis and prevention of Type I diabetes, Adv. Exp. Med. Biol. 490: 59–66, 2001. [CSA]
  • N.A. Danke, D.M. Koelle, C. Yee, S. Beheray, and W.W. Kwok, Autoreactive T cells in healthy individuals, J. Immunol., 172: 5967–5972, 2004.
  • G.S. Eisenbarth, Insulin autoimmunity: Immunogenetics/immunopathogenesis of type 1 A diabetes, Ann. N. Y. Acad. Sci., 1005: 109–118, 2003. [CSA], [CROSSREF]
  • G.S. Firestein, Evolving concepts of rheumatoid arthritis, Nature, 423: 356–361, 2003. [CROSSREF]
  • S. Sakaguchi. Regulatory T cells: Key controllers of immunologic self-tolerance, Cell, 101: 455–458,2000. [CROSSREF]
  • E.M. Shevach, Regulatory T cells in autoimmunity, Annu. Rev. Immunol., 18: 423–449, 2000. [CSA], [CROSSREF]
  • K.J. Maloy and F. Powrie, Regulatory T cells in the control of immune pathology, Nat. Immunol., 2: 816–822, 2001. [CROSSREF]
  • E. Gambineri, T.R. Torgerson, and H.D. Ochs, Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis, Curr. Opin. Rheumatol., 15: 430–435, 2003. [CSA], [CROSSREF]
  • S. Sakaguchi, K. Fukuma, K. Kuribayashi, and T. Masuda, Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T-cell subset as a possible cause of autoimmune disease, J. Exp. Med., 161: 72–87, 1985. [CROSSREF]
  • S. Sugihara, Y. Izumi, T. Yoshioka, H. Yagi, T. Tsujimura, O. Tarutani, Y. Kohno, S. Murakami, T. Hamaoka, and H. Fujiwara, Autoimmune thyroiditis induced in mice depleted of particular T-cell subset. I. Requirement of Lyt-1dull L3T4bright normal T cells for the induction of thyroiditis, J. Immunol., 141: 105–113, 1988.
  • H. Smith, Y.H. Lou, P. Lacy, and K.S.K. Tung, Tolerance mechanism in experimental ovarian and gastric autoimmune disease, J. Immunol., 149: 2212–2218, 1992.
  • F. Powrie and D. Mason, OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by OX-22low subset, J. Exp. Med. 172: 1701–1708, 1990. [CROSSREF]
  • U. McKeever, J.P. Mordes, D.L. Greiner M.C. Appel, J. Rozing E.S. Handler, and A.A. Rossini, Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats, Proc. Natl. Acad. Sci. U.S.A., 87: 7618–7622, 1990. [CSA]
  • S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, Immunologic tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J. Immunol., 155: 1151–1164, 1995.
  • M. Itoh, T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, and S. Sakaguchi, Thymus and autoimmunity: Production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance, J. Immunol., 162: 5317–5326, 1999.
  • S. Sakaguchi, Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses, Annu. Rev. Immunol., 22: 531–562, 2004. [CSA], [CROSSREF]
  • M. Asano, M. Toda, N. Sakaguchi, and S. Sakaguchi, Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation, J. Exp. Med., 184: 387–396, 1996. [CROSSREF]
  • B. Kyewski and J. Derbinski, Self-representation in the thymus: An extended view, Nat. Rev. Immunol., 4: 688–698, 2004. [CSA], [CROSSREF]
  • E.M. Shevach, Certified professionals: CD4+CD25+ suppressor T cells, J. Exp. Med., 193: F41–46, 2001. [CROSSREF]
  • V.L. Godfrey, J.E. Wilkinson, and L.B. Russell, X-linked lymphoreticular disease in the scurfy (sf) mutant mouse, Am. J. Pathol., 138: 1379–1387, 1991.
  • M.E. Brunkow, E.W. Jeffery, K.A. Hjerrild, B. Paeper, L.B. Clark, S.A. Yasayko, J.E. Wilkinson, D. Galas, S.F. Ziegler, and F. Ramsdell, Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse, Nat. Genet., 27: 68–73, 2001.
  • T.A. Chatila, F. Blaeser, N. Ho, H.M. Lederman, C. Voulgaropoulos, C. Helms, and A.M. Bowcock, JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome, J. Clin. Invest., 106: R75–81, 2000. [CSA]
  • R.S. Wildin, F. Ramsdell, J. Peake, F. Faravelli, J.L. Casanova, N. Buist, E. Levy-Lahad, M. Mazzella, O. Goulet, L. Perroni, F.D. Bricarelli, G. Byrne, M. McEuen, S. Proll, M. Appleby, and M.E. Brunkow, X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy, Nat. Genet., 27: 18–20, 2001. [CROSSREF]
  • C.L. Bennett, J. Christie, F. Ramsdell, M.E. Brunkow, P.J. Ferguson, L. Whitesell, T.E. Kelly, F.T. Saulsbury, P.F. Chance and H.D. Ochs, The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3, Nat. Genet., 27: 20–21, 2001. [CROSSREF]
  • S. Hori, T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3, Science, 299: 1057–1061, 2003. [CROSSREF]
  • J.D. Fontenot, M.A. Gavin, and A.Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nat. Immunol., 4: 330–336, 2003. [CROSSREF]
  • R. Khattri, T. Cox, S.A. Yasayko, and F. Ramsdell, An essential role for Scurfin in CD4+CD25+ T regulatory cells, Nat. Immunol., 4: 337–342, 2003. [CROSSREF]
  • A. Tommasini, S. Ferrari, D. Moratto, R. Badolato, M. Boniotto, D. Pirulli, L.D. Notarangelo, and M. Andolina, X-chromosome inactivation analysis in a female carrier of FOXP3 mutation, Clin. Exp. Immunol., 130: 127–130, 2002. [CSA], [CROSSREF]
  • C.J. Owen, C.E. Jennings, H. Imrie, A. Lachaux, N.A. Bridges, T.D. Cheetham, and S.H. Pearce, Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome, J. Clin. Endocrinol. Metab., 88: 6034–6039, 2003. [CSA], [CROSSREF]
  • S. Sakaguchi and N. Sakaguchi,Thymus, T cells and autoimmunity: Various causes but a common mechanism of autoimmune disease. In: Autoimmunity: Physiology and Disease,A. Coutinho, and M. Kazatchkine (eds.), New York:Wiley-Liss, 1994, pp. 203–227.
  • S. Sakaguchi, and N. Sakaguchi, Role of genetic factors in organ-specific autoimmune diseases induced by manipulating the thymus or T cells, and not self-antigens, Rev. Immunogenetics., 2: 147–153, 2000. [CSA]
  • S. Sakaguchi and N. Sakaguchi, Organ-specific autoimmune disease induced in mice by elimination of T-cell subsets. V. Neonatal administration of cyclosporin A causes autoimmune disease, J. Immunol., 142: 471–480, 1989.
  • S.S. Morse, N. Sakaguchi, and S. Sakaguchi, Virus and autoimmunity: induction of autoimmune disease in mice by mouse T lymphotropic virus (MTLV) destroying CD4+ T cells, J. Immunol., 162: 5309–5316, 1999.
  • N. Sakaguchi, K. Miyai, and S. Sakaguchi, Ionizing radiation and autoimmunity. Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells, J. Immunol., 152: 2586–2595, 1994.
  • S. Sakaguchi, T.H. Ermak, M. Toda, L.J. Berg, W. Ho, B. Fazekas de St Groth, P.A. Peterson, N. Sakaguchi, and M.M. Davis, Induction of autoimmune disease in mice by germline alteration of the T cell receptor gene expression, J. Immunol., 152: 1471–1484, 1994.
  • S. Fisson, G. Darrasse-Jeze, E. Litvinova, F. Septier, D. Klatzmann, R. Liblau, and B.L. Salomon, Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state, J. Exp. Med., 198: 737–746, 2003. [CROSSREF]
  • S. Sakaguchi, S. Hori, Y. Fukui, T. Sasazuki, N. Sakaguchi, and T. Takahashi, Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance, Novartis Foundation Symposium 252: 6–16, 2003. [CSA]
  • N. Sharfe, H.K. Dadi, M. Shahar, and C.M. Roifman, Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor, Proc. Natl. Acad. Sci. U.S.A., 94: 3168–3171, 1997. [CSA], [CROSSREF]
  • D.M. Willerford, J. Chen, J.A. Ferry, L. Davidson, A. Ma, and F.W. Alt, Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment, Immunity, 3: 521–530, 1995. [CSA], [CROSSREF]
  • A.F. Jawad, D.M. McDonald-Mcginn, E. Zackai, and K.E. Sullivan, Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome), J. Pediatr., 139: 715–723, 2001. [CROSSREF]
  • K.E. Sullivan, D. McDonald-McGinn, and E.H. Zackai, CD4+ CD25+ T-cell production in healthy humans and in patients with thymic hypoplasia, Clin. Diagn. Lab. Immunol., 9: 1129–1131, 2002. [CSA], [CROSSREF]
  • M.A. Kriegel, T. Lohmann, C. Gabler, N. Blank, J.R. Kalden, and H.M. Lorenz, Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II, J. Exp. Med., 199: 1285–1291, 2004. [CROSSREF]
  • H. Ueda, J.M. Howson, L. Esposito, J. Heward, H. Snook, G. Chamberlain, D.B. Rainbow, K.M. Hunter, A.N. Smith, G. Di Genova, M.H. Herr, I. Dahlman, F. Payne, D. Smyth, C. Lowe, R.C. Twells, S. Howlett, B. Healy, S. Nutland, H.E. Rance, V. Everett, L.J. Smink, A.C. Lam, H.J. Cordell, N.M. Walker, C. Bordin, J. Hulme, C. Motzo, F. Cucca, J.F. Hess, M.L. Metzker, J. Rogers, S. Gregory, A. Allahabadia, R. Nithiyanathan, E. Tuomilehto-Wolf, J. Tuomilehto, P. Bingley, K.M. Gillespie, D.E. Undlein, K.S Ronningen, C. Guja, C. Ionescu-Tirgoviste, D.A. Savage, A.P. Maxwell, D.J. Carson, C.C. Patterson, J.A. Franklyn, D.G. Clayton, L.B. Peterson, L.S. Wicker, J.A. Todd, S.C. Gough,Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease, Nature, 423: 506–511, 2003. [CROSSREF]
  • W.M. Bassuny, K. Ihara, Y. Sasaki, R. Kuromaru, H. Kohno, N. Matsuura, and T. Hara, A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes, Immunogenetics., 55: 149–156, 2003. [CSA], [CROSSREF]
  • F. Ginsberg-Fellner, M.E. Witt, B. Fedun, F. Taub, M.J. Dobersen, R.C. McEvoy, L.Z. Cooper, A.L. Notkins, and P. Rubinstein, Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome, Rev. Infect. Dis., 7 (Suppl 1): S170–176, 1985.
  • S. Sakaguchi, Animal models of autimmunity and their relevance to human diseases, Curr. Opin. Immunol., 12: 684–690, 2000. [CSA], [CROSSREF]
  • D. Fowell, and D. Mason, Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential, J. Exp. Med., 177: 627–636, 1993. [CROSSREF]
  • A.G. Baxter and A. Cooke,Autoimmunity and autoimmune diabetes mellitus. In: Autoimmunity: Physiology and Disease, A. Coutinho, and M. Kazatchkine, (Eds.), New York: Wiley-Liss, 1994, pp.365–375.
  • U. Eriksson, R. Ricci, L. Hunziker, M.O. Kurrer, G.Y. Oudit, T.H. Watts, I. Sonderegger, K. Bachmaier, M. Kopf, and J.M. Penninger, Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity, Nat. Med., 9: 1484–1490, 2003. [CSA], [CROSSREF]
  • B.P. Leung, M. Conacher, D. Hunter, I.B. McInnes, F.Y. Liew, and J.M. Brewer, A novel dendritic cell-induced model of erosive inflammatory arthritis: distinct roles for dendritic cells in T cell activation and induction of local inflammation, J. Immunol., 169: 7071–7077, 2002.
  • H. Groux, A. O'Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. de Vries, and M.G. Roncarolo, A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis, Nature, 389: 737–742, 1997.
  • R. Setoguchi, S. Hori, T. Takahashi, S. Sakaguchi, Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regualtory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization, J. Exp. Med., 201: 723–735, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.