58
Views
6
CrossRef citations to date
0
Altmetric
Special Topic: DNA Vaccines

Ex Vivo Programming of Antigen-Presenting B Lymphocytes: Considerations on DNA Uptake and Cell Activation

, , &
Pages 83-97 | Published online: 03 Aug 2009

REFERENCES

  • F. Liu and L. Huang, Development of non-viral vectors for systemic gene delivery, J. Controlled Release, 78: 259, 2002. [CSA]
  • M. Liu, B. Acres, J.M. Balloul, N. Bizouarne, S. Paul, P. Slos, and P. Squiban, Gene-based vaccines and immunotherapeutics, Proc. Natl. Acad. Sci. U.S.A., 101(Suppl 2): 14567, 2004. [CSA], [CROSSREF]
  • G. Filaci, M. Gerloni, M. Rizzi, P. Castiglioni, H.D. Chang, M.C. Wheeler, R. Fiocca, and M. Zanetti, Spontaneous transgenesis of human B lymphocytes, Gene Ther., 11: 42, 2004. [CSA], [CROSSREF]
  • R.M. Bennett, G.T. Gabor, and M.M. Merritt, DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradtion of DNA, J. Clin. Invest., 76: 2182, 1985. [CSA]
  • D.C. Siess, C.T. Vedder, L.S. Merkens, T. Tanaka, A.C. Freed, S.L. McCoy, M.C. Heinrich, M.E. Deffebach, R.M. Bennett, and S.H. Hefeneider, A human gene coding for a membrane-associated nucleic acid-binding protein, J. Biol. Chem., 275, 33655, 2000. [CSA], [CROSSREF]
  • S.L. McCoy, F.A. Hausman, M.E. Deffebach, A. Bakke, L.S. Merkens, R.M. Bennett, and S.H. Hefeneider, Quantification of DNA binding to cell-surfaces by flow cytometry, J. Immunol. Methods, 241: 141, 2000. [CSA], [CROSSREF]
  • E. Basner-Tschakarjan, A. Mirmohammadsadegh, A. Baer, and U.R. Hengge, Uptake and trafficking of DNA in keratinocytes: evidence for DNA-binding proteins, Gene Ther., 11: 765, 2004. [CSA], [CROSSREF]
  • A.A. Coelho-Castelo, R.R. Santos Junior, V.L. Bonato, M.C. Jamur, C. Oliver, and C.L. Silva, B-lymphocytes in bone marrow or lymph nodes can take up plasmid DNA after intramuscular delivery, Hum. Gene. Ther., 14: 1279, 2003. [CSA], [CROSSREF]
  • L.A. Yakubov, E.A. Deeva, V.F. Zarytova, E.M. Ivanova, A.S. Ryte, L.V. Yurchenko, and V.V. Vlassov, Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc. Natl. Acad. Sci. U.S.A., 86: 6454, 1989. [CSA], [CROSSREF]
  • P. de Diesbach, C. Berens, F. N'Kuli, M. Monsigny, E. Sonveaux, R. Wattiez, and P.J. Courtoy, Identification, purification and partial characterisation of an oligonucleotide receptor in membranes of HepG2 cells. Nucleic Acids Res., 28: 868, 2000. [CSA], [CROSSREF]
  • M.J. Lehmann and G. Sczakiel, Spontaneous uptake of biologically active recombinant DNA by mammalian cells via a selected DNA segment, Gene Ther., 12: 446, 2005. [CSA], [CROSSREF]
  • L. Benimetskaya, J.D. Loike, Z. Khaled, G. Loike, S.C. Silverstein, L. Cao, J. el Khoury, T.Q. Cai, and C.A. Stein, Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nat. Med., 3: 414, 1997. [CSA], [CROSSREF]
  • M.Y. Levy, L.G. Barron, K.B. Meyer, and F.C. Szoka, Jr., Characterization of plasmid DNA transfer into mouse skeletal muscle: Evaluation of uptake mechanism, expression and secretion of gene products into blood, Gene Ther., 3: 201, 1996. [CSA]
  • R. Schubbert, D. Renz, B. Schmitz, and W. Doerfler, Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA, Proc. Natl. Acad. Sci. U.S.A., 94: 961, 1997. [CSA], [CROSSREF]
  • U.R. Hengge, E.F. Chan, R.A. Foster, P.S. Walker, and J.C. Vogel, Cytokine gene expression in epidermis with biological effects following injection of naked DNA, Nat. Genet., 10: 161, 1995. [CSA], [CROSSREF]
  • P. Laktionov, J.E. Dazard, J. Piette, E. Vives, E. Rykova, V. Vlassov, and B. Lebleu, Uptake of oligonucleotides by keratinocytes, Nucleosides Nucleotides, 18: 1697, 1999. [CSA]
  • S.L. McCoy, S.E. Kurtz, F.A. Hausman, D.R. Trune, R.M. Bennett, and S.H. Hefeneider, Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization, J. Biol. Chem., 279: 17217, 2004. [CSA], [CROSSREF]
  • P.P. Laktionov, J.E. Dazard, E. Vives, E.Y. Rykova, J. Piette, V.V. Vlassov, and B. Lebleu, Characterisation of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes, Nucleic Acids Res., 27: 2315, 1999. [CSA], [CROSSREF]
  • S. Xiong, M. Gerloni, and M. Zanetti, Engineering vaccines with heterologous B and T cell epitopes using immunoglobulin genes, Nat. Biotech., 15: 882, 1997. [CSA], [CROSSREF]
  • M. Zanetti, P. Castiglioni, M. Rizzi, M. Wheeler, and M. Gerloni, B lymphocytes as APC based genetic vaccines, Immunol. Rev., 199: 264, 2004. [CSA], [CROSSREF]
  • J. Banchereau and R.M. Steinman, Dendritic cells and the control of immunity, Nature, 392: 245, 1998. [CSA], [CROSSREF]
  • E.R. Unanue, Perspective on antigen processing and presentation, Immunol. Rev., 185: 86, 2002. [CSA], [CROSSREF]
  • A. Lanzavecchia, Antigen-specific interaction between T and B cells, Nature, 314: 537, 1985. [CSA], [CROSSREF]
  • D.J. Cassell and R.H. Schwartz, A quantitative analysis of antigen-presenting cell function: activated B cells stimulate naive CD4 T cells but are inferior to dendritic cells in providing costimulation, J. Exp. Med., 180: 1829, 1994. [CSA], [CROSSREF]
  • G. Zhong, C.R. Sousa, and R.N. Germain, Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro, J. Exp. Med., 186: 673, 1997. [CSA], [CROSSREF]
  • E.J. Fuchs and P. Matzinger, B cells turn off virgin but not memory T cells, Science, 258: 1156, 1992. [CSA]
  • K.M. Gilbert and W.O. Weigle, Tolerogenicity of resting and activated B cells, J. Exp. Med., 179: 249, 1994. [CSA], [CROSSREF]
  • S. Constant, N. Schweitzer, J. West, P. Ranney, and K. Bottomly, B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo, J. Immunol., 155: 3734, 1995. [CSA]
  • S.C. Morris, A. Lees, and F.D. Finkelman, In vivo activation of naive T cells by antigne presenting B cells, J. Immunol., 152: 3768, 1994. [CSA]
  • D.E. Evans, M.W. Munks, J.M. Purkerson, and D.C. Parker, Resting B lymphocytes as APC for naive T lymphocytes: Dependence on CD40 ligand/CD40, J. Immunol., 164: 688, 2000. [CSA]
  • P.J. Linton, B. Bautista, E. Biederman, E.S. Bradley, J. Harbertson, R.M. Kondrack, R.C. Padrick, and L.M. Bradley, Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo, J. Exp. Med., 197: 875, 2003. [CSA], [CROSSREF]
  • L.A. Munthe, J.A. Kyte, and B. Bogen, Resting small B cells present endogenous immunoglobulin variable-region determinants to idiotope-specific CD4(+) T cells in vivo, Eur. J. Immunol., 29: 4043, 1999. [CSA], [CROSSREF]
  • S.R. Bennett, F.R. Carbone, T. Toy, J.F. Miller, and W.R. Heath, B cells directly tolerize CD8(+) T cells, J. Exp. Med., 188: 1977, 1998. [CSA], [CROSSREF]
  • M. Gerloni, M. Rizzi, P. Castiglioni, and M. Zanetti, T cell immunity using transgenic B lymphocytes, Proc. Natl. Acad. Sci. U.S.A., 101: 3892, 2004. [CSA], [CROSSREF]
  • P. Castiglioni, M. Gerloni, X. Cortez-Gonzalez, and M. Zanetti, CD8 T cell priming by B lymphocytes is CD4 help dependent, Eur. J. Immunol., 35: 1360, 2005. [CSA], [CROSSREF]
  • J.P. Messina, G.S. Gilkeson, and D.S. Pisetsky, Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA, J. Immunol., 147: 1759, 1991. [CSA]
  • S. Yamamoto, T. Yamamoto, S. Shimada, E. Kuramoto, O. Yano, T. Kataoka, and T. Tokunaga, DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth, Microbiol. Immunol., 36: 983, 1992. [CSA]
  • A.M. Krieg, A.K. Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, G.A. Koretzky, and D.M. Klinman, CpG motifs in bacterial DNA trigger direct B-cell activation, Nature, 374: 546, 1995. [CSA], [CROSSREF]
  • H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira, A Toll-like receptor recognizes bacterial DNA, Nature, 408: 740, 2000. [CSA], [CROSSREF]
  • T.H. Chuang, J. Lee, L. Kline, J.C. Mathison, and R.J. Ulevitch, Toll-like receptor 9 mediates CpG-DNA signaling, J. Leukoc. Biol., 71: 538, 2002. [CSA]
  • R.J. Ulevitch, Regulation of receptor-dependent activation of the innate immune response, J. Infect. Dis., 187(Suppl 2): S351, 2003. [CSA], [CROSSREF]
  • K.J. Ishii, F. Takeshita, I. Gursel, M. Gursel, J. Conover, A. Nussenzweig, and D.M. Klinman, Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation, J. Exp. Med., 196: 269, 2002. [CSA], [CROSSREF]
  • C. Asselin-Paturel, A. Boonstra, M. Dalod, I. Durand, N. Yessaad, C. Dezutter-Dambuyant, A. Vicari, A. O'Garra, C. Biron, F. Briere, and G. Trinchieri, Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology, Nat. Immunol., 2: 1144, 2001. [CSA], [CROSSREF]
  • J.H. Van Uden, C.H. Tran, D.A. Carson, and E. Raz, Type I interferon is required to mount an adaptive response to immunostimulatory DNA, Eur. J. Immunol., 31: 3281, 2001. [CSA], [CROSSREF]
  • J.M. Kim, N.I. Kim, Y.K. Oh, Y.J. Kim, J. Youn, and M.J. Ahn, CpG oligodeoxynucleotides induce IL-8 expression in CD34+ cells via mitogen-activated protein kinase-dependent and NF-{κ}B-independent pathways, Int. Immunol., 17: 1525, 2005. [CSA], [CROSSREF]
  • R.S. Chu, O.S. Targoni, A.M. Krieg, P.V. Lehmann, and C.V. Harding, CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity, J. Exp. Med., 186: 1623, 1997. [CSA], [CROSSREF]
  • E. Martin-Orozco, H. Kobayashi, J. Van Uden, M.D. Nguyen, R.S. Kornbluth, and E. Raz, Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences, Int. Immunol., 11: 1111, 1999. [CSA], [CROSSREF]
  • N.L. Bernasconi, E. Traggiai, and A. Lanzavecchia, Maintenance of serological memory by polyclonal activation of human memory B cells, Science, 298: 2199, 2002. [CSA], [CROSSREF]
  • O. Takeuchi, K. Hoshino, and S. Akira, Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection, J. Immunol., 165: 5392, 2000. [CSA]
  • D.S. Weiss, B. Raupach, K. Takeda, S. Akira, and A. Zychlinsky, Toll-like receptors are temporally involved in host defense, J. Immunol., 172: 4463, 2004. [CSA]
  • P.B. Mann, K.D. Elder, M.J. Kennett, and E.T. Harvill, Toll-like receptor 4-dependent early elicited tumor necrosis factor alpha expression is critical for innate host defense against Bordetella bronchiseptica, Infect. Immun., 72: 6650, 2004. [CSA]
  • Y. Sato, M. Roman, H. Tighe, D. Lee, M. Corr, M.D. Nguyen, G.J. Silverman, M. Lotz, D.A. Carson, and E. Raz, Immunostimulatory DNA sequences necessary for effective intradermal gene immunization, Science, 273: 352, 1996. [CSA]
  • D.M. Klinman, G. Yamshchikov, and Y. Ishigatsubo, Contribution of CpG motifs to the immunogenicity of DNA vaccines, J. Immunol., 158: 3635, 1997. [CSA]
  • B. Spies, H. Hochrein, M. Vabulas, K. Huster, D.H. Busch, F. Schmitz, A. Heit, and H. Wagner, Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice, J. Immunol., 171: 5908, 2003. [CSA]
  • X. Cortez-Gozalez, I. Pellicciotta, M. Gerloni, M.C. Wheeler, P. Castiglioni, P. Lenert, and M. Zanetti, TLR9 independent activation of B lymphocytes by bacterial DNA, DNA Cell Biol., 25: 253–261, 2006. [CSA], [CROSSREF]
  • K.J. Ishii, C. Coban, H. Kato, K. Takahashi, Y. Torii, F. Takeshita, H. Ludwig, G. Sutter, K. Suzuki, H. Hemmi, S. Sato, M. Yamamoto, S. Uematsu, T. Kawai, O. Takeuchi, and S. Akira, A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA, Nat. Immunol., 7: 40, 2006. [CSA], [CROSSREF]
  • D.B. Stetson and R. Medzhitov, Recognition of cytosolic DNA activates an IRF3-dependent innate immune response, Immunity, 24: 93, 2006. [CSA], [CROSSREF]
  • K. Yasuda, P. Yu, C.J. Kirschning, B. Schlatter, F. Schmitz, A. Heit, S. Bauer, H. Hochrein, and H. Wagner, Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways, J. Immunol., 174: 6129, 2005. [CSA]
  • T. Kawai, S. Sato, K.J. Ishii, C. Coban, H. Hemmi, M. Yamamoto, K. Terai, M. Matsuda, J. Inoue, S. Uematsu, O. Takeuchi, and S. Akira, Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6, Nat. Immunol., 5: 1061, 2004. [CSA], [CROSSREF]
  • P. Ahmad-Nejad, H. Hacker, M. Rutz, S. Bauer, R.M. Vabulas, and H. Wagner, Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments, Eur. J. Immunol., 32: 1958, 2002. [CSA], [CROSSREF]
  • S. Bauer, C.J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. Wagner, and G.B. Lipford, Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition, Proc. Natl. Acad. Sci. U.S.A., 98: 9237, 2001. [CSA], [CROSSREF]
  • L.L. Stunz, P. Lenert, D. Peckham, A.K. Yi, S. Haxhinasto, M. Chang, A.M. Krieg, and R.F. Ashman, Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells, Eur. J. Immunol., 32: 1212, 2002. [CSA], [CROSSREF]
  • H. Yamada, I. Gursel, F. Takeshita, J. Conover, K.J. Ishii, M. Gursel, S. Takeshita, and D.M. Klinman, Effect of suppressive DNA on CpG-induced immune activation, J. Immunol., 169: 5590, 2002. [CSA]
  • V.P. Badovinac, K.A. Messingham, A. Jabbari, J.S. Haring, and J.T. Harty, Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination, Nat. Med., 11: 748, 2005. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.