253
Views
55
CrossRef citations to date
0
Altmetric
Original

Invariant NKT Cells and Tolerance

&
Pages 95-119 | Published online: 03 Aug 2009

REFERENCES

  • M. Emoto and S.H. Kaufmann, Liver NKT cells: An account of heterogeneity, Trends Immunol., 24: 364–369, 2003.
  • A. Bendelac, M.N. Rivera, S.H. Park, and J.H. Roark, Mouse CD1-specific NK1 T cells: Development, specificity, and function, Annu. Rev. Immunol., 15: 535–562, 1997.
  • M. Emoto, Y. Emoto, and S.H.E. Kaufmann, Interleukin-4-producing CD4+ NK1.1+ TCRα/β intermediate liver lymphocytes are down-regulated by Listeria monocytogenes, Eur. J. Immunol., 25: 3321–3325, 1995.
  • M. Emoto, Y. Emoto, and S.H.E. Kaufmann, IL-4 producing CD4+ TCRαβint liver lymphocytes: Influence of thymus, β2-microglobulin and NK1.1 expression, Int. Immunol., 7(11): 1729–1739, 1995.
  • S.K. Mendiratta, W.D. Martin, S. Hong, A. Boesteanu, S. Joyce, and L. Van Kaer, CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity, 6: 469–477, 1997.
  • D.I. Godfrey, J. McCluskey, and J. Rossjohn, CD1d antigen presentation: Treats for NKT cells, Nat. Immunol., 6: 754–756, 2005.
  • V.V. Parekh, M.T. Wilson, and L. Van Kaer, iNKT-cell responses to glycolipids, Crit. Rev. Immunol., 25: 183–213, 2005.
  • D. Zhou, J. Mattner, and C. Cantu, 3rd, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y.P. Wu, T. Yamashita, S. Teneberg, D. Wang, R.L. Proia, S.B. Levery, P.B. Savage, L. Teyton, and A. Bendelac, Lysosomal glycosphingolipid recognition by NKT cells, Science, 306: 1786–1789, 2004.
  • D.M. Zajonc, C. Cantu, 3rd, J. Mattner, D. Zhou, P.B. Savage, A. Bendelac, I.A. Wilson, and L. Teyton, Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor, Nat. Immunol., 6: 810–818, 2005.
  • T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, H. Koseki, and M. Taniguchi, CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science, 278: 1626–1629, 1997.
  • A. Shimosaka, Role of NKT cells and alpha-galactosyl ceramide, Int. J. Hematol., 76 (Suppl 1): 277–279, 2002.
  • R. Nakagawa, I. Serizawa, K. Motoki, M. Sato, H. Ueno, R. Iijima, H. Nakamura, A. Shimosaka, and Y. Koezuka, Antitumor activity of alpha-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells, Oncol. Res., 12: 51–58, 2000.
  • R. Nakagawa, K. Motoki, H. Ueno, R. Iijima, H. Nakamura, E. Kobayashi, A. Shimosaka, and Y. Koezuka, Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000, Cancer Res., 58: 1998.
  • K. Sato, K. Ohtsuka, K. Hasegawa, S. Yamagiwa, H. Watanabe, H. Asakura, and T. Abo, Evidence for extrathymic generation of intermediate T cell receptor cells in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation, J. Exp. Med., 182: 759–767, 1995.
  • M.C. Coles and D.H. Raulet, NK1.1+T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+cells, J. Immunol., 164: 2412–2418, 2000.
  • K. Hammond, W. Cain, I. van Driel, and D. Godfrey, Three day neonatal thymectomy selectively depletes NK1.1+ T cells, Int. Immunol., 10: 1491–1499, 1998.
  • F. Tilloy, J.P. Di Santo, A. Bendelac, and O. Lantz, Thymic dependence of invariant Valpha14+ natural killer-T cell development, Eur. J. Immunol., 29:3313–3318, 1999.
  • A. Bendelac, N. Killeen, D.R. Littman, and R.H. Scwartz, A subset of CD4+ thymocytes selected by MHC class I molecule, Science, 263: 1774–1778, 1994.
  • S. Toyabe, S. Seki, T. Iiai, K. Takeda, K. Shirai, H. Watanabe, H. Hiraide, M. Uchiyama, and T. Abo, Requirement of IL-4 and liver NK1+T cells for concanavalin A-induced hepatic injury in mice, J. Immunol., 159: 1537–1542, 1997.
  • K. Takeda, Y. Hayakawa, L. Van Kaer, H. Matsuda, H. Yagita, and K. Okumura, Critical contribution of liver natural killer T cells to a murine model of hepatitis, Proc. Natl. Acad. Sci. U. S. A., 97: 5498–5503, 2000.
  • Y. Kaneko, M. Harada, T. Kawano, M. Yamashita, Y. Shibata, F. Gejyo, T. Nakayama, and M. Taniguchi, Augmentation of Vα14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis, J. Exp. Med., 191: 105–114, 2000.
  • H. Louis, A. Le Moine, V. Flamand, N. Nagy, E. Quertinmont, F. Paulart, D. Abramowicz, O. Le Moine, M. Goldman, and J. Deviere, Critical role of interleukin 5 and eosinophils in concanavalin A-induced hepatitis in mice, Gastroenterology, 122: 2001–2010, 2002.
  • O. Akbari, P. Stock, E. Meyer, M. Kronenberg, S. Sidobre, T. Nakayama, M. Taniguchi, M.J. Grusby, R.H. DeKruyff, and D.T. Umetsu, Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity, Nat. Med., 9: 582–588, 2003.
  • K.-H. Sonoda, M. Exley, S. Snapper, S. Balk, and J. Stein-Streilein, CD1 reactive NKT cells are required for development of systemic tolerance through an immune privileged site, J. Exp. Med., 190: 1215–1225, 1999.
  • D. Zeng, D. Lewis, S. Dejbakhsh-Jones, F. Lan, M. Garcia-Ojeda, R. Sibley, and S. Strober, Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease, J. Exp. Med., 189: 1073–1081, 1999.
  • H.J. Kaplan and J.W. Streilein, Do immunological privileged sites require a functioning spleen? Nature, 251: 553–554, 1974.
  • H.J. Kaplan, J.W. Streilein, and T.R. Stevens, Transplantation immunology of the anterior chamber of the eye. II. Immune response to allogeneic cells, J. Immunol., 118: 809–814, 1975.
  • J. Niederkorn, J.W. Streilein, and J.A. Shadduck, Deviant immune responses to allogeneic tumors injected intracamerally and subcutaneously in mice, Invest. Ohthalmol. Vis. Sci., 20: 355–363, 1980.
  • K.H. Sonoda and J. Stein-Streilein, Ocular immune privilege and CD1d-reactive natural killer T cells. Cornea, 21: S33–38, 2002.
  • J. Stein-Streilein and J.W. Streilein, Anterior chamber associated immune deviation (ACAID); regulation, biological relevance, and implications for therapy, Int. Rev. Immunol., 21: 123–152, 2002.
  • J.W. Streilein, Ocular immune privilege: therapeutic opportunities from an experiment of nature, Nat. Rev. Immunol., 3: 878–889, 2003.
  • J.W. Streilein and J.Y. Niederkorn, Characterization of the suppressor cell(s) responsible for anterior chamber-associated immune deviation (ACAID) induced in BALB/c mice by P815 cells, J. Immunol., 134: 1381–1387, 1985.
  • G.A. Wilbanks and J.W. Streilein, Studies on the induction of anterior chamber-associated immune deviation (ACAID). I. Evidence that an antigen-specific, ACAID-inducing, cell-associated signal exists in the peripheral blood, J. Immunol., 146: 2610–2617, 1991.
  • G.A. Wilbanks, M. Mammolenti, and J. Streilein, Studies on the induction of anterior chamber associated immune deviation (ACAID). II. Eye derived cells participate in gerating blood-borne signals that induce ACAID, J. Immunol., 146: 3018–3024, 1991.
  • G.A. Wilbanks, M. Mammolenti, and J.W. Streilein, Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-beta, Eur. J. Immunol., 22: 165–173, 1992.
  • D.E. Faunce, K.-H. Sonoda, and J. Stein-Streilein, MIP-2 recruits NKT cells to the spleen during tolerance induction, J. Immunol., 166: 313–321, 2001.
  • D.E. Faunce and J. Stein-Streilein, NKT cell-derived RANTES recruits APCs and CD8+ T cells to the spleen during the generation of regulatory T cells in tolerance, J. Immunol., 169: 31–38, 2002.
  • K.-H. Sonoda, D.E. Faunce, M. Taniguchi, M. Exley, S. Balk, and J. Stein-Streilein, NKT cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance, J. Immunol., 166: 42–50, 2001.
  • J. Stein-Streilein, K.-H. Sonoda, D. Faunce, and J. Zhang-Hoover, Regulation of adaptive immune responses by innate cells expressing NK markers and antigen-transporting macrophages, J. Leukoc. Biol., 67: 488–494, 2000.
  • S. Masli, B. Turpie, and J.W. Streilein, Thrombospondin orchestrates the tolerance-promoting properties of TGF{beta}-treated antigen-presenting cells. Int. Immunol., 18: 689–699, 2006.
  • T. Nakamura, K.H. Sonoda, D.E. Faunce, J. Gumperz, T. Yamamura, S. Miyake, and J. Stein-Streilein, CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune privileged site, J. Immunol., 171: 1266–1271, 2003.
  • T. Nakamura, A. Terajewicz, and J. Stein-Streilein, Mechanisms of peripheral tolerance following intracameral inoculation are independent of IL-13 or Stat 6, J. Immunol., 175: 2643–2646, 2005.
  • J.Y. Niederkorn, Immune privilege in the anterior chamber of the eye, Crit. Rev. Immunol., 22: 13–46, 2002.
  • K.-H. Sonoda, M. Taniguchi, and J. Stein-Streilein, Long-term survival of corneal allografts is dependent on intact CD1d-reactive NKT cells, J. Immunol., 168: 2028–2034, 2002.
  • F. Lan, D. Zeng, M. Higuchi, P. Huie, J.P. Higgins, and S. Strober, Predominance of NK1.1+TCRalphaß+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: “natural suppressor” cells, J. Immunol., 167: 2087–2096, 2001.
  • M. Higuchi, D. Zeng, J. Shizuru, J. Gworek, S. Dejbakhsh-Jones, M. Taniguchi, and S. Strober, Immune tolerance to combined organ and bone marrow transplants after fractionated lymphoid irradiation involves regulatory NK T cells and clonal deletion, J. Immunol., 169: 5564–5570, 2002.
  • F. Lan, D. Zeng, M. Higuchi, J.P. Higgins, and S. Strober, Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: The role of CD1-reactive natural killer T cells, Biol. Blood Marrow Transplant., 9: 355–363, 2003.
  • H. Li, J.Y. Niederkorn, S. Neelam, and H. Alizadeh, Downregulation of surviving expression enhances sensitivity of cultured uveal melanoma cells to cisplatin treatment, Exp. Eye Res., 2006.
  • Y. Ikehara, Y. Yasunami, S. Kodama, T. Maki, M. Nakano, T. Nakayama, M. Taniguchi, and S. Ikeda, CD4(+) Valpha 14 natural killer T cells are essential for acceptance of rat islet xenografts in mice, J. Clin. Invest., 105: 1761–1767, 2000.
  • K.K. Seino, K. Fukao, K. Muramoto, K. Yanagisawa, Y. Takada, T. Katuta, Y. Iwakura, L. Van Kaer, K. Takeda, T. Nakayama, M. Taniguchi, H. Bashuda, H. Yagita, and K. Okumura, Requirement for natural killer T (NKT) cells in the induction of allograft tolerance, Proc. Natl. Acad. Sci. U. S. A., 98: 2577–2581, 2001.
  • S.P. Cobbold, A. Jayasuriya, A. Nash, T.D. Prospero, and H. Waldmann, Therapy with monoclonal antibodies by elimination of t-cell subsets in vivo, Nature, 312: 548–551, 1984.
  • S.P. Cobbold, K.F. Nolan, L. Graca, R. Castejon, A. Le Moine, M. Frewin, S. Humm, E. Adams, S. Thompson, D. Zelenika, A. Paterson, S. Yates, P.J. Fairchild, and H. Waldmann, Regulatory T cells and dendritic cells in transplantation tolerance: Molecular markers and mechanisms, Immunol. Rev., 196: 109–124, 2003.
  • J. Ermann, P. Hoffmann, M. Edinger, S. Dutt, F.G. Blankenberg, J.P. Higgins, R.S. Negrin, C.G. Fathman, and S. Strober, Only the CD62L+subpopulation of CD4+CD25+regulatory T cells protects from lethal acute GVHD, Blood, 105: 2220–2226, 2005.
  • A.L. Cava, L.V. Kaer, and S. Fu Dong, CD4(+)CD25(+) Tregs and NKT cells: Regulators regulating regulators, Trends Immunol., 27(7): 322–327, 2006.
  • R. Liu, A. La Cava, X.F. Bai, Y. Jee, M. Price, D.I. Campagnolo, P. Christadoss, T.L. Vollmer, L. Van Kaer, and F.D. Shi, Cooperation of invariant NKT cells and CD4+CD25+T regulatory cells in the prevention of autoimmune myasthenia, J. Immunol., 175: 7898–7904, 2005.
  • W. Li, K. Carper, and J.D. Perkins, Enhancement of NKT cells and increase in regulatory T cells results in improved allograft survival, J. Surg. Res., 2006.
  • T.B. Tomasi, Jr., Oral tolerance. Transplantation, 29: 353–356, 1980.
  • S.J. Khoury, W.W. Hancock, and H.L. Weiner, Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain, J. Exp. Med., 176: 1355–1364, 1992.
  • H.J. Kim, S.J. Hwang, B.K. Kim, K.C. Jung, and D.H. Chung, NKT cells play critical roles in the induction of oral tolerance by inducing regulatory T cells producing IL-10 and transforming growth factor beta, and by clonally deleting antigen-specific T cells, Immunology, 118: 101–111, 2006.
  • S. Artik, K. Haarhuis, X. Wu, J. Begerow, and E. Gleichmann, Tolerance to nickel: Oral nickel administration induces a high frequency of anergic T cells with persistent suppressor activity, J. Immunol., 167: 6794–6803, 2001.
  • K. Roelofs-Haarhuis, X. Wu, M. Nowak, M. Fang, S. Artik, and E. Gleichmann, Infectious nickel tolerance: A reciprocal interplay of tolerogenic APCs and T suppressor cells that is driven by immunization, J. Immunol., 171: 2863–2872, 2003.
  • K. Roelofs-Haarhuis, X. Wu, and E. Gleichmann, Oral tolerance to nickel requires CD4+invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells, J. Immunol., 173: 1043–1050, 2004.
  • M. Nowak, F. Kopp, K. Roelofs-Haarhuis, X. Wu, and E. Gleichmann, Oral nickel tolerance: Fas ligand-expressing invariant NK T cells promote tolerance induction by eliciting apoptotic death of antigen-carrying, effete B cells, J. Immunol., 176: 4581–4589, 2006.
  • T.A. Ferguson, J. Herndon, B. Elzey, T.S. Griffith, S. Schoenberger, and D.R. Green, Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8+T cells produce active immune unresponsiveness, J. Immunol., 168: 5589–5595, 2002.
  • Y.N. Naumov, K.S. Bahjat, R. Gausling, R. Abraham, M.A. Exley, Y. Koezuka, S.B. Balk, J.L. Strominger, M. Clare-Salzer, and S.B. Wilson, Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets, Proc. Natl. Acad. Sci. U. S. A, 98: 13838–13843, 2001.
  • Y. Kaneko, M. Harada, T. Kawano, M. Yamashita, Y. Shibata, F. Gejyo, T. Nakayama, and M. Taniguchi, Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis, J. Exp. Med., 191: 105–114, 2000.
  • D.E. Faunce, K.H. Sonoda, and J. Stein-Streilein, MIP-2 recruits NKT cells to the spleen during tolerance induction, J. Immunol., 166: 313–321, 2001.
  • K.-H. Sonoda and J. Stein-Streilein, CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance, Eur. J. Immunol., 32: 848–857, 2002.
  • D.E. Faunce and J. Stein-Streilein, NKT cell-derived RANTES recruits APCs and CD8+T cells to the spleen during the generation of regulatory T cells in tolerance, J. Immunol., 169: 31–38, 2002.
  • J. Stein-Streilein, A privileged view of NKT cells and peripheral tolerance through the eye, Ocul. Immunol. Inflamm., 13: 111–117, 2005.
  • J.Y. Niederkorn, See no evil, hear no evil, do no evil: The lessons of immune privilege, Nat. Immunol., 7: 354–359, 2006.
  • A.G. Baxter, S.J. Kinder, K.J. Hammond, R. Scollay, and D.I. Godfrey, Association between alphabetaTCR+CD4−CD8− T-cell deficiency and IDDM in NOD/Lt mice, Diabetes, 46: 572–582, 1997.
  • S. Makino, K. Kunimoto, Y. Muraoka, Y. Mizushima, K. Katagiri, and Y. Tochino, Breeding of a non-obese, diabetic strain of mice, Jikken Dobutsu, 29: 1–13, 1980.
  • L.D. Poulton, M.J. Smyth, C.G. Hawke, P. Silveira, D. Shepherd, O.V. Naidenko, D.I. Godfrey, and A.G. Baxter, Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice, Int. Immunol., 13: 887–896, 2001.
  • J.M. Gombert, A. Herbelin, E. Tancrede-Bohin, M. Dy, C. Carnaud, and J.F. Bach, Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse, Eur. J. Immunol., 26: 2989–2998, 1996.
  • K.J.L. Hammond, L.D. Poulton, L.J. Palmisano, P.A. Silveira, D.I. Godfrey, and A.G. Baxter, Alpha/beta-T cell receptor (TCR)+CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10, J. Exp. Med., 187: 1047–1056, 1998.
  • V. Laloux, L. Beaudoin, D. Jeske, C. Carnaud, and A. Lehuen, NK T cell-induced protection against diabetes in Valpha14-Jalpha281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen, J. Immunol., 166: 3749–3756, 2001.
  • S. Hong, M.T. Wilson, I. Serizawa, L. Wu, N. Singh, O.V. Naidenko, T. Miura, T. Haba, D.C. Scherer, J. Wei M. Kronenberg, and L. Van Kaer, The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice, Nat. Med., 7: 1052–1056, 2001.
  • S. Sharif, G.A. Arreaza, P. Zucker, Q.S. Mi, J. Sondhi, O.V. Naidenko, M. Kronenberg, Y. Koezuka, T.L. Delovitch, J.M. Gombert, M. Leite-De-Moraes, C. Gouarin, R. Zhu, A. Hameg, T. Nakayama, M. Taniguchi, F. Lepault, A. Lehuen, J.F. Bach, and A. Herbelin, Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes, Nat. Med., 7: 1057–1062, 2001.
  • S.B. Wilson, S.C. Kent, K.T. Patton, T. Orban, R.A. Jackson, M. Exley, S. Porcelli, D.A. Schatz, M.A. Atkinson, S.P. Balk, J.L. Strominger, and D.A. Hafler, Extreme Th1 bias of invariant V□24J□Q T cells in type 1 diabetes [published erratum appears in Nature 1999;399 (6731): 84]. Nature, 391: 177–181, 1998.
  • F.D. Shi, M. Flodstrom, B. Balasa, S.H. Kim, K. Van Gunst, J.L. Strominger, S.B. Wilson, and N. Sarvetnick, Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse, Proc. Natl. Acad. Sci. U. S. A., 98: 6777–6782, 2001.
  • Y.G. Chen, C.M. Choisy-Rossi, T.M. Holl, H.D. Chapman, G.S. Besra, S.A. Porcelli, D.J. Shaffer, D. Roopenian, S.B. Wilson, and D.V. Serreze, Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes, J. Immunol., 174: 1196–1204, 2005.
  • L. Steinman, Myelin-specific CD8 T cells in the pathogenesis of experimental allergic encephalitis and multiple sclerosis, J. Exp. Med., 194: F27–F30, 2001.
  • L. Steinman, Multiple sclerosis: A two stage disease. Nat. Immunol., 2: 762–764, 2001.
  • T. Sumida, A. Sakamoto, H. Murata, Y. Makino, H. Takahashi, S. Yoshida, K. Nishioka, I. Iwamoto, and M. Taniguchi, Selective reduction of T cells bearing invariant V□24J□Q antigen receptor in patients with systemic sclerosis, J. Exp. Med., 182: 1163–1168, 1995.
  • S. Kojo, Y. Adachi, H. Keino, M. Taniguchi, and T. Sumida, Dysfunction of T cell receptor AV24AJ18+, BV11+double negative regulatory natural killer T cells in autoimmune diseases, Arthritis Rheum., 44: 1127–1138, 2001.
  • M. Araki, T. Kondo, J.E. Gumperz, M.B. Brenner, S. Miyake, and T. Yamamura, T h 2 bias of CD4+NKT cells derived from multiple sclerosis in remission, Int. Immunol., 15: 279–288, 2003.
  • S.L. van Dommelen, H.A. Tabarias, M.J. Smyth, and M.A. Degli-Esposti, Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells, J. Virol., 77: 1877–1884, 2003.
  • R. Furlan, A. Bergami, D. Cantarella, A. Brambilla, M. Taniguchi, P. Belladonna, G. Casorati, and G. Martino, Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35–55-induced EAE: Critical roles for administration route and IFN-gamma, Eur. J. Immunol., 33: 1830–1838, 2003.
  • J.S. Yang, L.-Y. Xu, Y.M. Huang, P.H. Van Der Meide, H. Link, and B.G. Xiao, Adherent dendritic cells expressing high levels of interleukin-10 and low levels of interleukin-12 induce antigen-specific tolerance to experimental autoimmune encephalomyelitis, Immunology, 101: 397–403, 2000.
  • A.K. Singh, M.T. Wilson, S. Hong, D. Olivares-Villagomez, C. Du, A.K. Stanic, S. Joyce, S. Sriram, Y. Koezuka, and L. Van Kaer, Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1801–1811, 2001.
  • E. Pal, T. Tabira, T. Kawano, M. Taniguchi, S. Miyake, and T. Yamamura, Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V alpha 14 NK T cells, J. Immunol., 166: 662–668, 2001.
  • K. Miyamoto, S. Miyake, and T. Yamamura, A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells, Nature, 413: 531–534, 2001.
  • L.T. Mars, V. Laloux, K. Goude, S. Desbois, A. Saoudi, L. Van Kaer, H. Lassmann, A. Herbelin, A. Lehuen, and R. Liblau, Cutting edge: V alpha 14-Jalpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice, J. Immunol., 168: 6007–6011, 2002.
  • A.W. Jahng, I. Maricic, B. Pedersen, N. Burdin, O. Naidenko, M. Kronenberg, Y. Koezuka, and V. Kumar, Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1789–1799, 2001.
  • D.E. Faunce, A. Terajewicz, and J. Stein-Streilein, Cutting edge: In vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis, J. Immunol., 172: 1991–1995, 2004.
  • F. Van de Keere and S. Tonegawa, CD4+ T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice, J. Exp. Med., 188: 1875–1882, 1998.
  • C.R. Berkers and H. Ovaa, Immunotherapeutic potential for ceramide-based activators of iNKT cells, Trends Pharmacol. Sci., 26: 252–257, 2005.
  • J. Schmieg, G. Yang, R.W. Franck, and M. Tsuji, Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-galactosylceramide, J. Exp. Med., 198: 1631–1641, 2003.
  • B. Cipriani, L. Chen, K. Hiromatsu, H. Knowles, C.S. Raine, L. Battistini, S.A. Porcelli, and C.F. Brosnan, Upregulation of group 1 CD1 antigen presenting molecules in guinea pigs with experimental autoimmune encephalomyelitis: an immunohistochemical study, Brain Pathol., 13: 1–9, 2003.
  • G. Pawelec, R. Solana, E. Remarque, and E. Mariani, Impact of aging on innate immunity, J. Leukoc. Biol., 64: 703–712, 1998.
  • R. Solana and G. Pawelec, Molecular and cellular basis of immunosenescence, Mech. Ageing Dev., 102: 115–129, 1998.
  • G. Pawelec, E. Remarque, Y. Barnett, and R. Solana, T cells and aging, Front Biosci., 3: d59–99, 1998.
  • A. Globerson and R.B. Effros, Ageing of lymphocytes and lymphocytes in the aged, Immunol. Today, 21: 515–521, 2000.
  • D.E. Faunce, J.L. Palmer, K.K. Paskowicz, P.L. Witte, and E.J. Kovacs, CD1d-restricted NKT cells contribute to the age-associated decline of T cell immunity, J. Immunol., 175: 3102–3109, 2005.
  • J.L. Matsuda, L. Gapin, J.L. Baron, S. Sidobre, D.B. Stetson, M. Mohrs, R.M. Locksley, and M. Kronenberg, Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo, Proc. Natl. Acad. Sci. U. S. A., 100: 8395–8400, 2003.
  • J. Zhang-Hoover, P. Finn, and J. Stein-Streilein, Modulation of ovalbumin-induced airway inflammation and hyperreactivity by tolerogenic APC, J. Immunol., 175: 7117–7124, 2005.
  • J. Zhang-Hoover and J. Stein-Streilein, Tolerogenic APC generate CD8+ T regulatory cells that modulate pulmonary interstitial fibrosis, J. Immunol., 172: 178–185, 2004.
  • K. Katagiri, J. Zhang-Hoover, J.S. Mo, J. Stein-Streilein, and J.W. Streilein, Using tolerance induced via the anterior chamber of the eye to inhibit Th2-dependent pulmonary pathology, J. Immunol., 169: 84–89, 2002.
  • S. Sharif, A. G.A., P. Zucker, Q.S. Mi, and T.L. Delovitch, Regulation of autoimmune disease by natural killer T cells, J. Mol. Med., 80: 290–300, 2002.
  • N.Y. Crowe, A.P. Uldrich, K. Kyparissoudis, K.J. Hammond, Y. Hayakawa, S. Sidobre, R. Keating, M. Kronenberg, M.J. Smyth, and D.I. Godfrey, Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells, J. Immunol., 171: 4020–4027, 2003.
  • R.M. Ndonye, D.P. Izmirian, M.F. Dunn, K.O. Yu, S.A. Porcelli, A. Khurana, M. Kronenberg, S.K. Richardson, and A.R. Howell, Synthesis and evaluation of sphinganine analogues of KRN7000 and OCH, J. Org. Chem., 70: 10260–10270, 2005.
  • M. Mizuno, M. Masumura, C. Tomi, A. Chiba, S. Oki, T. Yamamura, and S. Miyake, Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice, J. Autoimmun., 23: 293–300, 2004.
  • J.Q. Yang, T. Chun, H. Liu, S. Hong, H. Bui, L. Van Kaer, C.R. Wang, and R.R. Singh, CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice, Eur. J. Immunol., 34: 1723–1732, 2004.
  • E.E.S. Nieuwenhuis, T. Matsumoto, M. Exley, R.A. Schleipman, J. Glickman, D.T. Bailey, N. Corazza, S.P. Colgan, A.B. Onderdonk, and R.S. Blumberg, CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung, Nat. Med., 8: 588–593, 2002.
  • P.A. Sieling, D. Jullien, M. Dahlem, T.F. Tedder, T.H. Rea, R.L. Modlin, and S.A. Porcelli, CD1 expression by dendritic cells in human leprosy lesions: Correlation with effective host immunity, J. Immunol., 162: 1851–1858, 1999.
  • J.H. Roark, S.H. Park, J. Jayawardena, U. Kavita, M. Shannon, and A. Bendelac, CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells, J. Immunol, 160: 3121–3127, 1998.
  • J. Mattner, K.L. Debord, N. Ismail, R.D. Goff, C. Cantu, III, D. Zhou, P. Saint-Mezard, V. Wang, Y. Gao, N. Yin, K. Hoebe, O. Schneewind, D. Walker, B. Beutler, L. Teyton, P.B. Savage, and A. Bendelac, Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections, Nature, 434: 525–529, 2005.
  • G. De Libero and L. Mori, Recognition of lipid antigens by T cells, Nat. Rev. Immunol., 5: 485–496, 2005.
  • Z. Trobonjaca, F. Leithauser, P. Moller, R. Schirmbeck, and J. Reimann, Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells. J. Immunol., 167: 1413–1422, 2001.
  • H. Kitamura, K. Iwakabe, T. Yahata, S. Nishimura, A. Ohta, Y. Ohmi, M. Sato, K. Takeda, K. Okumura, L. Van L. Kaer, T. Kawano, M. Taniguchi, and T. Nishimura, The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells, J. Exp. Med., 189: 1121–1128, 1999.
  • Y. Hayakawa, K. Takeda, H. Tagita, L. Van Kaer, I. Saiki, and K. Okumura, Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways, J. Immunol., 166: 6012–6018, 2001.
  • E. Duvall, A.H. Wyllie, and R.G. Morris, Macrophage recognition of cells undergoing programmed cell death (apoptosis) Immunology, 56: 351–358, 1985.
  • K. Shortman and Y.J. Liu, Mouse and human dendritic cell subtypes, Nat. Rev. Immunol., 2: 151–161, 2002.
  • U. Boehm, T. Klamp, M. Groot, and J.C. Howard, Cellular responses to interferon-gamma, Annu. Rev. Immunol., 15: 749–795, 1997.
  • B.A. O'Brien, X. Geng, C.H. Orteu, Y. Huang, M. Ghoreishi, Y. Zhang, J.A. Bush, G. Li, D.T. Finegood, and J.P. Dutz, A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse, J. Autoimmun., 26: 104–115, 2006.
  • M. Skold, X. Xiong, P.A. Illarionov, G.S. Besra, and S.M. Behar, Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation, J. Immunol., 175: 3584–3593, 2005.
  • W. Xu, A. Roos, N. Schlagwein, A.M. Woltman, M.R. Daha, and C. van Kooten, IL-10-producing macrophages preferentially clear early apoptotic cells, Blood, 107: 4930–4937, 2006.
  • H.H. Lin, D.E. Faunce, M. Stacey, A. Terajewicz, T. Nakamura, J. Zhang-Hoover, M. Kerley, M.L. Mucenski, S. Gordon, and J. Stein-Streilein, The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance, J. Exp. Med., 201: 1615–1625, 2005.
  • K.H. Sonoda and J. Stein-Streilein, CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance, Eur. J. Immunol., 32: 848–857, 2002.
  • T.J. D'Orazio and J.Y. Niederkorn, Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID) Immunology, 95: 47–55, 1998.
  • S.H. Park, J.H. Roark, and A. Bendelac, Tissue-specific recognition of mouse CD1 molecules, J. Immunol., 160: 3128–3134, 1998.
  • F.D. Shi, H.G. Ljunggren, and N. Sarvetnick, Innate immunity and autoimmunity: From self-protection to self-destruction, Immunology, 22: 97–101, 2001.
  • S.B. Wilson, S.C. Kent, K.T. Patton, T. Orban, R.A. Jackson, M. Exley, S. Porcelli, D.A. Schatz, M.A. Atkinson, S.P. Balk, J.L. Strominger, and D.A. Hafler, Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes, Nature, 391: 177–181, 1998.
  • K. Oh, S. Kim, S.H. Park, H. Gu, D. Roopenian, D.H. Chung, Y.S. Kim, and D.S. Lee, Direct regulatory role of NKT cells in allogeneic graft survival is dependent on the quantitative strength of antigenicity, J. Immunol., 174: 2030–2036, 2005.
  • D. Zeng, D. Lewis, S. Dejbakhsh-Jones, F. Lan, M. Garcia-Ojeda, R. Sibley, and S. Strober, Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease, J. Exp. Med., 189: 1073–1081, 1999.
  • Y. Chung, W.S. Chang, S. Kim, and C.Y. Kang, NKT cell ligand alpha-galactosylceramide blocks the induction of oral tolerance by triggering dendritic cell maturation, Eur. J. Immunol., 34: 2471–2479, 2004.
  • T. De Smedt, M. Van Mechelen, G. De Becker, J. Urbain, O. Leo, and M. Moser, Effect of interleukin-10 on dendritic cell maturation and function, Eur. J. Immunol., 27: 1229–1235, 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.