168
Views
26
CrossRef citations to date
0
Altmetric
Original

The In Vivo Response of Invariant Natural Killer T Cells to Glycolipid Antigens

, &
Pages 31-48 | Published online: 03 Aug 2009

REFERENCES

  • H. Jiang and L. Chess, Regulation of immune responses by T cells, N. Engl. J. Med., 354: 1166–1176, 2006.
  • M. Taniguchi, M. Harada, S. Kojo, T. Nakayama, and H. Wakao, The regulatory role of Va14 NKT cells in innate and acquired immune response, Annu. Rev. Immunol., 21: 483–513, 2003.
  • M. Brigl and M.B. Brenner, CD1: antigen presentation and T cell function, Annu. Rev. Immunol., 22: 817–890, 2004.
  • L. Van Kaer, Regulation of immune responses by CD1d-restricted natural killer T cells, Immunol. Res., 30: 139–153, 2004.
  • D.I. Godfrey and M. Kronenberg, Going both ways: Immune regulation via CD1d-dependent NKT cells, J. Clin. Invest., 114: 1379–1388, 2004.
  • M. Kronenberg, Toward an understanding of NKT cell biology: Progress and paradoxes, Annu. Rev. Immunol., 26: 877–900, 2005.
  • M.T. Wilson, A.K. Singh, and L. Van Kaer, Immunotherapy with ligands of natural killer T cells, Trends Mol. Med., 8: 225–231, 2002.
  • T.L. Delovitch and S.B. Wilson, Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity, Nat. Rev. Immunol., 3: 211–222, 2003.
  • L. Van Kaer, α-Galactosylceramide therapy for autoimmune diseases: Prospects and obstacles, Nat. Rev. Immunol., 5: 31–42, 2005.
  • V.V. Parekh, M.T. Wilson, and L. Van Kaer, iNKT-cell responses to glycolipids, Crit. Rev. Immunol., 25: 183–213, 2005.
  • A. Bendelac, M. Bonneville, and J.F. Kearney, Autoreactivity by design: Innate B and T lymphocytes, Nat. Rev. Immunol., 1: 177–186, 2001.
  • T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, H. Koseki, and M. Taniguchi, CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides, Science, 278: 1626–1629, 1997.
  • T. Natori, Y. Koezuka, and T. Higa, Agelasphins, novel a-galactosylceramides from the marine sponge Agelas mauritianus, Tetrahedron Lett., 34: 5591–5592, 1993.
  • D.I. Godfrey, J. McCluskey, and J. Rossjohn, CD1d antigen presentation: Treats for NKT cells, Nat. Immunol., 6: 754–756, 2005.
  • K. Miyamoto, S. Miyake, and T. Yamamura, A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells, Nature, 413: 531–534, 2001.
  • R.D. Goff, Y. Gao, J. Mattner, D. Zhou, N. Yin, C.I. Cantu, L. Teyton, A. Bendelac, and P.B. Savage, Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells, J. Am. Chem. Soc., 126: 13602–13603, 2004.
  • K.O. Yu, J.S. Im, A. Molano, Y. Dutronc, P.A. Illarionov, C. Forestier, N. Fujiwara, I. Arias, S. Miyake, T. Yamamura, Y.T. Chang, G.S. Besra, and S.A. Porcelli, Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides, Proc. Natl. Acad. Sci. U. S. A., 102: 3383–3388, 2005.
  • J. Schmieg, G. Yang, R.W. Franck, and M. Tsuji, Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide, J. Exp. Med., 198: 1631–1641, 2003.
  • J.E. Gumperz, C. Roy, A. Makowska, D. Lum, M. Sugita, T. Podrebarac, Y. Koezuka, S.A. Porcelli, S. Cardell, M.B. Brenner, and S.M. Behar, Murine CD1d-restricted T cell recognition of cellular lipids, Immunity, 12: 211–221, 2000.
  • V. Sriram, S. Cho, P. Li, P.W. O'Donnell, C. Dunn, K. Hayakawa, J.S. Blum, and R.R. Brutkiewicz, Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell lymphoma by natural killer T (NKT) cells, Proc. Natl. Acad. Sci. U. S. A., 99: 8197–8202, 2002.
  • D.Y. Wu, N.H. Segal, S. Sidobre, M. Kronenberg, and P.B. Chapman, Cross-presentation of disialoganglioside GD3 to natural killer T cells, J. Exp. Med., 198: 173–181, 2003.
  • K. Fischer, E. Scotet, M. Niemeyer, H. Koebernick, J. Zerrahn, S. Maillet, R. Hurwitz, M. Kursar, M. Bonneville, S.H.E. Kaufmann, and U.E. Schaible, Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells, Proc. Natl. Acad. Sci. U. S. A., 101: 10685–10690, 2004.
  • J.L. Amprey, J.S. Im, S.J. Turco, H.W. Murray, P.A. Illarionov, G.S. Besra, S.A. Porcelli, and G.F. Spath, A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan, J. Exp. Med., 200: 895–904, 2004.
  • E. Agea, A. Russano, O. Bistoni, R. Mannucci, I. Nicoletti, L. Corazzi, A.D. Postle, G. De Libero, S.A. Porcelli, and F. Spinozzi, Human CD1-restricted T cell recognition of lipids from pollens, J. Exp. Med., 202: 295–308, 2005.
  • D. Zhou, J. Mattner, C. Cantu, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y. Wu, T. Yamashita, S. Teneberg, D. Wang, R. Proia, S.B. Levery, P.B. Savage, L. Teyton, and A. Bendelac, Lysosomal glycosphingolipid recognition by NKT cells, Science, 306: 1786–1789, 2004.
  • J. Mattner, K.L. DeBord, N. Ismail, R.D. Goff, C.I. Cantu, D. Zhou, P. Saint-Mezard, V. Wang, Y. Gao, N. Yin, K. Hoebe, O. Schneewind, D. Walker, B. Buetler, L. Teyton, P.B. Savage, and A. Bendelac, Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections, Nature, 434: 525–529, 2005.
  • L. Van Kaer and S. Joyce, Innate immunity: NKT cells in the spotlight, Curr. Biol., 15: R429–R431, 2005.
  • M. Brigl, L. Bry, S.C. Kent, J.E. Gumperz, and M.B. Brenner, Mechanism of CD1d-restricted natural killer T cell activation during microbial infection, Nat. Immunol., 4: 1230–1237, 2003.
  • Y. Kinjo, D.Y. Wu, G. Kim, G.-W. Xing, M.A. Poles, D.D. Ho, M. Tsuji, K. Kawahara, C.-H. Wong, and M. Kronenberg, Recognition of bacterial glycosphingolipids by natural killer T cells, Nature, 434: 520–525, 2005.
  • V. Sriram, W. Du, J. Gervay-Hague, and R.R. Brutkiewicz, Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligand for NKT cells, Eur. J. Immunol., 35: 1692–1701, 2005.
  • G. Eberl and H.R. MacDonald, Rapid death and regeneration of NKT cells in anti-CD3epsilon- or IL-12-treated mice: A major role for bone marrow in NKT cell homeostasis, Immunity, 9: 345–353, 1998.
  • G. Eberl and H.R. MacDonald, Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells, Eur. J. Immunol., 30: 985–992, 2000.
  • A. Motsinger, D.W. Haas, A.K. Stanic, L. Van Kaer, S. Joyce, and D. Unutmaz, CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection, J. Exp. Med., 195: 869–879, 2002.
  • M.T. Wilson, C. Johansson, D. Olivares-Villagomez, A.K. Singh, A.K. Stanic, C.R. Wang, S. Joyce, M.J. Wick, and L. Van Kaer, The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion, Proc. Natl. Acad. Sci. U. S. A., 100: 10913–10918, 2003.
  • N.Y. Crowe, A.P. Uldrich, K. Kyparissoudis, K.J.L. Hammond, K. Hayakawa, S. Sidobre, R. Keating, M. Kronenberg, M.J. Smyth, and D.I. Godfrey, Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells, J. Immunol., 171: 4020–4027, 2003.
  • M. Harada, K.I. Seino, H. Wakao, S. Sakata, Y. Ishizuka, T. Ito, S. Kojo, T. Nakayama, and M. Taniguchi, Down-regulation of the invariant Va14 antigen receptor in NKT cells upon activation, Int. Immunol., 16: 241–247, 2004.
  • D.I. Godfrey, H.R. MacDonald, M. Kronenberg, M.J. Smyth, and L. Van Kaer, NKT cells: What's in a name? Nat. Rev. Immunol., 4: 231–237, 2004.
  • S.P. Berzins, M.J. Smyth, and D.I. Godfrey, Working with NKT cells—pitfalls and practicalities, Curr. Opin. Immunol., 17: 448–454, 2005.
  • G. Schonrich, U. Kalinke, F. Momburg, M. Malissen, A.M. Schmitt-Verhulst, B. Malissen, G.J. Hammerling, and B. Arnold, Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction, Cell, 65: 293–304, 1991.
  • V.V. Parekh, M.T. Wilson, D. Olivares-Villagomez, A.K. Singh, L. Wu, C.-R. Wang, S. Joyce, and L. Van Kaer, Glycolipid antigen induces long-term natural killer T cell anergy in mice, J. Clin. Invest., 115: 2572–2583, 2005.
  • K. Seino, M. Harada, and M. Taniguchi, NKT cells are relatively resistant to apoptosis, Trends Immunol., 25: 219–221, 2004.
  • M.C. Leite-de-Moraes, A. Herbelin, C. Gouarin, Y. Koezuka, E. Schneider, and M. Dy, Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes, J. Immunol., 165: 4367–4371, 2000.
  • J.A. Hobbs, S. Cho, T.J. Roberts, V. Sriram, J. Zhang, M. Xu, and R.R. Brutkiewicz, Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus, J. Virol., 75: 10746–10754, 2001.
  • K.A. Daniels, G. Devora, W.C. Lai, C.L. O'Donnell, M. Bennett, and R.M. Welsh, Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H, J. Exp. Med., 194: 29–44, 2001.
  • M. Emoto, Y. Emoto, and S.H. Kaufmann, Interleukin-4-producing CD4+NK1.1+TCR a/b intermediate liver lymphocytes are down-regulated by Listeria monocytogenes, Eur. J. Immunol., 25: 3321–3325, 1995.
  • A.C. Kirby, U. Yrlid, and M.J. Wick, The innate immune response differs in primary and secondary Salmonella infection, J. Immunol., 169: 4450–4459, 2002.
  • Y. Lin, T.J. Roberts, C.R. Wang, S. Cho, and R.R. Brutkiewicz, Long-term loss of canonical NKT cells following an acute virus infection, Eur. J. Immunol., 35: 879–889, 2005.
  • A.P. Ulrich, N.Y. Crowe, K. Kyparissoudis, D.G. Pellicci, Y. Zhan, A.M. Lew, P. Bouillet, A. Strasser, M.J. Smyth, and D.I. Godfrey, NKT cell stimulation with glycolipid antigen in vivo: Costimulation-dependent expansion, bim-dependent contraction, and hyporesponsiveness to further antigenic challenge, J. Immunol., 175: 3092–3101, 2005.
  • G. Giaccone, C.J.A. Punt, Y. Ando, R. Ruijter, N. Nishi, M. Peters, B.M.E. von Blomberg, R.J. Scheper, H.J.J. van der Vliet, A.J.M. van den eertwegh, M. Roelvink, J. Beijnen, H. Zwierzina, and H.M. Pinedo, A phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors, Clin. Cancer. Res., 8: 3702–3709, 2002.
  • M. Nieda, M. Okai, A. Tazbirkova, H. Lin, A. Yamauro, K. Ide, R. Abraham, T. Juji, D.J. Macfarlane, and A.J. Nicol, Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity, Blood, 103: 383–389, 2004.
  • A.K. Stanic, R. Shashidharamurthy, J.S. Bezbradica, N. Matsuki, Y. Yoshimura, S. Miyake, E.Y. Choi, T.D. Schell, L. Van Kaer, S.S. Tevethia, D.C. Roopenian, T. Yamamura, and S. Joyce, Another view of T cell antigen recognition: Cooperative engagement of glycolipid antigens by Va14Ja18 natural T (iNKT) cell receptor, J. Immunol., 171: 4539–4551, 2003.
  • V.V. Parekh, A.K. Singh, M.T. Wilson, D. Olivares-Villagomez, J.S. Bezbradica, H. Inazawa, H. Ehara, T. Sakai, I. Serizawa, L. Wu, C.R. Wang, S. Joyce, and L. Van Kaer, Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids, J. Immunol., 173: 3693–3706, 2004.
  • S.H. Park, T. Kyin, A. Bendelac, and C. Carnaud, The contribution of NKT cells, NK cells, and other γ-chain-dependent non-T non-B cells to IL-12-mediated rejection of tumors, J. Immunol., 170: 1197–1201, 2003.
  • M. Skold and S.M. Behar, The role of group 1 and group 2 CD1-restricted T cells in microbial immunity, Microbes Infect., 7: 544–551, 2005.
  • J.K. Sandberg, N. Bhardwaj, and D.F. Nixon, Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Vα24 NKT cell compartment, Eur. J. Immunol., 33: 588–596, 2003.
  • R.A. Campos, M. Szczepanik, A. Itakura, M. Akahira-Azuma, S. Sidobre, M. Kronenberg, and P.W. Askenase, Cutaneous immunization rapidly activates liver invariant Vα14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact hypersensitivity, J. Exp. Med., 198: 1785–1796, 2003.
  • N. Singh, S. Hong, D.C. Scherer, I. Serizawa, N. Burdin, M. Kronenberg, Y. Koezuka, and L. Van Kaer, Cutting edge: Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype, J. Immunol., 163: 2373–2377, 1999.
  • S. Fujii, K. Shimizu, M. Kronenberg, and R.M. Steinman, Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs, Nat. Immunol., 3: 867–874, 2002.
  • J.L. Matsuda, L. Gapin, J.L. Baron, S. Sidobre, D.B. Stetson, M. Mohrs, R.M. Locksley, and M. Kronenberg, Mouse Va14i natural killer T cells are resistant to cytokine polarization in vivo, Proc. Natl. Acad. Sci. U. S. A., 100: 8395–8400, 2003.
  • Y. Ikarashi, A. Iizuka, Y. Koshidaka, Y. Heike, Y. Takaue, M. Yoshida, M. Kronenberg, and H. Wakasugi, Phenotypical and functional alterations during the expansion phase of invariant Vα14 natural killer T (Vα14i NKT) cells in mice primed with α-galactosylceramide, Immunology, 116: 30–37, 2005.
  • R.H. Schwartz, T cell anergy, Annu. Rev. Immunol., 21: 305–334, 2003.
  • J.S. Bezbradica, A.K. Stanic, N. Matsuki, H. Bour-Jordan, J.A. Bluestone, J.W. Thomas, D. Unutmaz, L. Van Kaer, and S. Joyce, Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo, J. Immunol., 174: 4694–4705, 2005.
  • F. Macian, S.H. Im, F.J. Garcia-Cozar, and A. Rao, T-cell anergy, Curr. Opin. Immunol., 16: 209–216, 2004.
  • M.T. Wilson and L. Van Kaer, Natural killer T cells as targets for therapeutic intervention in autoimmune diseases, Curr. Pharm. Des., 9: 201–220, 2003.
  • A.K. Singh, M.T. Wilson, S. Hong, D. Olivares-Villagomez, C. Du, A.K. Stanic, S. Joyce, S. Sriram, Y. Koezuka, and L. Van Kaer, Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1801–1811, 2001.
  • M.J. Smyth, N.Y. Crowe, D.G. Pellicci, K. Kyparissoudis, J.M. Kelly, K. Takeda, H. Yagita, and D.I. Godfrey, Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide, Blood, 99: 1259–1266, 2002.
  • I. Toura, T. Kawano, Y. Akutsu, T. Nakayama, T. Ochiai, and M. Taniguchi, Cutting edge: Inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide, J. Immunol., 163: 2387–2391, 1999.
  • D.H. Chang, K. Osman, J. Connolly, A. Kukreja, J. Krasovsky, M. Pack, A. Hutchinson, M. Geller, N. Liu, R. Annable, J. Shay, K. Kirchhoff, N. Nishi, Y. Ando, K. Hayashi, H. Hassoun, R.M. Steinman, and M.V. Dhodapkar, Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactysylceramide loaded mature dendritic cells in cancer patients, J. Exp. Med., 201: 1503–1517, 2005.
  • M.T. Wilson and L. Van Kaer, Natural killer T cells as targets for therapeutic intervention in autoimmune diseases, Front. Med. Chem., 2: 451–484, 2005.
  • S. Hong, M.T. Wilson, I. Serizawa, L. Wu, N. Singh, O.V. Naidenko, T. Miura, T. Haba, D.C. Scherer, J. Wei, M. Kronenberg, Y. Koezuka, and L. Van Kaer, The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice, Nat. Med., 7: 1052–1056, 2001.
  • Y. Hayakawa, S.P. Berzins, N.Y. Crowe, D.I. Godfrey, and M.J. Smyth, Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors, Nat. Immunol., 5: 590–596, 2004.
  • J.-Q. Yang, V. Saxena, H. Xu, L. Van Kaer, C.R. Wang, and R.R. Singh, Repeated α-galactosylceramide administration results in expansion of Vα14 NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice, J. Immunol., 171: 4439–4446, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.