297
Views
55
CrossRef citations to date
0
Altmetric
Special Topic: CpG Motifs

Immune Mechanisms and Therapeutic Potential of CpG Oligodeoxynucleotides

, , , , &
Pages 183-213 | Published online: 03 Aug 2009

REFERENCES

  • R.S. Chu, O.S. Targoni, A.M. Krieg, P.V. Lehmann, and C.V. Harding, CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity, J. Exp. Med., 186: 1623–1631, 1997. [CSA]
  • G.B. Lipford, M. Bauer, C. Blank, R. Reiter, H. Wagner, and K. Heeg, CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants, Eur. J. Immunol., 27: 2340–2344, 1997. [CSA]
  • H.L. Davis, R. Weeratna, T.J. Waldschmidt, L. Tygrett, J. Schorr, and A.M. Krieg, CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen, J. Immunol., 160: 870–876, 1998. [CSA]
  • M. Roman, E. Martin-Orozco, J.S. Goodman, M.D. Nguyen, Y. Sato, A. Ronaghy, R.S. Kornbluth, D.D. Richman, D.A. Carson, and E. Raz, Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants, Nat. Med., 3: 849–854, 1997. [CSA], [CROSSREF]
  • A.M. Krieg, L. Love-Homan, A.K. Yi, and J.T. Harty, CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge, J. Immunol., 161: 2428–2434, 1998. [CSA]
  • D.G. Rees, A.J. Gates, M. Green, L. Eastaugh, R.A. Lukaszewski, K.F. Griffin, A.M. Krieg, and R.W. Titball, CpG-DNA protects against a lethal orthopoxvirus infection in a murine model, Antiviral Res., 65: 87–95, 2005. [CSA], [CROSSREF]
  • J.C. Deng, T.A. Moore, M.W. Newstead, X. Zeng, A.M. Krieg, and T.J. Standiford, CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection, J. Immunol., 173: 5148–5155, 2004. [CSA]
  • R.A. Gramzinski, D.L. Doolan, M. Sedegah, H.L. Davis, A.M. Krieg, and S.L. Hoffman, Interleukin-12- and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice, Infect. Immun., 69: 1643–1649, 2001. [CSA], [CROSSREF]
  • X.P. Ioannou, P. Griebel, R. Hecker, L.A. Babiuk, and S. van Drunen Littel-van den Hurk, The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus Emulsigen are increased by formulation with CpG oligodeoxynucleotides, J. Virol., 76: 9002–9010, 2002. [CSA], [CROSSREF]
  • R.D. Weeratna, C.L. Brazolot Millan, M.J. McCluskie, and H.L. Davis, CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice, FEMS Immunol. Med. Microbiol., 32: 65–71, 2001. [CSA], [CROSSREF]
  • M. Lazarczyk, K. Grzela, and T. Grzela, Immunostimulatory oligonucleotides in therapy of allergic diseases, Expert. Opin. Biol. Ther., 5: 525–536, 2005. [CSA], [CROSSREF]
  • Y. Meng, A.F. Carpentier, L. Chen, G. Boisserie, J.M. Simon, J.J. Mazeron, and J.Y. Delattre, Successful combination of local CpG-ODN and radiotherapy in malignant glioma, Int. J. Cancer, 116: 992–997, 2005. [CSA], [CROSSREF]
  • A.M. Krieg, From bugs to drugs: Therapeutic immunomodulation with oligodeoxynucleotides containing CpG sequences from bacterial DNA, Antisense Nucleic. Acid. Drug. Dev., 11: 181–188, 2001. [CSA], [CROSSREF]
  • C. Hashimoto, K.L. Hudson, and K.V. Anderson, The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein, Cell, 52: 269–279, 1988. [CSA], [CROSSREF]
  • B. Lemaitre, E. Nicolas, L. Michaut, J.M. Reichhart, and J.A. Hoffmann, The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults, Cell, 86: 973–983, 1996. [CSA], [CROSSREF]
  • N.J. Gay and F.J. Keith, Drosophila Toll and IL-1 receptor, Nature, 351: 355–356, 1991. [CSA]
  • F.L. Rock, G. Hardiman, J.C. Timans, R.A. Kastelein, and J.F. Bazan, A family of human receptors structurally related to Drosophila Toll, Proc. Natl. Acad. Sci. U. S. A., 95: 588–593, 1998. [CSA], [CROSSREF]
  • P. Kirk and J.F. Bazan, Pathogen recognition: TLRs throw us a curve, Immunity, 23: 347–350, 2005. [CSA], [CROSSREF]
  • G.M. Barton and R. Medzhitov, Toll-like receptor signaling pathways, Science, 300: 1524–1525, 2003. [CSA], [CROSSREF]
  • J.J. Gao, V. Diesl, T. Wittmann, D.C. Morrison, J.L. Ryan, S.N. Vogel, and M.T. 'Follettie, Bacterial LPS and CpG DNA differentially induce gene expression profiles in mouse macrophages, J. Endotoxin Res., 9: 237–243, 2003. [CSA], [CROSSREF]
  • P.J. Griebel, R. Brownlie, A. Manuja, A. Nichani, N. Mookherjee, Y. Popowych, G. 'Mutwiri, R. Hecker, and L.A. Babiuk, Bovine toll-like receptor 9: a comparative analysis of molecular structure, function and expression, Vet Immunol. Immunopathol., 108: 11–16, 2005. [CSA], [CROSSREF]
  • H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. 'Hoshino, H. Wagner, K. Takeda, and S. Akira, A Toll-like receptor recognizes bacterial DNA, Nature, 408: 740–745, 2000. [CSA], [CROSSREF]
  • A.P. Bird, CpG-rich islands and the function of DNA methylation, Nature, 321: 209–213, 1986. [CSA], [CROSSREF]
  • A.M. Krieg, CpG motifs in bacterial DNA and their immune effects, Annu. Rev. Immunol., 20: 709–760, 2002. [CSA], [CROSSREF]
  • A.M. Krieg, A.K. Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, G.A. 'Koretzky, and D.M. Klinman, CpG motifs in bacterial DNA trigger direct B-cell activation, Nature, 374: 546–549, 1995. [CSA], [CROSSREF]
  • S. Bauer, C.J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. 'Wagner, and G.B. Lipford, Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition, Proc. Natl. Acad. Sci. U. S. A., 98: 9237–9242, 2001. [CSA], [CROSSREF]
  • F. Takeshita, C.A. Leifer, I. Gursel, K.J. Ishii, S. Takeshita, M. Gursel, and D.M. Klinman, Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells, J. Immunol., 167: 3555–3558, 2001. [CSA]
  • E.R. Kandimalla, L. Bhagat, F.G. Zhu, D. Yu, Y.P. Cong, D. Wang, J.X. Tang, J.Y. 'Tang, C.F. Knetter, E. Lien, and S. Agrawal, A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif, Proc. Natl. Acad. Sci. U. S. A., 100: 14303–14308, 2003. [CSA], [CROSSREF]
  • A. Krug, S. Rothenfusser, V. Hornung, B. Jahrsdorfer, S. Blackwell, Z.K. Ballas, S. 'Endres, A.M. Krieg, and G. Hartmann, Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells, Eur. J. Immunol., 31: 2154–2163, 2001. [CSA], [CROSSREF]
  • J.D. Marshall, K. Fearon, C. Abbate, S. Subramanian, P. Yee, J. Gregorio, R.L. Coffman, and G. Van Nest, Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions, J. Leukoc. Biol., 73: 781–792, 2003. [CSA], [CROSSREF]
  • G.B. Lipford, S. Bendigs, K. Heeg, and H. Wagner, Poly-guanosine motifs costimulate antigen-reactive CD8 T cells while bacterial CpG-DNA affect T-cell activation via antigen-presenting cell-derived cytokines, Immunology, 101: 46–52, 2000. [CSA], [CROSSREF]
  • G. Hartmann and A.M. Krieg, Mechanism and function of a newly identified CpG DNA motif in human primary B cells, J. Immunol., 164: 944–953, 2000. [CSA]
  • C.C. Wu, J. Lee, E. Raz, M. Corr, and D.A. Carson, Necessity of oligonucleotide aggregation for toll-like receptor 9 activation, J. Biol. Chem., 279: 33071–33078, 2004. [CSA], [CROSSREF]
  • M. Rutz, J. Metzger, T. Gellert, P. Luppa, G.B. Lipford, H. Wagner, and S. Bauer, Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner, Eur. J. Immunol., 34: 2541–2550, 2004. [CSA], [CROSSREF]
  • Q. Zhao, S. Matson, C.J. Herrera, E. Fisher, H. Yu, and A.M. Krieg, Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides, Antisense Res. Dev., 3: 53–66, 1993. [CSA]
  • D.P. Sester, S. Naik, S.J. Beasley, D.A. Hume and K.J. Stacey, Phosphorothioate backbone modification modulates macrophage activation by CpG DNA, J. Immunol., 165: 4165–4173, 2000. [CSA]
  • K.H. Baek, S.J. Ha, and Y.C. Sung, A novel function of phosphorothioate oligodeoxynucleotides as chemoattractants for primary macrophages, J. Immunol., 167: 2847–2854, 2001. [CSA]
  • Z. Khaled, L. Benimetskaya, R. Zeltser, T. Khan, H.W. Sharma, R. Narayanan, and C.A. Stein, Multiple mechanisms may contribute to the cellular anti-adhesive effects of phosphorothioate oligodeoxynucleotides, Nucleic Acids Res., 24: 737–745, 1996. [CSA], [CROSSREF]
  • D.K. Monteith, S.P. Henry, R.B. Howard, S. Flournoy, A.A. Levin, C.F. Bennett, and S.T. Crooke, Immune stimulation–a class effect of phosphorothioate oligodeoxynucleotides in rodents, Anticancer Drug Des., 12: 421–432, 1997. [CSA]
  • R. Rankin, R. Pontarollo, X. Ioannou, A.M. Krieg, R. Hecker, L.A. Babiuk, and S. van Drunen Littel-van den Hurk, CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved, Antisense Nucleic Acid Drug Dev., 11: 333–340, 2001. [CSA], [CROSSREF]
  • D. Verthelyi, R.T. Kenney, R.A. Seder, A.A. Gam, B. Friedag, and D.M. Klinman, CpG oligodeoxynucleotides as vaccine adjuvants in primates, J. Immunol., 168: 1659–1663, 2002. [CSA]
  • D. Verthelyi and D.M. Klinman, Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates, Clin. Immunol., 109: 64–71, 2003. [CSA], [CROSSREF]
  • H.L. Davis, I.I. Suparto, R.R. Weeratna, Jumintarto, D.D. Iskandriati, S.S. Chamzah, A.A. Ma'ruf, C.C. Nente, D.D. Pawitri, A.M. Krieg, Heriyanto, W. Smits, and D.D. Sajuthi, CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans, Vaccine, 18: 1920–1924, 2000. [INFOTRIEVE], [CSA], [CROSSREF]
  • H. Hacker, H. Mischak, T. Miethke, S. Liptay, R. Schmid, T. Sparwasser, K. Heeg, G.B. Lipford, and H. Wagner, CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation, Embo. J., 17: 6230–6240, 1998. [CSA], [CROSSREF]
  • E. Latz, A. Schoenemeyer, A. Visintin, K.A. Fitzgerald, B.G. Monks, C.F. Knetter, E. Lien, N.J. Nilsen, T. Espevik, and D.T. Golenbock, TLR9 signals after translocating from the ER to CpG DNA in the lysosome, Nat. Immunol., 5: 190–198, 2004. [CSA], [CROSSREF]
  • E. Latz, A. Visintin, T. Espevik, and D.T. Golenbock, Mechanisms of TLR9 activation, J. Endotoxin. Res., 10: 406–412, 2004. [CSA], [CROSSREF]
  • K.J. Ishii, F. Takeshita, I. Gursel, M. Gursel, J. Conover, A. Nussenzweig, and D.M. Klinman, Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation, J. Exp. Med., 196: 269–274, 2002. [CSA], [CROSSREF]
  • K. Honda, Y. Ohba, H. Yanai, H. Negishi, T. Mizutani, A. Takaoka, C. Taya, and T. Taniguchi, Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction, Nature, 434: 1035–1040, 2005. [CSA], [CROSSREF]
  • M. Gursel, D. Verthelyi, I. Gursel, K.J. Ishii, and D.M. Klinman, Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol., 71: 813–820, 2002. [CSA]
  • T. Jakob, P.S. Walker, A.M. Krieg, M.C. Udey, and J.C. Vogel, Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA, J. Immunol., 161: 3042–3049, 1998. [CSA]
  • G. Hartmann and A.M. Krieg, CpG DNA and LPS induce distinct patterns of activation in human monocytes, Gene. Ther., 6: 893–903, 1999. [CSA]
  • T. Sparwasser, T. Miethke, G. Lipford, A. Erdmann, H. Hacker, K. Heeg, and H. Wagner, Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur. J. Immunol., 27: 1671–1679, 1997. [CSA]
  • K.J. Stacey, M.J. Sweet, and D.A. Hume, Macrophages ingest and are activated by bacterial DNA, J. Immunol., 157: 2116–2122, 1996. [CSA]
  • D.M. Klinman, F. Takeshita, I. Gursel, C. Leifer, K.J. Ishii, D. Verthelyi, and M. Gursel, CpG DNA: recognition by and activation of monocytes, Microbes Infect., 4: 897–901, 2002. [CSA], [CROSSREF]
  • A.K. Yi, J.H. Chace, J.S. Cowdery, and A.M. Krieg, IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides, J. Immunol., 156: 558–564, 1996. [CSA]
  • A.K. Yi, P. Hornbeck, D.E. Lafrenz, and A.M. Krieg, CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl-xL, J. Immunol., 157: 4918–4925, 1996. [CSA]
  • T.W. Redford, A.K. Yi, C.T. Ward, and A.M. Krieg, Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides, J. Immunol., 161: 3930–3935, 1998. [CSA]
  • B. Jahrsdorfer, G. Hartmann, E. Racila, W. Jackson, L. Muhlenhoff, G. Meinhardt, S. Endres, B.K. Link, A.M. Krieg, and G.J. Weiner, CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens, J. Leukoc. Biol., 69: 81–88, 2001. [CSA]
  • S. Sun, C. Beard, R. Jaenisch, P. Jones, and J. Sprent, Mitogenicity of DNA from different organisms for murine B cells, J. Immunol., 159: 3119–3125, 1997. [CSA]
  • D. Verthelyi, K.J. Ishii, M. Gursel, F. Takeshita, and D.M. Klinman, Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs, J. Immunol., 166: 2372–2377, 2001. [CSA]
  • L. Tasker and S. Marshall-Clarke, Functional responses of human neonatal B lymphocytes to antigen receptor cross-linking and CpG DNA, Clin. Exp. Immunol., 134: 409–419, 2003. [CSA], [CROSSREF]
  • A.M. Krieg, A.K. Yi, and G. Hartmann, Mechanisms and therapeutic applications of immune stimulatory CpG DNA, Pharmacol. Ther., 84: 113–120, 1999. [CSA], [CROSSREF]
  • S.J. Szabo, S.T. Kim, G.L. Costa, X. Zhang, C.G. Fathman, and L.H. Glimcher, A novel transcription factor, T-bet, directs Th1 lineage commitment, Cell, 100: 655–669, 2000. [CSA], [CROSSREF]
  • N. Liu, N. Ohnishi, L. Ni, S. Akira, and K.B. Bacon, CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells, Nat. Immunol., 4: 687–693, 2003. [CSA], [CROSSREF]
  • N. Kadowaki, S. Ho, S. Antonenko, R.W. Malefyt, R.A. Kastelein, F. Bazan, and Y.J. Liu, Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens, J. Exp. Med., 194: 863–869, 2001. [CSA], [CROSSREF]
  • Z. Guo, S. Garg, K.M. Hill, L. Jayashankar, M.R. Mooney, M. Hoelscher, J.M. Katz, J.M. Boss, and S. Sambhara, A distal regulatory region is required for constitutive and IFN-beta-induced expression of murine TLR9 gene, J. Immunol., 175: 7407–7418, 2005. [CSA]
  • G. Hartmann, G.J. Weiner, and A.M. Krieg, CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells, Proc. Natl. Acad. Sci. U. S. A., 96: 9305–9310, 1999. [CSA], [CROSSREF]
  • T. Sparwasser, E.S. Koch, R.M. Vabulas, K. Heeg, G.B. Lipford, J.W. Ellwart, and H. Wagner, Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells, Eur. J. Immunol., 28: 2045–2054, 1998. [CSA], [CROSSREF]
  • J.S. Cowdery, J.H. Chace, A.K. Yi, and A.M. Krieg, Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides, J. Immunol., 156: 4570–4575, 1996. [CSA]
  • Y. Sato, M. Roman, H. Tighe, D. Lee, M. Corr, M.D. Nguyen, G.J. Silverman, M. Lotz, D.A. Carson, and E. Raz, Immunostimulatory DNA sequences necessary for effective intradermal gene immunization, Science, 273: 352–354, 1996. [CSA]
  • K.J. Stacey, D.P. Sester, M.J. Sweet, and D.A. Hume, Macrophage activation by immunostimulatory DNA, Curr. Top Microbiol. Immunol., 247: 41–58, 2000. [CSA]
  • J.D. Powell, S. Boodoo, and M.R. Horton, Identification of the molecular mechanism by which TLR ligation and IFN-gamma synergize to induce MIG. Clin. Dev. Immunol., 11: 77–85, 2004. [CSA], [CROSSREF]
  • R.S. Chu, D. Askew, E.H. Noss, A. Tobian, A.M. Krieg, and C.V. Harding, CpG oligodeoxynucleotides down-regulate macrophage class II MHC antigen processing, J. Immunol., 163: 1188–1194, 1999. [CSA]
  • R. Takauji, S. Iho, H. Takatsuka, S. Yamamoto, T. Takahashi, H. Kitagawa, H. Iwasaki, R. Iida, T. Yokochi, and T. Matsuki, CpG-DNA-induced IFN-{alpha} production involves p38 MAPK-dependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors, J. Leukoc. Biol., 72: 1011–1019, 2002. [CSA]
  • G.B. Lipford, K. Heeg, and H. Wagner, Bacterial DNA as immune cell activator, Trends Microbiol., 6: 496–500, 1998. [CSA], [CROSSREF]
  • A.M. Krieg, The role of CpG motifs in innate immunity. Curr. Opin. Immunol., 12: 35–43, 2000. [CSA], [CROSSREF]
  • D.M. Klinman, Use of CpG oligodeoxynucleotides as immunoprotective agents, Expert Opin. Biol. Ther., 4: 937–946, 2004. [CSA], [CROSSREF]
  • E.J. Pearce, C.M. Kane, and J. Sun, Regulation of dendritic cell function by pathogen-derived molecules plays a key role in dictating the outcome of the adaptive immune response, Chem. Immunol. Allergy, 90: 82–90, 2006. [CSA]
  • S. Sun, X. Zhang, D.F. Tough, and J. Sprent, Type I interferon-mediated stimulation of T cells by CpG DNA, J. Exp. Med., 188: 2335–2342, 1998. [CSA], [CROSSREF]
  • K. Kranzer, M. Bauer, G.B. Lipford, K. Heeg, H. Wagner, and R. Lang, CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type I and interleukin-12, Immunology, 99: 170–178, 2000. [CSA], [CROSSREF]
  • R.A. Pontarollo, R. Rankin, L.A. Babiuk, D.L. Godson, P.J. Griebel, R. Hecker, A.M. Krieg, and S. van Drunen Littel-van den Hurk, Monocytes are required for optimum in vitro stimulation of bovine peripheral blood mononuclear cells by non-methylated CpG motifs, Vet Immunol. Immunopathol., 84: 43–59, 2002. [CSA], [CROSSREF]
  • S. Rothenfusser, V. Hornung, M. Ayyoub, S. Britsch, A. Towarowski, A. Krug, A. Sarris, N. Lubenow, D. Speiser, S. Endres, and G. Hartmann, CpG-A and CpG-B oligonucleotides differentially enhance human peptide-specific primary and memory CD8+ T-cell responses in vitro, Blood, 103: 2162–2169, 2004. [CSA], [CROSSREF]
  • S. Sivori, M. Falco, M. Della Chiesa, S. Carlomagno, M. Vitale, L. Moretta, and A. Moretta, CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells, Proc. Natl. Acad. Sci. U. S. A., 101: 10116–10121, 2004. [CSA], [CROSSREF]
  • Z.K. Ballas, A.M. Krieg, T. Warren, W. Rasmussen, H.L. Davis, M. Waldschmidt, and G.J. Weiner, Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs, J. Immunol., 167: 4878–4886, 2001. [CSA]
  • Z.K. Ballas, W.L. Rasmussen, and A.M. Krieg, Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA, J. Immunol., 157: 1840–1845, 1996. [CSA]
  • C.A. Biron, K.B. Nguyen, G.C. Pien, L.P. Cousens, and T.P. Salazar-Mather, Natural killer cells in antiviral defense: function and regulation by innate cytokines, Annu. Rev. Immunol., 17: 189–220, 1999. [CSA], [CROSSREF]
  • B.O. Noll, M.J. McCluskie, T. Sniatala, A. Lohner, S. Yuill, A.M. Krieg, C. Schetter, H.L. Davis, and E. Uhlmann, Biodistribution and metabolism of immunostimulatory oligodeoxynucleotide CPG 7909 in mouse and rat tissues following subcutaneous administration, Biochem. Pharmacol., 69: 981–991, 2005. [CSA], [CROSSREF]
  • A.K. Nichani, A. Mena, Y. Popowych, D. Dent, H.G. Townsend, G.K. Mutwiri, R. Hecker, L.A. Babiuk, and P.J. Griebel, In vivo immunostimulatory effects of CpG oligodeoxynucleotide in cattle and sheep, Vet Immunol. Immunopathol., 98: 17–29, 2004. [CSA], [CROSSREF]
  • A.A. Ashkar, S. Bauer, W.J. Mitchell, J. Vieira, and K.L. Rosenthal, Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J. Virol., 77: 8948–8956, 2003. [CSA], [CROSSREF]
  • K.L. Elkins, T.R. Rhinehart-Jones, S. Stibitz, J.S. Conover, and D.M. Klinman, Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria, J. Immunol., 162: 2291–2298, 1999. [CSA]
  • P.S. Walker, T. Scharton-Kersten, A.M. Krieg, L. Love-Homan, E.D. Rowton, M.C. Udey, and J.C. Vogel, Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma-dependent mechanisms, Proc. Natl. Acad. Sci. U. S. A., 96: 6970–6975, 1999. [CSA], [CROSSREF]
  • N.P. Juffermans, J.C. Leemans, S. Florquin, A. Verbon, A.H. Kolk, P. Speelman, S.J. van Deventer, and T. van der Poll, CpG oligodeoxynucleotides enhance host defense during murine tuberculosis, Infect. Immun., 70: 147–152, 2002. [CSA], [CROSSREF]
  • S. Zimmermann, O. Egeter, S. Hausmann, G.B. Lipford, M. Rocken, H. Wagner, and K. Heeg, CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis, J. Immunol., 160: 3627–3630, 1998. [CSA]
  • D.M. Klinman, J. Conover, and C. Coban, Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection, Infect. Immun., 67: 5658–5663, 1999. [CSA]
  • D. Verthelyi, M. Gursel, R.T. Kenney, J.D. Lifson, S. Liu, J. Mican, and D.M. Klinman, CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection, J. Immunol., 170: 4717–4723, 2003. [CSA]
  • B. Flynn, V. Wang, D.L. Sacks, R.A. Seder, and D. Verthelyi, Prevention and treatment of cutaneous leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs, Infect. Immun., 73: 4948–4954, 2005. [CSA], [CROSSREF]
  • S. Gomis, L. Babiuk, D.L. Godson, B. Allan, T. Thrush, H. Townsend, P. Willson, E. Waters, R. Hecker, and A. Potter, Protection of chickens against Escherichia coli infections by DNA containing CpG motifs, Infect. Immun., 71: 857–863, 2003. [CSA], [CROSSREF]
  • H. He, V.K. Lowry, C.L. Swaggerty, P.J. Ferro, and M.H. Kogut, In vitro activation of chicken leukocytes and in vivo protection against Salmonella enteritidis organ invasion and peritoneal S. enteritidis infection-induced mortality in neonatal chickens by immunostimulatory CpG oligodeoxynucleotide, FEMS Immunol. Med. Microbiol., 43: 81–89, 2005. [CSA], [CROSSREF]
  • A.K. Nichani, A. Mena, R.S. Kaushik, G.K. Mutwiri, H.G.G. Townsend, R. Hecker, A.M. Krieg, L.A. Babiuk, and P.J. Griebel, Stimulation of Innate Immune Responses by CpG Oligodeoxynucleotide in Newborn Lambs can Reduce Bovine Herpes Virus-1 Shedding, Oligonucleotides, 16: 57–66, 2006. [CSA]
  • L. Rice, D. Orlow, K. Ceonzo, G.L. Stahl, A.O. Tzianabos, H. Wada, W.C. Aird, and J.A. Buras, CpG oligodeoxynucleotide protection in polymicrobial sepsis is dependent on interleukin-17, J. Infect. Dis., 191: 1368–1376, 2005. [CSA], [CROSSREF]
  • S. Ito, K.J. Ishii, A. Ihata, and D.M. Klinman, Contribution of nitric oxide to CpG-mediated protection against Listeria monocytogenes, Infect. Immun., 73: 3803–3805, 2005. [CSA], [CROSSREF]
  • M.T. Harte, I.R. Haga, G. Maloney, P. Gray, P.C. Reading, N.W. Bartlett, G.L. Smith, A. Bowie, and L.A. O'Neill, The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense, J. Exp. Med., 197: 343–351, 2003. [CSA]
  • S. Ito, J. Pedras-Vasconcelos, and D.M. Klinman, CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans, Infect. Immun., 73: 6154–6156, 2005. [CSA]
  • C.L. Cooper, H.L. Davis, M.L. Morris, S.M. Efler, M.A. Adhami, A.M. Krieg, D.W. Cameron, and J. Heathcote, CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol., 24: 693–701, 2004. [CSA], [CROSSREF]
  • C.L. Cooper, H.L. Davis, J.B. Angel, M.L. Morris, S.M. Elfer, I. Seguin, A.M. Krieg, and D.W. Cameron, CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults, Aids, 19: 1473–1479, 2005. [CSA]
  • M. Singh, J.R. Carlson, M. Briones, M. Ugozzoli, J. Kazzaz, J. Barackman, G. Ott, and D. O'Hagan, A comparison of biodegradable microparticles and MF59 as systemic adjuvants for recombinant gD from HSV-2, Vaccine, 16: 1822–1827, 1998. [CSA], [CROSSREF]
  • J.P. Valensi, J.R. Carlson, and G.A. Van Nest, Systemic cytokine profiles in BALB/c mice immunized with trivalent influenza vaccine containing MF59 oil emulsion and other advanced adjuvants, J. Immunol., 153: 4029–4039, 1994. [CSA]
  • X.P. Ioannou, S.M. Gomis, B. Karvonen, R. Hecker, L.A. Babiuk, and S. van Drunen Littel-van den Hurk, CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein, Vaccine, 21: 127–137, 2002. [CSA], [CROSSREF]
  • R. Rankin, R. Pontarollo, S. Gomis, B. Karvonen, P. Willson, B.I. Loehr, D.L. Godson, L.A. Babiuk, R. Hecker, and S. van Drunen Littel-van den Hurk, CpG-containing oligodeoxynucleotides augment and switch the immune responses of cattle to bovine herpesvirus-1 glycoprotein D, Vaccine, 20: 3014–3022, 2002. [CSA], [CROSSREF]
  • S.K. Datta, H.J. Cho, K. Takabayashi, A.A. Horner, and E. Raz, Antigen-immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol. Rev., 199: 217–226, 2004. [CSA], [CROSSREF]
  • H. Tighe, K. Takabayashi, D. Schwartz, G. Van Nest, S. Tuck, J.J. Eiden, A. Kagey-Sobotka, P.S. Creticos, L.M. Lichtenstein, H.L. Spiegelberg, and E. Raz, Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity, J. Allergy Clin. Immunol., 106: 124–134, 2000. [CSA], [CROSSREF]
  • D.H. Broide, G. Stachnick, D. Castaneda, J. Nayar, M. Miller, J.Y. Cho, M. Roman, J. Zubeldia, T. Hayashi, and E. Raz, Systemic administration of immunostimulatory DNA sequences mediates reversible inhibition of Th2 responses in a mouse model of asthma. J. Clin. Immunol., 21: 175–182, 2001. [CSA], [CROSSREF]
  • J.N. Kline, T.J. Waldschmidt, T.R. Businga, J.E. Lemish, J.V. Weinstock, P.S. Thorne, and A.M. Krieg, Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma, J. Immunol., 160: 2555–2559, 1998. [CSA]
  • R.K. Ikeda, J. Nayar, J.Y. Cho, M. Miller, M. Rodriguez, E. Raz, and D.H. Broide, Resolution of airway inflammation following ovalbumin inhalation: comparison of ISS DNA and corticosteroids, Am. J. Respir. Cell. Mol. Biol., 28: 655–663, 2003. [CSA], [CROSSREF]
  • D. Serebrisky, A.A. Teper, C.K. Huang, S.Y. Lee, T.F. Zhang, B.H. Schofield, M. Kattan, H.A. Sampson, and X.M. Li, CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B7.1/B7.2 expression in a murine model of asthma, J. Immunol., 165: 5906–5912, 2000. [CSA]
  • J.Y. Cho, M. Miller, K.J. Baek, J.W. Han, J. Nayar, M. Rodriguez, S.Y. Lee, K. McElwain, S. McElwain, E. Raz, and D.H. Broide, Immunostimulatory DNA inhibits transforming growth factor-beta expression and airway remodeling. Am. J. Respir. Cell. Mol. Biol., 30: 651–661, 2004. [CSA], [CROSSREF]
  • C.J. Youn, M. Miller, K.J. Baek, J.W. Han, J. Nayar, S.Y. Lee, K. McElwain, S. McElwain, E. Raz, and D.H. Broide, Immunostimulatory DNA reverses established allergen-induced airway remodeling, J. Immunol., 173: 7556–7564, 2004. [CSA]
  • M.V. Fanucchi, E.S. Schelegle, G.L. Baker, M.J. Evans, R.J. McDonald, L.J. Gershwin, E. Raz, D.M. Hyde, C.G. Plopper, and L.A. Miller, Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys, Am. J. Respir. Crit. Care Med., 170: 1153–1157, 2004. [CSA], [CROSSREF]
  • F.E. Simons, Y. Shikishima, G. Van Nest, J.J. Eiden, and K.T. HayGlass, Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA, J. Allergy Clin. Immunol., 113: 1144–1151, 2004. [CSA], [CROSSREF]
  • M.K. Tulic, P.O. Fiset, P. Christodoulopoulos, P. Vaillancourt, M. Desrosiers, F. Lavigne, J. Eiden, and Q. Hamid, Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol., 113: 235–241, 2004. [CSA], [CROSSREF]
  • A.A. Horner, J.H. Van Uden, J.M. Zubeldia, D. Broide, and E. Raz, DNA-based immunotherapeutics for the treatment of allergic disease, Immunol. Rev., 179: 102–118, 2001. [CSA], [CROSSREF]
  • A.A. Horner, G.F. Widhopf, J.A. Burger, K. Takabayashi, N. Cinman, A. Ronaghy, H.L. Spiegelberg, and E. Raz, Immunostimulatory DNA inhibits IL-4-dependent IgE synthesis by human B cells, J. Allergy Clin. Immunol., 108: 417–423, 2001. [CSA], [CROSSREF]
  • M.G. Chiaramonte, M. Hesse, A.W. Cheever, and T.A. Wynn, CpG oligonucleotides can prophylactically immunize against Th2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism, J. Immunol., 164: 973–985, 2000. [CSA]
  • J.N. Kline, A.M. Krieg, T.J. Waldschmidt, Z.K. Ballas, V. Jain, and T.R. Businga, CpG oligodeoxynucleotides do not require TH1 cytokines to prevent eosinophilic airway inflammation in a murine model of asthma, J. Allergy Clin. Immunol., 104: 1258–1264, 1999. [CSA], [CROSSREF]
  • E.M. Hessel, M. Chu, J.O. Lizcano, B. Chang, N. Herman, S.A. Kell, M. Wills-Karp, and R.L. Coffman, Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction, J. Exp. Med., 202: 1563–1573, 2005. [CSA], [CROSSREF]
  • T. Hayashi, L. Beck, C. Rossetto, X. Gong, O. Takikawa, K. Takabayashi, D.H. Broide, D.A. Carson, and E. Raz, Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J. Clin. Invest., 114: 270–279, 2004. [CSA], [CROSSREF]
  • J.E. Wooldridge, Z. Ballas, A.M. Krieg, and G.J. Weiner, Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma, Blood, 89: 2994–2998, 1997. [CSA]
  • J.B. Smith and E. Wickstrom, Antisense c-myc and immunostimulatory oligonucleotide inhibition of tumorigenesis in a murine B-cell lymphoma transplant model, J. Natl. Cancer Inst., 90: 1146–1154, 1998. [CSA], [CROSSREF]
  • A.F. Carpentier, J. Xie, K. Mokhtari, and J.Y. Delattre, Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs, Clin. Cancer Res., 6: 2469–2473, 2000. [CSA]
  • G. Auf, A.F. Carpentier, L. Chen, C. Le Clanche, and J.Y. Delattre, Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides without antigen, Clin. Cancer Res., 7: 3540–3543, 2001. [CSA]
  • Y. Meng, A.F. Carpentier, L. Chen, G. Boisserie, J.M. Simon, J.J. Mazeron, and J.Y. Delattre, Successful combination of local CpG-ODN and radiotherapy in malignant glioma, Int. J. Cancer, 116: 992–997, 2005. [CSA], [CROSSREF]
  • D.E. Speiser, D. Lienard, N. Rufer, V. Rubio-Godoy, D. Rimoldi, F. Lejeune, A.M. Krieg, J.C. Cerottini, and P. Romero, Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909, J. Clin. Invest., 115: 739–746, 2005. [CSA], [CROSSREF]
  • A.F. Carpentier, [Cancer immunotherapy with CpG-ODN] Med. Sci. (Paris), 21: 73–77, 2005. [CSA]
  • W.M. Chamberlin and S.A. Naser, Integrating theories of the etiology of Crohn's disease. On the etiology of Crohn's disease: questioning the hypotheses, Med. Sci. Monit., 12: RA27–RA33, 2006. [CSA]
  • D. Rachmilewitz, F. Karmeli, K. Takabayashi, T. Hayashi, L. Leider-Trejo, J. Lee, L.M. Leoni, and E. Raz, Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis, Gastroenterology, 122: 1428–1441, 2002. [CSA], [CROSSREF]
  • F. Obermeier, N. Dunger, L. Deml, H. Herfarth, J. Scholmerich, and W. Falk, CpG motifs of bacterial DNA exacerbate colitis of dextran sulfate sodium-treated mice, Eur. J. Immunol., 32: 2084–2092, 2002. [CSA], [CROSSREF]
  • F. Obermeier, N. Dunger, U.G. Strauch, N. Grunwald, H. Herfarth, J. Scholmerich, and W. Falk, Contrasting activity of cytosin-guanosin dinucleotide oligonucleotides in mice with experimental colitis, Clin. Exp. Immunol., 134: 217–224, 2003. [CSA], [CROSSREF]
  • C.A. Siegrist, Neonatal and early life vaccinology, Vaccine, 19: 3331–3346, 2001. [CSA], [CROSSREF]
  • S. Ito, K.J. Ishii, M. Gursel, H. Shirotra, A. Ihata, and D.M. Klinman, CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection, J. Immunol., 174: 777–782, 2005. [CSA]
  • S. Ito, K.J. Ishii, H. Shirota, and D.M. Klinman, CpG oligodeoxynucleotides improve the survival of pregnant and fetal mice following Listeria monocytogenes infection, Infect. Immun., 72: 3543–3548, 2004. [CSA], [CROSSREF]
  • C. Barrios, P. Brawand, M. Berney, C. Brandt, P.H. Lambert, and C.A. Siegrist, Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: predominance of a Th2-biased pattern which persists after adult boosting, Eur. J. Immunol., 26: 1489–1496, 1996. [CSA]
  • A.K. Nichani, A. Mena, S.K. Radhey, G.K. Mutwiri, H.G. Townsend, R. Hecker, A.M. Krieg, L.A. Babiuk, and P. Griebel, Stimulation of innate immune responses by CpG oligodeoxynucleotide in newborn lambs can reduce bovine herpes virus-1 shedding, OLIGONUCLEOTIDES, 16: 58–67, 2006. [CSA], [CROSSREF]
  • Z. Linghua, G. Yong, T. Xingshan, and Z. Fengzhen, Co-administration of porcine-specific CpG oligodeoxynucleotide enhances the immune responses to pseudorabies attenuated virus vaccine in newborn piglets in vivo, Dev. Comp. Immunol., 30: 589–596, 2006. [CSA], [CROSSREF]
  • C.D. Landers and S. Bondada, CpG oligodeoxynucleotides stimulate cord blood mononuclear cells to produce immunoglobulins, Clin. Immunol., 116: 236–245, 2005. [CSA], [CROSSREF]
  • N.L. Bernasconi, N. Onai, and A. Lanzavecchia, A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells, Blood, 101: 4500–4504, 2003. [CSA], [CROSSREF]
  • D. De Wit, V. Olislagers, S. Goriely, F. Vermeulen, H. Wagner, M. Goldman, and F. Willems, Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns, Blood, 103: 1030–1032, 2004. [CSA], [CROSSREF]
  • A.M. Krieg, S.M. Efler, M. Wittpoth, M.J. Al Adhami, and H.L. Davis, Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist, J. Immunother., 27: 460–471, 2004. [CSA], [CROSSREF]
  • G. Wingender, N. Garbi, B. Schumak, F. Jungerkes, E. Endl, D. von Bubnoff, J. Steitz, J. Striegler, G. Moldenhauer, T. Tuting, A. Heit, K.M. Huster, O. Takikawa, S. Akira, D.H. Busch, H. Wagner, G.J. Hammerling, P.A. Knolle, and A. Limmer, Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO, Eur. J. Immunol., 36: 12–20, 2006. [CSA], [CROSSREF]
  • M. Heikenwalder, M. Polymenidou, T. Junt, C. Sigurdson, H. Wagner, S. Akira, R. Zinkernagel, and A. Aguzzi, Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration, Nat. Med., 10: 187–192, 2004. [CSA], [CROSSREF]
  • D.M. Klinman, M. Takeno, M. Ichino, M. Gu, G. Yamshchikov, G. Mor, and J. Conover, DNA vaccines: safety and efficacy issues, Springer Semin. Immunopathol., 19: 245–256, 1997. [CSA], [CROSSREF]
  • C.L. Cooper, H.L. Davis, M.L. Morris, S.M. Efler, A.M. Krieg, Y. Li, C. Laframboise, M.J. Al Adhami, Y. Khaliq, I. Seguin, and D.W. Cameron, Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine, Vaccine, 22: 3136–3143, 2004. [CSA], [CROSSREF]
  • X.P. Ioannou, P. Griebel, A. Mena, S.M. Gomis, D.L. Godson, G. Mutwiri, R. Hecker, L.A. Babiuk, and S. van Drunen Littel-van den Hurk, Safety of CpG oligodeoxynucleotides in veterinary species, Antisense Nucleic Acid Drug Dev., 13, 157–167, 2003. [CSA], [CROSSREF]
  • J.P. Messina, G.S. Gilkeson, and D.S. Pisetsky, Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA, Journal of Immunology (Baltimore, Md.: 1950), 147: 1759–1764, 1991. [CSA]
  • G.S. Gilkeson, P. Ruiz, D. Howell, J.B. Lefkowith, and D.S. Pisetsky, Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA, Clin. Immunol. Immunopathol., 68: 283–292, 1993. [CSA]
  • G.S. Gilkeson, A.M. Pippen, and D.S. Pisetsky, Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA, J. Clin. Invest., 95: 1398–1402, 1995. [CSA]
  • K. Hasegawa and T. Hayashi, Synthetic CpG oligodeoxynucleotides accelerate the development of lupus nephritis during preactive phase in NZB x NZWF1 mice, Lupus, 12: 838–845, 2003. [CSA], [CROSSREF]
  • E.A. Leadbetter, I.R. Rifkin, A.M. Hohlbaum, B.C. Beaudette, M.J. Shlomchik, and A. Marshak-Rothstein, Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors, Nature, 416: 603–607, 2002. [CSA], [CROSSREF]
  • G.A. Viglianti, C.M. Lau, T.M. Hanley, B.A. Miko, M.J. Shlomchik, and A. Marshak-Rothstein, Activation of autoreactive B cells by CpG dsDNA, Immunity, 19: 837–847, 2003. [CSA], [CROSSREF]
  • L. Rui, C.G. Vinuesa, J. Blasioli, and C.C. Goodnow, Resistance to CpG DNA-induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling, Nat. Immunol., 4: 594–600, 2003. [CSA], [CROSSREF]
  • G.S. Gilkeson, J. Conover, M. Halpern, D.S. Pisetsky, A. Feagin, and D.M. Klinman, Effects of bacterial DNA on cytokine production by (NZB/NZW)F1 mice, J. Immunol., 161: 3890–3895, 1998. [CSA]
  • G. Mor, M. Singla, A.D. Steinberg, S.L. Hoffman, K. Okuda, and D.M. Klinman, Do DNA vaccines induce autoimmune disease? Hum Gene. Ther., 8: 293–300, 1997. [CSA]
  • O. Duramad, K.L. Fearon, B. Chang, J.H. Chan, J. Gregorio, R.L. Coffman, and F.J. Barrat, Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation, J. Immunol., 174: 5193–5200, 2005. [CSA]
  • X. Wu and S.L. Peng, Toll-like receptor 9 signaling protects against murine lupus, Arthritis Rheum., 54: 336–342, 2006. [CSA], [CROSSREF]
  • F. Obermeier, U.G. Strauch, N. Dunger, N. Grunwald, H.C. Rath, H. Herfarth, J. Scholmerich, and W. Falk, In vivo CpG DNA/toll-like receptor 9 interaction induces regulatory properties in CD4+CD62L+ T cells which prevent intestinal inflammation in the SCID transfer model of colitis, Gut, 54: 1428–1436, 2005. [CSA], [CROSSREF]
  • E.A. Moseman, X. Liang, A.J. Dawson, A. Panoskaltsis-Mortari, A.M. Krieg, Y.J. Liu, B.R. Blazar, and W. Chen, Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells, J. Immunol., 173: 4433–4442, 2004. [CSA]
  • V.V. Jain, K. Kitagaki, T. Businga, I. Hussain, C. George, P. O'Shaughnessy, and J.N. Kline, CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma, J. Allergy Clin. Immunol., 110: 867–872, 2002. [CSA], [CROSSREF]
  • G. Napolitani, A. Rinaldi, F. Bertoni, F. Sallusto, and A. Lanzavecchia, Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells, Nat. Immunol., 6: 769–776, 2005. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.