438
Views
79
CrossRef citations to date
0
Altmetric
Original

Dendritic Cell-Based Immunotherapy

, , , &
Pages 377-413 | Published online: 03 Aug 2009

REFERENCES

  • C. Ardavin, S. Amigorena, and C. Reis e Sousa, Dendritic cells: Immunobiology and cancer immunotherapy, Immunity, 20(1): 17–23, 2004. [CSA]
  • G. Schuler, B. Schuler-Thurner, and R.M. Steinman, The use of dendritic cells in cancer immunotherapy, Curr. Opin. Immunol., 15(2): 138–147, 2003. [CSA], [CROSSREF]
  • M.A. Morse and H.K. Lyerly, Clinical applications of dendritic cell vaccines, Curr. Opin. Mol. Ther., 2(1): 20–28, 2000. [CSA]
  • Y.J. Liu, H. Kanzler, V. Soumelis, and M. Gilliet, Dendritic cell lineage, plasticity and cross-regulation, Nat. Immunol., 2(7): 585–589, 2001. [CSA], [CROSSREF]
  • M. Moser and K.M. Murphy, Dendritic cell regulation of TH1-TH2 development, Nat. Immunol., 1(3): 199–205, 2000. [CSA], [CROSSREF]
  • M. Schnurr, Q. Chen, A. Shin, , et al., Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery, Blood, 105(6): 2465–2472, 2005. [CSA], [CROSSREF]
  • A. Lanzavecchia and F. Sallusto, The instructive role of dendritic cells on T cell responses: Lineages, plasticity and kinetics, Curr. Opin. Immunol., 13(3): 291–298, 2001. [CSA], [CROSSREF]
  • D.B. Fearnley, L.F. Whyte, S.A. Carnoutsos, A.H. Cook, and D.N. Hart, Monitoring human blood dendritic cell numbers in normal individuals and in stem cell transplantation, Blood, 93(2): 728–736, 1999. [CSA]
  • F.J. Hsu, C. Benike, F. Fagnoni, , et al., Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells, Nat. Med., 2(1): 52–58, 1996. [CSA], [CROSSREF]
  • V.L. Reichardt, C.Y. Okada, A. Liso, , et al., Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—A feasibility study, Blood, 93(7): 2411–2419, 1999. [CSA]
  • E.J. Small, P. Fratesi, D.M. Reese, , et al., Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells, J. Clin. Oncol., 18(23): 3894–3903, 2000. [CSA]
  • T.K. Hoffmann, J. Muller-Berghaus, R.L. Ferris, , et al., Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck, Clin. Cancer Res., 8(6): 1787–1793, 2002. [CSA]
  • S. Satthaporn, A. Robins, W. Vassanasiri, , et al., Dendritic cells are dysfunctional in patients with operable breast cancer, Cancer Immunol. Immunother., 53(6): 510–518, 2004. [CSA], [CROSSREF]
  • R.D. Brown, B. Pope, A. Murray, , et al., Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10, Blood, 98(10): 2992–2998, 2001. [CSA], [CROSSREF]
  • M. Ratta, F. Fagnoni, A. Curti, , et al., Dendritic cells are functionally defective in multiple myeloma: The role of interleukin-6, Blood, 100(1): 230–237, 2002. [CSA], [CROSSREF]
  • J.M. Timmerman, D.K. Czerwinski, T.A. Davis, , et al., Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: Clinical and immune responses in 35 patients, Blood, 99(5): 1517–1526, 2002. [CSA], [CROSSREF]
  • E.J. Small, P.F. Schellhammer, C.S. Higano, , et al., Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer, J. Clin. Oncol., 24(19): 3089–3094, 2006. [CSA], [CROSSREF]
  • F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med., 179(4): 1109–1118, 1994. [CSA], [CROSSREF]
  • H. Cao, V. Verge, C. Baron, , et al., In vitro generation of dendritic cells from human blood monocytes in experimental conditions compatible for in vivo cell therapy, J. Hematother. Stem Cell. Res., 9(2): 183–194, 2000. [CSA], [CROSSREF]
  • M.A. Morse, H.K. Lyerly, and Y. Li, The role of IL-13 in the generation of dendritic cells in vitro, J. Immunother., 22(6): 506–513, 1999. [CSA], [CROSSREF]
  • K. Tarte, G. Fiol, J.F. Rossi, and B. Klein, Extensive characterization of dendritic cells generated in serum-free conditions: Regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro, Leukemia, 14(12): 2182–2192, 2000. [CSA], [CROSSREF]
  • D.I. Gabrilovich, S. Nadaf, J. Corak, J.A. Berzofsky, and D.P. Carbone, Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors, Cell. Immunol., 170(1): 111–119, 1996. [CSA], [CROSSREF]
  • J. Banchereau and A.K. Palucka, Dendritic cells as therapeutic vaccines against cancer, Nat. Rev. Immunol., 5(4): 296–306, 2005. [CSA], [CROSSREF]
  • B. Chen, P. Stiff, G. Sloan, , et al., Replicative response, immunophenotype, and functional activity of monocyte-derived versus CD34(+)-derived dendritic cells following exposure to various expansion and maturational stimuli, Clin. Immunol., 98(2): 280–292, 2001. [CSA], [CROSSREF]
  • A. Curti, M. Fogli, M. Ratta, , et al., Dendritic cell differentiation from hematopoietic CD34+ progenitor cells, J. Biol. Regul. Homeost. Agents, 15(1): 49–52, 2001. [CSA]
  • J. Banchereau, A.K. Palucka, M. Dhodapkar, , et al., Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine, Cancer Res., 61(17): 6451–6458, 2001. [CSA]
  • M. Di Nicola, C. Carlo-Stella, R. Mortarini, , et al., Boosting T cell-mediated immunity to tyrosinase by vaccinia virus-transduced, CD34(+)-derived dendritic cell vaccination: A phase I trial in metastatic melanoma, Clin. Cancer Res., 10(16): 5381–5390, 2004. [CSA], [CROSSREF]
  • A. Mackensen, B. Herbst, J.L. Chen, , et al., Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells, Int. J. Cancer, 86(3): 385–392, 2000. [CSA], [CROSSREF]
  • S. Titzer, O. Christensen, O. Manzke, , et al., Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: Immunological and clinical aspects, Br. J. Haematol., 108(4): 805–816, 2000. [CSA], [CROSSREF]
  • R. Mortarini, A. Anichini, M. Di Nicola, , et al., Autologous dendritic cells derived from CD34+ progenitors and from monocytes are not functionally equivalent antigen-presenting cells in the induction of melan-A/Mart-1(27–35)-specific CTLs from peripheral blood lymphocytes of melanoma patients with low frequency of CTL precursors, Cancer Res., 57(24): 5534–5541, 1997. [CSA]
  • G. Ferlazzo, J. Klein, X. Paliard, W.Z. Wei, and A. Galy, Dendritic cells generated from CD34+ progenitor cells with flt3 ligand, c-kit ligand, GM-CSF, IL-4, and TNF-alpha are functional antigen-presenting cells resembling mature monocyte-derived dendritic cells, J. Immunother., 23(1): 48–58, 2000. [CSA], [CROSSREF]
  • D.F. Claxton, J. McMannis, R. Champlin, and A. Choudhury, Therapeutic potential of leukemia-derived dendritic cells: Preclinical and clinical progress, Crit. Rev. Immunol., 21(1–3): 147–155, 2001. [CSA]
  • J. Westermann, J. Kopp, I. Korner, , et al., Bcr/abl+ autologous dendritic cells for vaccination in chronic myeloid leukemia, Bone Marrow Transplant., 25(Suppl 2): S46–S49, 2000. [CSA], [CROSSREF]
  • R. Syme, T. Bryan, P. Duggan, , et al., Priming with dendritic cells can generate strong cytotoxic T cell responses to chronic myelogenous leukemia cells in vitro, Stem Cells Dev., 13(2): 211–221, 2004. [CSA], [CROSSREF]
  • A. Cignetti, E. Bryant, B. Allione, , et al., CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells, Blood, 94(6): 2048–2055, 1999. [CSA]
  • M. Narita, M. Takahashi, A. Liu, , et al., Leukemia blast-induced T-cell anergy demonstrated by leukemia-derived dendritic cells in acute myelogenous leukemia, Exp. Hematol., 29(6): 709–719, 2001. [CSA], [CROSSREF]
  • A.B. Dietz, P.A. Bulur, M.R. Erickson, , et al., Optimizing preparation of normal dendritic cells and bcr-abl+ mature dendritic cells derived from immunomagnetically purified CD14+ cells, J. Hematother. Stem Cell Res., 9(1): 95–101, 2000. [CSA], [CROSSREF]
  • H. Roddie, M. Klammer, C. Thomas, , et al., Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia, Br. J. Haematol., 133(2): 152–157, 2006. [CSA], [CROSSREF]
  • K. Eisendle, D. Wolf, G. Gastl, and B. Kircher-Eibl, Dendritic cells from patients with chronic myeloid leukemia: Functional and phenotypic features, Leuk. Lymphoma, 46(5): 663–670, 2005. [CSA]
  • Y. Suen, S.M. Lee, F. Aono, , et al., Comparison of monocyte enrichment by immuno-magnetic depletion or adherence for the clinical-scale generation of DC, Cytotherapy, 3(5): 365–375, 2001. [CSA], [CROSSREF]
  • M. Elias, J. van Zanten, G.A. Hospers, , et al., Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy, J. Clin. Apher., 20(4): 197–207, 2005. [CSA], [CROSSREF]
  • E.C. Wong, S.M. Lee, K. Hines, , et al., Development of a closed-system process for clinical-scale generation of DCs: Evaluation of two monocyte-enrichment methods and two culture containers, Cytotherapy, 4(1): 65–76, 2002. [CSA], [CROSSREF]
  • B. Goxe, N. Latour, M. Chokri, J.P. Abastado, and M. Salcedo, Simplified method to generate large quantities of dendritic cells suitable for clinical applications, Immunol. Invest., 29(3): 319–336, 2000. [CSA]
  • B. Barrou, G. Benoit, M. Ouldkaci, , et al., Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA, Cancer Immunol. Immunother., 53(5): 453–460, 2004. [CSA], [CROSSREF]
  • D.A. Brott, R.J. Maher, C.R. Parrish, R.J. Richardson, and A.K. Smith, Flow cytometric characterization of perfused human bone marrow cultures: Identification of the major cell lineages and correlation with the CFU-GM assay, Cytometry A, 53(1): 22–27, 2003. [CSA]
  • P.A. Burch, J.K. Breen, J.C. Buckner, , et al., Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer, Clin. Cancer Res., 6(6): 2175–2182, 2000. [CSA]
  • A. Mackensen, R. Drager, M. Schlesier, R. Mertelsmann, and A. Lindemann, Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells, Cancer Immunol. Immunother., 49(3): 152–156, 2000. [CSA], [CROSSREF]
  • M.D. Roth, B.J. Gitlitz, S.M. Kiertscher, , et al., Granulocyte macrophage colony-stimulating factor and interleukin 4 enhance the number and antigen-presenting activity of circulating CD14+ and CD83+ cells in cancer patients, Cancer Res., 60(7): 1934–1941, 2000. [CSA]
  • S.M. Kiertscher, B.J. Gitlitz, R.A. Figlin, and M.D. Roth, Granulocyte/macrophage-colony stimulating factor and interleukin-4 expand and activate type-1 dendritic cells (DC1) when administered in vivo to cancer patients, Int. J. Cancer, 107(2): 256–261, 2003. [CSA], [CROSSREF]
  • J.E. Janik, L.L. Miller, W.C. Kopp, , et al., Treatment with tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor increases epidermal Langerhans' cell numbers in cancer patients, Clin. Immunol., 93(3): 209–221, 1999. [CSA], [CROSSREF]
  • E. Maraskovsky, K. Brasel, M. Teepe, , et al., Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: Multiple dendritic cell subpopulations identified, J. Exp. Med., 184(5): 1953–1962, 1996. [CSA]
  • H.J. McKenna, Role of hematopoietic growth factors/flt3 ligand in expansion and regulation of dendritic cells, Curr. Opin. Hematol., 8(3): 149–154, 2001. [CSA]
  • E. Maraskovsky, E. Daro, E. Roux, , et al., In vivo generation of human dendritic cell subsets by Flt3 ligand, Blood, 96(3): 878–884, 2000. [CSA]
  • B. Pulendran, J. Banchereau, S. Burkeholder, , et al., Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo, J. Immunol., 165(1): 566–572, 2000. [CSA]
  • C.E. Marroquin, J.A. Westwood, R. Lapointe, , et al., Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells, J. Immunother., 25(3): 278–288, 2002. [CSA], [CROSSREF]
  • M. Merad, T. Sugie, E.G. Engleman, and L. Fong, In vivo manipulation of dendritic cells to induce therapeutic immunity, Blood, 99(5): 1676–1682, 2002. [CSA], [CROSSREF]
  • M. Arpinati, C.L. Green, S. Heimfeld, J.E. Heuser, and C. Anasetti, Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells, Blood, 95(8): 2484–2490, 2000. [CSA]
  • S. Vuckovic, M. Kim, D. Khalil, , et al., Granulocyte-colony stimulating factor increases CD123hi blood dendritic cells with altered CD62L and CCR7 expression, Blood, 101(6): 2314–2317, 2003. [CSA], [CROSSREF]
  • S. Ferrari, B. Rovati, C. Porta, , et al., Lack of dendritic cell mobilization into the peripheral blood of cancer patients following standard- or high-dose chemotherapy plus granulocyte-colony stimulating factor, Cancer Immunol. Immunother., 52(6): 359–366, 2003. [CSA]
  • S. Lonial, M. Hicks, H. Rosenthal, , et al., A randomized trial comparing the combination of granulocyte-macrophage colony-stimulating factor plus granulocyte colony-stimulating factor versus granulocyte colony-stimulating factor for mobilization of dendritic cell subsets in hematopoietic progenitor cell products, Biol. Blood Marrow Transplant., 10(12): 848–857, 2004. [CSA], [CROSSREF]
  • P.R. Streeter, N.I. Minster, L.E. Kahn, , et al., Progenipoietins: Biological characterization of a family of dual agonists of fetal liver tyrosine kinase-3 and the granulocyte colony-stimulating factor receptor, Exp. Hematol., 29(1): 41–50, 2001. [CSA], [CROSSREF]
  • P. Bjorck, W.R. Lie, S.L. Woulfe, , et al., Progenipoietin-generated dendritic cells exhibit anti-tumor efficacy in a therapeutic murine tumor model, Int. J. Cancer, 100(5): 586–591, 2002. [CSA], [CROSSREF]
  • V. Pullarkat, P.P. Lee, R. Scotland, , et al., A phase I trial of SD-9427 (progenipoietin) with a multipeptide vaccine for resected metastatic melanoma, Clin. Cancer Res., 9(4): 1301–1312, 2003. [CSA]
  • Y. Zhang, H. Yoneyama, Y. Wang, , et al., Mobilization of dendritic cell precursors into the circulation by administration of MIP-1alpha in mice, J. Natl. Cancer Inst., 96(3): 201–209, 2004. [CSA]
  • P. Lissoni, A. Bonfanti, V. Bordin, , et al., Malignancy: Changes in circulating immature and mature dendritic cells during IL-2 cancer immunotherapy and their relation with lymphocyte increase and clinical response, Hematology, 5(2): 117–125, 2000. [CSA]
  • S. Morel, F. Levy, O. Burlet-Schiltz, , et al., Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells, Immunity, 12(1): 107–117, 2000. [CSA], [CROSSREF]
  • R.M. Zinkernagel, On cross-priming of MHC class I-specific CTL: Rule or exception? Eur. J. Immunol., 32(9): 2385–2392, 2002. [CSA], [CROSSREF]
  • M.C. Wolkers, N. Brouwenstijn, A.H. Bakker, M. Toebes, and T.N. Schumacher, Antigen bias in T cell cross-priming, Science, 304(5675): 1314–1317, 2004. [CSA], [CROSSREF]
  • Y. Li, M. Bendandi, Y. Deng, , et al., Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(+) T cells, Blood, 96(8): 2828–2833, 2000. [CSA]
  • L. Bonifaz, D. Bonnyay, K. Mahnke, , et al., Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance, J. Exp. Med., 196(12): 1627–1638, 2002. [CSA], [CROSSREF]
  • K.M. Dhodapkar, J. Krasovsky, B. Williamson, and M.V. Dhodapkar, Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells, J. Exp. Med., 195(1): 125–133, 2002. [CSA], [CROSSREF]
  • M. Smithers, K. O'Connell, S. MacFadyen, , et al., Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen, Cancer Immunol. Immunother., 52(1): 41–52, 2003. [CSA]
  • J.S. Yu, C.J. Wheeler, P.M. Zeltzer, , et al., Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration, Cancer Res., 61(3): 842–847, 2001. [CSA]
  • B. Thurner, I. Haendle, C. Roder, , et al., Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma, J. Exp. Med., 190(11): 1669–1678, 1999. [CSA], [CROSSREF]
  • L. Fong, Y. Hou, A. Rivas, , et al., Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy, Proc. Natl. Acad. Sci. U.S.A., 98(15): 8809–8814, 2001. [CSA], [CROSSREF]
  • T.N. Bullock, T.A. Colella, and V.H. Engelhard, The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice, J. Immunol., 164(5): 2354–2361, 2000. [CSA]
  • Y. Waeckerle-Men, E. Scandella, E. Uetz-Von Allmen, , et al., Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy, J. Immunol. Methods, 287(1–2): 109–124, 2004. [CSA]
  • D. Boczkowski, S.K. Nair, D. Snyder, and E. Gilboa, Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo, J. Exp. Med., 184(2): 465–472, 1996. [CSA], [CROSSREF]
  • D.A. Mitchell and S.K. Nair, RNA transfected dendritic cells as cancer vaccines, Curr. Opin. Mol. Ther., 2(2): 176–181, 2000. [CSA]
  • V.F. Van Tendeloo, P. Ponsaerts, F. Lardon, , et al., Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells, Blood, 98(1): 49–56, 2001. [CSA], [CROSSREF]
  • I. Strobel, S. Berchtold, A. Gotze, , et al., Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes, Gene Ther., 7(23): 2028–2035, 2000. [CSA], [CROSSREF]
  • S.K. Nair, D. Boczkowski, M. Morse, , et al., Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA, Nat. Biotechnol., 16(4): 364–369, 1998. [CSA], [CROSSREF]
  • A. Heiser, M.A. Maurice, D.R. Yancey, , et al., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA, J. Immunol., 166(5): 2953–2960, 2001. [CSA]
  • D. Boczkowski, S.K. Nair, J.H. Nam, H.K. Lyerly, and E. Gilboa, Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells, Cancer Res., 60(4): 1028–1034, 2000. [CSA]
  • A. Nencioni, M.R. Muller, F. Grunebach, , et al., Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer, Cancer Gene Ther., 10(3): 209–214, 2003. [CSA], [CROSSREF]
  • M.R. Muller, F. Grunebach, A. Nencioni, and P. Brossart, Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes, J. Immunol., 170(12): 5892–5896, 2003. [CSA]
  • C. Milazzo, V.L. Reichardt, M.R. Muller, F. Grunebach, and P. Brossart, Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA, Blood, 101(3): 977–982, 2003. [CSA], [CROSSREF]
  • J. Bubenik, Genetically engineered dendritic cell-based cancer vaccines (review) Int. J. Oncol., 18(3): 475–478, 2001. [CSA]
  • K.M. Ardeshna, A.R. Pizzey, N.S. Thomas, S. Orr, D.C. Linch, S. Devereux, monocyte-derived dendritric cells do not proliferate and are not susceptible to retroviral transduction. Br. J. Haematol., 108(4): 817–824, 2000. [CSA], [CROSSREF]
  • J. Dyall, J.B. Latouche, S. Schnell, and M. Sadelain, Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes, Blood, 97(1): 114–121, 2001. [CSA], [CROSSREF]
  • H. Firat, V. Zennou, F. Garcia-Pons, , et al., Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy, J. Gene Med., 4(1): 38–45, 2002. [CSA], [CROSSREF]
  • G. Lizee, M.I. Gonzales, and S.L. Topalian, Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells, Hum. Gene Ther., 15(4): 393–404, 2004. [CSA], [CROSSREF]
  • T. Dull, R. Zufferey, M. Kelly, , et al., A third-generation lentivirus vector with a conditional packaging system, J. Virol., 72(11): 8463–8471, 1998. [CSA]
  • Y. He, J. Zhang, Z. Mi, P. Robbins, and L.D. Falo, Jr., Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity, J. Immunol., 174(6): 3808–3817, 2005. [CSA]
  • M. Di Nicola, C. Carlo-Stella, M. Milanesi, , et al., Large-scale feasibility of gene transduction into human CD34+ cell-derived dendritic cells by adenoviral/polycation complex, Br. J. Haematol., 111(1): 344–350, 2000. [CSA], [CROSSREF]
  • A. Amalfitano, M.A. Hauser, H. Hu, , et al., Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted, J. Virol., 72(2): 926–933, 1998. [CSA]
  • D. Rea, M.J. Havenga, M. van Den Assem, , et al., Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells, J. Immunol., 166(8): 5236–5244, 2001. [CSA]
  • S. Worgall, A. Busch, M. Rivara, , et al., Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses, J. Virol., 78(5): 2572–2580, 2004. [CSA], [CROSSREF]
  • M. Brown, Y. Zhang, S. Dermine, , et al., Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity, Gene Ther., 7(19): 1680–1689, 2000. [CSA], [CROSSREF]
  • C.J. Kim, J. Cormier, M. Roden, , et al., Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity, Ann. Surg. Oncol., 5(1): 64–76, 1998. [CSA], [CROSSREF]
  • M. Zhu, H. Terasawa, J. Gulley, , et al., Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells, Cancer Res., 61(9): 3725–3734, 2001. [CSA]
  • K.Y. Tsang, C. Palena, J. Yokokawa, , et al., Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules, Clin. Cancer Res., 11(4): 1597–1607, 2005. [CSA]
  • I.J. Caley, M.R. Betts, D.M. Irlbeck, , et al., Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector, J. Virol., 71(4): 3031–3038, 1997. [CSA]
  • P. Pushko, M. Parker, G.V. Ludwig, , et al., Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: Expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo, Virology, 239(2): 389–401, 1997. [CSA], [CROSSREF]
  • T.P. Moran, M. Collier, K.P. McKinnon, , et al., A novel viral system for generating antigen-specific T cells, J. Immunol., 175(5): 3431–3438, 2005. [CSA]
  • Z. Chen, T. Moyana, A. Saxena, , et al., Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells, Int. J. Cancer, 93(4): 539–548, 2001. [CSA], [CROSSREF]
  • M. Shaif-Muthana, C. McIntyre, K. Sisley, I. Rennie, and A. Murray, Dead or alive: Immunogenicity of human melanoma cells when presented by dendritic cells, Cancer Res., 60(22): 6441–6447, 2000. [CSA]
  • G. Ferlazzo, C. Semino, G.M. Spaggiari, , et al., Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates, Int. Immunol., 12(12): 1741–1747, 2000. [CSA], [CROSSREF]
  • J. Galea-Lauri, J.W. Wells, D. Darling, P. Harrison, and F. Farzaneh, Strategies for antigen choice and priming of dendritic cells influence the polarization and efficacy of antitumor T-cell responses in dendritic cell-based cancer vaccination, Cancer Immunol. Immunother., 53(11): 963–977, 2004. [CSA]
  • T. Kurokawa, M. Oelke, and A. Mackensen, Induction and clonal expansion of tumor-specific cytotoxic T lymphocytes from renal cell carcinoma patients after stimulation with autologous dendritic cells loaded with tumor cells, Int. J. Cancer, 91(6): 749–756, 2001. [CSA], [CROSSREF]
  • L.A. Lambert, G.R. Gibson, M. Maloney, and R.J. Barth, Jr., Equipotent generation of protective antitumor immunity by various methods of dendritic cell loading with whole cell tumor antigens, J. Immunother., 24(3): 232–236, 2001. [CSA], [CROSSREF]
  • J.S. Yu, G. Liu, H. Ying, , et al., Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma, Cancer Res., 64(14): 4973–4979, 2004. [CSA], [CROSSREF]
  • W.C. Lee, H.C. Wang, C.F. Hung, , et al., Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: A clinical trial, J. Immunother., 28(5): 496–504, 2005. [CSA], [CROSSREF]
  • A.E. Chang, B.G. Redman, J.R. Whitfield, , et al., A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer, Clin. Cancer Res., 8(4): 1021–1032, 2002. [CSA]
  • S. Teitz-Tennenbaum, Q. Li, S. Rynkiewicz, , et al., Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration, Cancer Res., 63(23): 8466–8475, 2003. [CSA]
  • J. Gong, N. Nikrui, D. Chen, , et al., Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity, J. Immunol., 165(3): 1705–1711, 2000. [CSA]
  • S. Koido, M. Ohana, C. Liu, , et al., Dendritic cells fused with human cancer cells: Morphology, antigen expression, and T cell stimulation, Clin. Immunol., 113(3): 261–269, 2004. [CSA], [CROSSREF]
  • S. Koido, E. Hara, S. Homma, , et al., Dendritic cells fused with allogeneic colorectal cancer cell line present multiple colorectal cancer-specific antigens and induce antitumor immunity against autologous tumor cells, Clin. Cancer Res., 11(21): 7891–7900, 2005. [CSA], [CROSSREF]
  • M.R. Parkhurst, C. DePan, J.P. Riley, S.A. Rosenberg, and S. Shu, Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules, J. Immunol., 170(10): 5317–5325, 2003. [CSA]
  • T.H. Scott-Taylor, R. Pettengell, I. Clarke, , et al., Human tumour and dendritic cell hybrids generated by electrofusion: Potential for cancer vaccines, Biochim. Biophys. Acta, 1500(3): 265–279, 2000. [CSA]
  • A. Marten, S. Renoth, T. Heinicke, , et al., Allogeneic dendritic cells fused with tumor cells: Preclinical results and outcome of a clinical phase I/II trial in patients with metastatic renal cell carcinoma, Hum. Gene Ther., 14(5): 483–494, 2003. [CSA], [CROSSREF]
  • T. Kikuchi, Y. Akasaki, M. Irie, , et al., Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells, Cancer Immunol. Immunother., 50(7): 337–344, 2001. [CSA], [CROSSREF]
  • M. Schnurr, P. Galambos, C. Scholz, , et al., Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: An in vitro model for the assessment of tumor vaccines, Cancer Res., 61(17): 6445–6450, 2001. [CSA]
  • M. Toungouz, M. Libin, F. Bulte, , et al., Transient expansion of peptide-specific lymphocytes producing IFN-gamma after vaccination with dendritic cells pulsed with MAGE peptides in patients with mage-A1/A3-positive tumors, J. Leukoc. Biol., 69(6): 937–943, 2001. [CSA]
  • A.L. Millard, D. Ittelet, F. Schooneman, and J. Bernard, Dendritic cell KLH loading requirements for efficient CD4+ T-cell priming and help to peptide-specific cytotoxic T-cell response, in view of potential use in cancer vaccines, Vaccine, 21(9–10): 869–876, 2003. [CSA], [CROSSREF]
  • P. Brossart, K.S. Heinrich, G. Stuhler, , et al., Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies, Blood, 93(12): 4309–4317, 1999. [CSA]
  • J. Wierecky, M.R. Muller, S. Wirths, , et al., Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients, Cancer Res., 66(11): 5910–5918, 2006. [CSA], [CROSSREF]
  • I.J. de Vries, W.J. Lesterhuis, N.M. Scharenborg, , et al., Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients, Clin. Cancer Res., 9(14): 5091–5100, 2003. [CSA]
  • H. Jonuleit, A. Giesecke-Tuettenberg, T. Tuting, , et al., A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection, Int. J. Cancer, 93(2): 243–251, 2001. [CSA], [CROSSREF]
  • M.V. Dhodapkar, R.M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj, Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells, J. Exp. Med., 193(2): 233–238, 2001. [CSA], [CROSSREF]
  • D. McIlroy and M. Gregoire, Optimizing dendritic cell-based anticancer immunotherapy: Maturation state does have clinical impact, Cancer Immunol. Immunother., 52(10): 583–591, 2003. [CSA], [CROSSREF]
  • P.J. Mosca, A.C. Hobeika, T.M. Clay, , et al., A subset of human monocyte-derived dendritic cells expresses high levels of interleukin-12 in response to combined CD40 ligand and interferon-gamma treatment, Blood, 96(10): 3499–3504, 2000. [CSA]
  • B.J. Czerniecki, P.A. Cohen, M. Faries, , et al., Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines, Crit. Rev. Immunol., 21(1–3): 157–178, 2001. [CSA]
  • I.J. De Vries, D.J. Krooshoop, N.M. Scharenborg, , et al., Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state, Cancer Res., 63(1): 12–17, 2003. [CSA]
  • B. Schuler-Thurner, E.S. Schultz, T.G. Berger, , et al., Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells, J. Exp. Med., 195(10): 1279–1288, 2002. [CSA], [CROSSREF]
  • H. Jonuleit, U. Kuhn, G. Muller, , et al., Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions, Eur. J. Immunol., 27(12): 3135–3142, 1997. [CSA]
  • P. Kalinski, J.H. Schuitemaker, C.M. Hilkens, and M.L. Kapsenberg, Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+ CD83+ dendritic cells: The levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation, J. Immunol., 161(6): 2804–2809, 1998. [CSA]
  • T. Luft, M. Jefford, P. Luetjens, , et al., Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: Prostaglandin E(2) regulates the migratory capacity of specific DC subsets, Blood, 100(4): 1362–1372, 2002. [CSA], [CROSSREF]
  • E. Scandella, Y. Men, S. Gillessen, R. Forster, and M. Groettrup, Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells, Blood, 100(4): 1354–1361, 2002. [CSA], [CROSSREF]
  • T. Luft, K.C. Pang, E. Thomas, , et al., Type I IFNs enhance the terminal differentiation of dendritic cells, J. Immunol., 161(4): 1947–1953, 1998. [CSA]
  • S.M. Santini, C. Lapenta, M. Logozzi, , et al., Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice, J. Exp. Med., 191(10): 1777–1788, 2000. [CSA], [CROSSREF]
  • C. Pasare and R. Medzhitov, Toll-like receptors: Linking innate and adaptive immunity, Microbes Infect., 6(15): 1382–1387, 2004. [CSA], [CROSSREF]
  • G.P. Murphy, B.A. Tjoa, S.J. Simmons, , et al., Higher-dose and less frequent dendritic cell infusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients, Prostate, 43(1): 59–62, 2000. [CSA], [CROSSREF]
  • A. Ribas, L.H. Butterfield, B. Hu, , et al., Immune deviation and Fas-mediated deletion limit antitumor activity after multiple dendritic cell vaccinations in mice, Cancer Res., 60(8): 2218–2224, 2000. [CSA]
  • J.S. Serody, E.J. Collins, R.M. Tisch, J.J. Kuhns, and J.A. Frelinger, T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery, J. Immunol., 164(9): 4961–4967, 2000. [CSA]
  • M.V. Dhodapkar, R.M. Steinman, M. Sapp, , et al., Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells, J. Clin. Invest., 104(2): 173–180, 1999. [CSA]
  • M.A. Morse, T.M. Clay, A.C. Hobeika, , et al., Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules, Clin. Cancer Res., 11(8): 3017–3024, 2005. [CSA], [CROSSREF]
  • M.A. Morse, R.E. Coleman, G. Akabani, , et al., Migration of human dendritic cells after injection in patients with metastatic malignancies, Cancer Res., 59(1): 56–58, 1999. [CSA]
  • A. Mackensen, T. Krause, U. Blum, , et al., Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells, Cancer Immunol. Immunother., 48(2–3): 118–122, 1999. [CSA], [CROSSREF]
  • L.A. Lambert, G.R. Gibson, M. Maloney, , et al., Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity, Cancer Res., 61(2): 641–646, 2001. [CSA]
  • D.W. Mullins, S.L. Sheasley, R.M. Ream, , et al., Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control, J. Exp. Med., 198(7): 1023–1034, 2003. [CSA], [CROSSREF]
  • L. Fong, D. Brockstedt, C. Benike, L. Wu, and E.G. Engleman, Dendritic cells injected via different routes induce immunity in cancer patients, J. Immunol., 166(6): 4254–4259, 2001. [CSA]
  • K.A. Candido, K. Shimizu, J.C. McLaughlin, , et al., Local administration of dendritic cells inhibits established breast tumor growth: Implications for apoptosis-inducing agents, Cancer Res., 61(1): 228–236, 2001. [CSA]
  • P.L. Triozzi, R. Khurram, W.A. Aldrich, , et al., Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer, Cancer, 89(12): 2646–2654, 2000. [CSA]
  • K.H. Chi, S.J. Liu, C.P. Li, , et al., Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma, J. Immunother., 28(2): 129–135, 2005. [CSA], [CROSSREF]
  • E.Y. Nikitina and D.I. Gabrilovich, Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: Approach to treatment of advanced stage cancer, Int. J. Cancer, 94(6): 825–833, 2001. [CSA], [CROSSREF]
  • F. Tanaka, H. Yamaguchi, M. Ohta, , et al., Intratumoral injection of dendritic cells after treatment of anticancer drugs induces tumor-specific antitumor effect in vivo, Int. J. Cancer, 101(3): 265–269, 2002. [CSA], [CROSSREF]
  • H. Saji, W. Song, K. Furumoto, H. Kato, and E.G. Engleman, Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy, Clin. Cancer Res., 12(8): 2568–2574, 2006. [CSA], [CROSSREF]
  • J.D. Geiger, R.J. Hutchinson, L.F. Hohenkirk, , et al., Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression, Cancer Res., 61(23): 8513–8519, 2001. [CSA]
  • A. Stift, J. Friedl, P. Dubsky, , et al., Dendritic cell-based vaccination in solid cancer, J. Clin. Oncol., 21(1): 135–142, 2003. [CSA], [CROSSREF]
  • P. Hersey, S.W. Menzies, G.M. Halliday, , et al., Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma, Cancer Immunol. Immunother., 53(2): 125–134, 2004. [CSA], [CROSSREF]
  • I.J. de Vries, M.R. Bernsen, W.J. Lesterhuis, , et al., Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome, J. Clin. Oncol., 23(24): 5779–5787, 2005. [CSA], [CROSSREF]
  • L.H. Butterfield, A. Ribas, V.B. Dissette, , et al., Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma, Clin. Cancer Res., 9(3): 998–1008, 2003. [CSA]
  • P. Therasse, S.G. Arbuck, E.A. Eisenhauer, , et al., New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada, J. Natl. Cancer Inst., 92(3): 205–216, 2000. [CSA], [CROSSREF]
  • L.D. Cranmer, K.T. Trevor, and E.M. Hersh, Clinical applications of dendritic cell vaccination in the treatment of cancer, Cancer Immunol. Immunother., 53(4): 275–306, 2004. [CSA], [CROSSREF]
  • U. Trefzer, G. Herberth, K. Wohlan, , et al., Tumour-dendritic hybrid cell vaccination for the treatment of patients with malignant melanoma: Immunological effects and clinical results, Vaccine, 23(17–18): 2367–2373, 2005. [CSA], [CROSSREF]
  • A. Tuettenberg, C. Becker, E. Huter, , et al., Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients, Int. J. Cancer, 118(10): 2617–2627, 2006. [CSA], [CROSSREF]
  • V.L. Reichardt, C. Milazzo, W. Brugger, , et al., Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells, Haematologica, 88(10): 1139–1149, 2003. [CSA]
  • M. Bendandi, M. Rodriguez-Calvillo, S. Inoges, , et al., Combined vaccination with idiotype-pulsed allogeneic dendritic cells and soluble protein idiotype for multiple myeloma patients relapsing after reduced-intensity conditioning allogeneic stem cell transplantation, Leuk. Lymphoma, 47(1): 29–37, 2006. [CSA], [CROSSREF]
  • M.A. Morse, S.K. Nair, P.J. Mosca, , et al., Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA, Cancer Invest., 21(3): 341–349, 2003. [CSA], [CROSSREF]
  • A. Heiser, D. Coleman, J. Dannull, , et al., Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors, J. Clin. Invest., 109(3): 409–417, 2002. [CSA], [CROSSREF]
  • Z. Su, J. Dannull, B.K. Yang, , et al., Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer, J. Immunol., 174(6): 3798–3807, 2005. [CSA]
  • S. Fuessel, A. Meye, M. Schmitz, , et al., Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: Results of a phase I clinical trial, Prostate, 66(8): 811–821, 2006. [CSA], [CROSSREF]
  • L. Holtl, R. Ramoner, C. Zelle-Rieser, , et al., Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide, Cancer Immunol. Immunother., 54(7): 663–670, 2005. [CSA], [CROSSREF]
  • F. Chang, S. Syrjanen, and K. Syrjanen, Implications of the p53 tumor-suppressor gene in clinical oncology, J. Clin. Oncol., 13(4): 1009–1022, 1995. [CSA]
  • I.M. Svane, A.E. Pedersen, H.E. Johnsen, , et al., Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: Report from a phase I study, Cancer Immunol. Immunother., 53(7): 633–641, 2004. [CSA], [CROSSREF]
  • L.M. Liau, R.M. Prins, S.M. Kiertscher, , et al., Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment, Clin. Cancer Res., 11(15): 5515–5525, 2005. [CSA], [CROSSREF]
  • G.Q. Phan, J.C. Yang, R.M. Sherry, , et al., Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma, Proc. Natl. Acad. Sci. U.S.A., 100(14): 8372–8377, 2003. [CSA], [CROSSREF]
  • J. Dannull, Z. Su, D. Rizzieri, , et al., Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells, J. Clin. Invest., 115(12): 3623–3633, 2005. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.