115
Views
8
CrossRef citations to date
0
Altmetric
Original

Does the Developmental Status of Vα14i NKT Cells Play a Role in Disease?

&
Pages 5-29 | Published online: 03 Aug 2009

REFERENCES

  • M. Kronenberg, Toward an understanding of NKT cell biology: Progress and paradoxes, Annu. Rev. Immunol., 23: 877–900, 2005.
  • D.I. Godfrey, H.R. MacDonald, M. Kronenberg, M.J. Smyth, and L. Van Kaer, NKT cells: What's in a name? Nat. Rev. Immunol., 4: 231–237, 2004.
  • O. Lantz and A. Bendelac, An invariant T cell receptor chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4−8− T cells in mice and humans, J. Exp. Med., 180: 1097–1106, 1994.
  • P. Dellabona, E. Padovan, G. Casorati, M. Brockhaus, and A. Lanzavecchia, An invariant V24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD4−8− T cells, J. Exp. Med., 180: 1171–1176, 1994.
  • A. Bendelac, Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes, J. Exp. Med., 182: 2091–2096, 1995.
  • K. Benlagha, A. Weiss, A. Beavis, L. Teyton, and A. Bendelac, In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers, J. Exp. Med., 191: 1895–1903, 2000.
  • J.L. Matsuda, O.V. Naidenko, L. Gapin, T. Nakayama, M. Taniguchi, C.R. Wang, Y. Koezuka, and M. Kronenberg, Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers, J. Exp. Med., 192: 741–754, 2000.
  • M. Kronenberg and L. Gapin, The unconventional lifestyle of NKT cells, Nat. Rev. Immunol., 2: 557–568, 2002.
  • M. Brigl and M.B. Brenner, CD1: Antigen presentation and T cell function, Annu. Rev. Immunol., 22: 817–890, 2004.
  • D.I. Godfrey and M. Kronenberg, Going both ways: Immune regulation via CD1d-dependent NKT cells, J. Clin. Invest., 114: 1379–1388, 2004.
  • K.O. Yu, J.S. Im, A. Molano, Y. Dutronc, P.A. Illarionov, C. Forestier, N. Fujiwara, I. Arias, S. Miyake, T. Yamamura, Y.T. Chang, G.S. Besra, and S.A. Porcelli, Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides, Proc. Natl. Acad. Sci. U.S.A., 102: 3383–3388, 2005.
  • J.L. Matsuda, L. Gapin, J.L. Baron, S. Sidobre, D.B. Stetson, M. Mohrs, R.M. Locksley, and M. Kronenberg, Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo, Proc. Natl. Acad. Sci. U.S.A., 100: 8395–8400, 2003.
  • M.J. Smyth and D.I. Godfrey, NKT cells and tumor immunity—a double-edged sword, Nat. Immunol., 1: 459–460, 2000.
  • Y. Ikarashi, A. Iizuka, Y. Koshidaka, Y. Heike, Y. Takaue, M. Yoshida, M. Kronenberg, and H. Wakasugi, Phenotypical and functional alterations during the expansion phase of invariant Vα14 natural killer T (Vα14i NKT) cells in mice primed with α-galactosylceramide, Immunology, 116: 30–37, 2005.
  • D.B. Stetson, M. Mohrs, R.L. Reinhardt, K. Mohrs, J.L. Baron, Z.-E. Wang, L. Gapin, M. Kronenberg, and R.M. Locksley, Constitutive cytokine mRNAs mark natural killer (NK) and NKT cells poised for rapid effector function, J. Exp. Med., 198: 1069–1076, 2003.
  • S. Tanaka, J. Tsukada, W. Suzuki, K. Hayashi, K. Tanigaki, M. Tsuji, H. Inoue, T. Honjo, and M. Kubo, The interleukin-4 enhancer CNS-2 is regulated by notch signals and controls initial expression in NKT cells and memory-type CD4 T cells, Immunity, 24: 689–701, 2006.
  • J.L. Matsuda, Q. Zhang, R. Ndonye, S.K. Richardson, A.R. Howell, and L. Gapin, T-bet concomitantly controls migration, survival and effector functions during the development of Vα14i NKT cells, Blood, 107: 2797–2805, 2006.
  • J.L. Matsuda, L. Gapin, S. Sidobre, W.C. Kieper, J.T. Tan, R. Ceredig, C.D. Surh, and M. Kronenberg, Homeostasis of Vα14i NKT cells, Nat. Immunol., 3: 966–974, 2002.
  • M. Taniguchi and T. Nakayama, Recognition and function of Vα14 NKT cells, Semin. Immunol., 12: 543–550, 2000.
  • Y. Makino, N. Yamagata, T. Sasho, Y. Adachi, R. Kanno, H. Koseki, M. Kanno, and M. Taniguchi, Extrathymic development of Vα14+ T cells, J. Exp. Med., 177: 1399–1408, 1993.
  • D.G. Pellicci, K.J.L. Hammond, A.P. Uldrich, A. Baxter, M.J. Smyth, and D.I. Godfrey, NKT cells develop through a thymus-dependent NK1.1−CD4+ CD1d-dependent precursor stage, J. Exp. Med., 195: 835–844, 2002.
  • F. Tilloy, J.P. Di Santo, A. Bendelac, and O. Lantz, Thymic dependence of invariant Vα14+ natural killer-T cell development, Eur. J. Immunol., 29: 3313–3318, 1999.
  • A. Bendelac, M.N. Rivera, S.H. Park, and J.H. Roark, Mouse CD1-specific NK1 T cells: Development, specificity, and function, Annu. Rev. Immunol., 15: 535–562, 1997.
  • M. Shimamura, T. Ohteki, U. Beutner, and H.R. MacDonald, Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells, Eur. J. Immunol., 27: 1576–1579, 1997.
  • N. Yannoutsos, P. Wilson, W. Yu, H.T. Chen, A. Nussenzweig, H. Petrie, and M.C. Nussenzweig, The role of recombination activating gene (RAG) reinduction in thymocyte development in vivo, J. Exp. Med., 194: 471–480, 2001.
  • S.D. Thompson, J. Pelkonen, and J.L. Hurwitz, First T cell receptor α gene rearrangements during T cell ontogeny skew to the 5′ region of the J locus, J. Immunol., 145: 2347–2352, 1990.
  • N. Pasqual, M. Gallagher, C. Aude-Garcia, M. Loiodice, F. Thuderoz, J. Demongeot, R. Ceredig, P.N. Marche, and E. Jouvin-Marche, Quantitative and qualitative changes in V-J rearrangements during mouse thymocytes differentiation: Implication for a limited T cell receptor α chain repertoire, J. Exp. Med., 196: 1163–1173, 2002.
  • J. Guo, A. Hawwari, H. Li, Z. Sun, S.K. Mahanta, D.R. Littman, M.S. Krangel, and Y.W. He, Regulation of the TCR α repertoire by the survival window of CD4+CD8+ thymocytes, Nat. Immunol., 3: 469–476, 2002.
  • L. Gapin, J.L. Matsuda, C.D. Surh, and M. Kronenberg, NKT cells derive from double-positive thymocytes that are positively selected by CD1d, Nat. Immunol., 2: 971–978, 2001.
  • K. Benlagha, T. Kyin, A. Beavis, L. Teyton, and A. Bendelac, A thymic precursor to the NKT cell lineage, Science, 296: 553–555, 2002.
  • Y. Takahama, A. Kosugi, and A. Singer, Phenotype, ontogeny, and repertoire of CD4−CD8− T cell receptor αβ+ thymocytes. Variable influence of self-antigens on T cell receptor Vβ usage, J. Immunol., 146: 1134–1141, 1991.
  • T. Egawa, G. Eberl, I. Taniuchi, K. Benlagha, F. Geissmann, L. Hennighausen, A. Bendelac, and D.R. Littman, Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors, Immunity, 22: 705–716, 2005.
  • J.S. Bezbradica, T. Hill, A.K. Stanic, L. Van Kaer, and S. Joyce, Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny, Proc. Natl. Acad. Sci. U. S. A., 102: 5114–5119, 2005.
  • Z. Sun, D. Unutmaz, Y.R. Zou, M.J. Sunshine, A. Pierani, S. Brenner-Morton, R.E. Mebius, and D.R. Littman, Requirement for ROR γ in thymocyte survival and lymphoid organ development, Science, 288: 2369–2373, 2000.
  • T. Ohteki, A. Wilson, S. Verbeek, H.R. MacDonald, and H. Clevers, Selectively impaired development of intestinal T cell receptor γδ+ cells and liver CD4+ NK1+ T cell receptor αβ+ cells in T cell factor-1-deficient mice, Eur. J. Immunol., 26: 351–355, 1996.
  • F. Gounari, I. Aifantis, K. Khazaie, S. Hoeflinger, N. Harada, M.M. Taketo, and H. Von Boehmer, Somatic activation of βcatenin bypasses pre-TCR signaling and TCR selection in thymocyte development, Nat. Immunol., 2: 863–869, 2001.
  • V. Ioannidis, F. Beermann, H. Clevers, and W. Held, The βcatenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival, Nat. Immunol., 2: 691–697, 2001.
  • T. Dao, D. Guo, A. Ploss, A. Stolzer, C. Saylor, T.E. Boursalian, J.S. Im, and D.B. Sant'Angelo, Development of CD1d-restricted NKT cells in the mouse thymus, Eur. J. Immunol., 34: 3542–3552, 2004.
  • T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, H. Koseki, and M. Taniguchi, CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides, Science, 278: 1626–1629, 1997.
  • S.T. Smiley, M.H. Kaplan, and M.J. Grusby, Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells, Science, 275: 977–979, 1997.
  • Y.H. Chen, N.M. Chiu, M. Mandal, N. Wang, and C.R. Wang, Impaired NK1+ T cell development and early IL-4 production in CD1- deficient mice, Immunity, 6: 459–467, 1997.
  • S.K. Mendiratta, W.D. Martin, S. Hong, A. Boesteanu, S. Joyce, and L. Van Kaer, CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4, Immunity, 6: 469–477, 1997.
  • Y.H. Chiu, S.H. Park, K. Benlagha, C. Forestier, J. Jayawardena-Wolf, P.B. Savage, L. Teyton, and A. Bendelac, Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d, Nat. Immunol., 3: 55–60, 2002.
  • D. Elewaut, A.P. Lawton, N.A. Nagarajan, E. Maverakis, A. Khurana, S. Honing, C.A. Benedict, E. Sercarz, O. Bakke, M. Kronenberg, and T.I. Prigozy, The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Vα14i NKT cells, J. Exp. Med., 198: 1133–1146, 2003.
  • Y. Sagiv, K. Hudspeth, J. Mattner, N. Schrantz, R.K. Stern, D. Zhou, P.B. Savage, L. Teyton, and A. Bendelac, Cutting edge: Impaired glycosphingolipid trafficking and NKT cell development in mice lacking Niemann-Pick type C1 protein, J. Immunol., 177: 26–30, 2006.
  • D. Zhou, C. Cantu, 3rd, Y. Sagiv, N. Schrantz, A.B. Kulkarni, X. Qi, D.J. Mahuran, C.R. Morales, G.A. Grabowski, K. Benlagha, P. Savage, A. Bendelac, and L. Teyton, Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins, Science, 303: 523–527, 2004.
  • A.K. Stanic, A.D. De Silva, J.J. Park, V. Sriram, S. Ichikawa, Y. Hirabyashi, K. Hayakawa, L. Van Kaer, R.R. Brutkiewicz, and S. Joyce, Defective presentation of the CD1d1-restricted natural Vα14Jα18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency, Proc. Natl. Acad. Sci. U. S. A., 100: 1849–1854, 2003.
  • D. Zhou, J. Mattner, C. Cantu, 3rd, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y.P. Wu, T. Yamashita, S. Teneberg, D. Wang, R.L. Proia, S.B. Levery, P.B. Savage, L. Teyton, and A. Bendelac, Lysosomal glycosphingolipid recognition by NKT cells, Science, 306: 1786–1789, 2004.
  • T.K. Starr, S.C. Jameson, and K.A. Hogquist, Positive and negative selection of T cells, Annu. Rev. Immunol., 21: 139–176, 2003.
  • A. Bendelac, M. Bonneville, and J.F. Kearney, Autoreactivity by design: Innate B and T lymphocytes, Nat. Rev. Immunol., 1: 177–186, 2001.
  • M.C. Coles and D.H. Raulet, NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+cells, J. Immunol., 164: 2412–2418, 2000.
  • C. Forestier, S.H. Park, D. Wei, K. Benlagha, L. Teyton, and A. Bendelac, T cell development in mice expressing CD1d directed by a classical MHC class II promoter, J. Immunol., 171: 4096–4104, 2003.
  • M.I. Zimmer, A. Colmone, K. Felio, H. Xu, A. Ma, and C.R. Wang, A cell-type specific CD1d expression program modulates invariant NKT cell development and function, J. Immunol., 176: 1421–1430, 2006.
  • D.G. Wei, H. Lee, S.H. Park, L. Beaudoin, L. Teyton, A. Lehuen, and A. Bendelac, Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes, J. Exp. Med., 202: 239–248, 2005.
  • J. Schumann, P. Pittoni, E. Tonti, H.R. Macdonald, P. Dellabona, and G. Casorati, Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of V 14i NKT cells, J. Immunol., 175: 7303–7310, 2005.
  • K. Nakagawa, K. Iwabuchi, K. Ogasawara, M. Ato, M. Kajiwara, H. Nishihori, C. Iwabuchi, H. Ishikura, R.A. Good, and K. Onoe, Generation of NK1.1+ T cell antigen receptor α/β+ thymocytes associated with intact thymic structure, Proc. Natl. Acad. Sci. U. S. A., 94: 2472–2477, 1997.
  • V. Sivakumar, K.J. Hammond, N. Howells, K. Pfeffer, and F. Weih, Differential requirement for Rel/nuclear factor kB family members in natural killer T cell development, J. Exp. Med., 197: 1613–1621, 2003.
  • K. Iizuka, D.D. Chaplin, Y. Wang, Q. Wu, L.E. Pegg, W.M. Yokoyama, and Y.X. Fu, Requirement for membrane lymphotoxin in natural killer cell development, Proc. Natl. Acad. Sci. U. S. A., 96: 6336–6340, 1999.
  • D. Elewaut, L. Brossay, S.M. Santee, O.V. Naidenko, N. Burdin, H. De Winter, J. Matsuda, C.F. Ware, H. Cheroutre, and M. Kronenberg, Membrane lymphotoxin is required for the development of different subpopulations of NK T cells, J. Immunol., 165: 671–679, 2000.
  • D. Elewaut, R.B. Shaikh, K.J. Hammond, H. De Winter, A.J. Leishman, S. Sidobre, O. Turovskaya, T.I. Prigozy, L. Ma, T.A. Banks, D. Lo, C.F. Ware, H. Cheroutre, and M. Kronenberg, NIK-dependent RelB activation defines a unique signaling pathway for the development of Vα14i NKT cells, J. Exp. Med., 197: 1623–1633, 2003.
  • M. Schmidt-Supprian, J. Tian, E.P. Grant, M. Pasparakis, R. Maehr, H. Ovaa, H.L. Ploegh, A.J. Coyle, and K. Rajewsky, Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation, Proc. Natl. Acad. Sci. U. S. A., 101: 4566–4571, 2004.
  • Y. Kunisaki, Y. Tanaka, T. Sanui, A. Inayoshi, M. Noda, T. Nakayama, M. Harada, M. Taniguchi, T. Sasazuki, and Y. Fukui, DOCK2 is required in T cell precursors for development of Vα14 NK T cells, J. Immunol., 176: 4640–4645, 2006.
  • P. Gadue, N. Morton, and P.L. Stein, The Src family tyrosine kinase Fyn regulates natural killer T cell development, J. Exp. Med., 190: 1189–1196, 1999.
  • G. Eberl, B. Lowin-Kropf, and H.R. MacDonald, Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice, J. Immunol., 163: 4091–4094, 1999.
  • B. Pasquier, L. Yin, M.C. Fondaneche, F. Relouzat, C. Bloch-Queyrat, N. Lambert, A. Fischer, G. de Saint-Basile, and S. Latour, Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product, J. Exp. Med., 201: 695–701, 2005.
  • B. Chung, A. Aoukaty, J. Dutz, C. Terhorst, and R. Tan, Cutting edge: Signaling lymphocytic activation molecule-associated protein controls NKT cell functions, J. Immunol., 174: 3153–3157, 2005.
  • K.E. Nichols, J. Hom, S.-Y. Gong, A. Ganguly, C.S. Ma, J.L. Cannons, S.G. Tangye, P.L. Schwartzberg, G.A. Koretzky, and P.L. Stein, Regulation of NKT cell development by SAP, the protein defective in XLP, Nat. Med., 11: 340–345, 2005.
  • K.E. Nichols, C.S. Ma, J.L. Cannons, P.L. Schwartzberg, and S.G. Tangye, Molecular and cellular pathogenesis of X-linked lymphoproliferative disease, Immunol. Rev., 203: 180–199, 2005.
  • A. Veillette, M.E. Cruz-Munoz, and M.C. Zhong, SLAM family receptors and SAP-related adaptors: Matters arising, Trends Immunol., 27: 228–234, 2006.
  • D.B. Graham, M.P. Bell, M.M. McCausland, C.J. Huntoon, J. van Deursen, W.A. Faubion, S. Crotty, and D.J. McKean, Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with SLAM- and SAP-deficient mice, J. Immunol., 176: 291–300, 2006.
  • K. Benlagha, D.G. Wei, J. Veiga, L. Teyton, and A. Bendelac, Characterization of the early stages of thymic NKT cell development, J. Exp. Med., 202: 485–492, 2005.
  • A. Bendelac, P. Matzinger, R.A. Seder, W.E. Paul, and R.H. Schwartz, Activation events during thymic selection, J. Exp. Med., 175: 731–742, 1992.
  • P. Gadue and P.L. Stein, NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation, J. Immunol., 169: 2397–2406, 2002.
  • S.P. Berzins, F.W. McNab, C.M. Jones, M.J. Smyth, and D.I. Godfrey, Long-term retention of mature NK1.1+ NKT cells in the thymus, J. Immunol., 176: 4059–4065, 2006.
  • F.W. McNab, S.P. Berzins, D.G. Pellicci, K. Kyparissoudis, K. Field, M.J. Smyth, and D.I. Godfrey, The influence of CD1d in postselection NKT cell maturation and homeostasis, J. Immunol., 175: 3762–3768, 2005.
  • J.L. Matsuda and L. Gapin, Developmental program of mouse V 14i NKT cells, Curr. Opin. Immunol., 17: 122–130, 2005.
  • T. Ranson, C.A. Vosshenrich, E. Corcuff, O. Richard, V. Laloux, A. Lehuen, and J.P. Di Santo, IL-15 availability conditions homeostasis of peripheral natural killer T cells, Proc. Natl. Acad. Sci. U. S. A., 100: 2663–2668, 2003.
  • M.J. Townsend, A.S. Weinmann, J.L. Matsuda, R. Salomon, P.J. Farnham, C.A. Biron, L. Gapin, and L.H. Glimcher, T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells, Immunity, 20: 477–494, 2004.
  • A.K. Stanic, J.S. Bezbradica, J.J. Park, N. Matsuki, A.L. Mora, L. Van Kaer, M.R. Boothby, and S. Joyce, NF-κB controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes, J. Immunol., 172: 2265–2273, 2004.
  • H.D. Lacorazza, Y. Miyazaki, A. Di Cristofano, A. Deblasio, C. Hedvat, J. Zhang, C. Cordon-Cardo, S. Mao, P.P. Pandolfi, and S.D. Nimer, The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells, Immunity, 17: 437–449, 2002.
  • K.L. Williams, A.J. Zullo, M.H. Kaplan, R.R. Brutkiewicz, C.D. Deppmann, C. Vinson, and E.J. Taparowsky, BATF transgenic mice reveal a role for activator protein-1 in NKT cell development, J. Immunol., 170: 2417–2426, 2003.
  • A. Hameg, C. Gouarin, J.M. Gombert, S. Hong, L. Van Kaer, J.F. Bach, and A. Herbelin, IL-7 up-regulates IL-4 production by splenic NK1.1+ and NK1.1−MHC class I-like/CD1-dependent CD4+ T cells, J. Immunol., 162: 7067–7074, 1999.
  • A. Hameg, I. Apostolou, M. Leite-De-Moraes, J.M. Gombert, C. Garcia, Y. Koezuka, J.F. Bach, and A. Herbelin, A subset of NKT cells that lacks the NK1.1 marker, expresses CD1d molecules, and autopresents the α-galactosylceramide antigen, J. Immunol., 165: 4917–4926, 2000.
  • A.M. Moodycliffe, S. Maiti, and S.E. Ullrich, Splenic NK1.1−, TCR β intermediate CD4+ T cells exist in naive NK1.1 allelic positive and negative mice, with the capacity to rapidly secrete large amounts of IL-4 and IFN γ upon primary TCR stimulation, J. Immunol., 162: 5156–5163, 1999.
  • S.Y. Thomas, R. Hou, J.E. Boyson, T.K. Means, C. Hess, D.P. Olson, J.L. Strominger, M.B. Brenner, J.E. Gumperz, S.B. Wilson, and A.D. Luster, CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells, J. Immunol., 171: 2571–2580, 2003.
  • B. Johnston, C.H. Kim, D. Soler, M. Emoto, and E.C. Butcher, Differential chemokine responses and homing patterns of murine TCR β NKT cell subsets, J. Immunol., 171: 2960–2969, 2003.
  • M.K. Kennedy, M. Glaccum, S.N. Brown, E.A. Butz, J.L. Viney, M. Embers, N. Matsuki, K. Charrier, L. Sedger, C.R. Willis, K. Brasel, P.J. Morrissey, K. Stocking, J.C.L. Schuh, and J.J. Peshon, Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice, J. Exp. Med., 191: 771–780, 2000.
  • J.P. Lodolce, D.L. Boone, S. Chai, R.E. Swain, T. Dassopoulos, S. Trettin, and A. Ma, IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation, Immunity, 9: 669–676, 1998.
  • O. Lantz, L.I. Sharara, F. Tilloy, A. Andersson, and J.P. DiSanto, Lineage relationships and differentiation of natural killer (NK) T cells: Intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules, J. Exp. Med., 185: 1395–1401, 1997.
  • M. Stenstrom, M. Skold, A. Andersson, and S.L. Cardell, Natural killer T-cell populations in C57BL/6 and NK1.1 congenic BALB.NK mice-a novel thymic subset defined in BALB.NK mice, Immunology, 114: 336–345, 2005.
  • K.J. Hammond, D.G. Pellicci, L.D. Poulton, O.V. Naidenko, A.A. Scalzo, A.G. Baxter, and D.I. Godfrey, CD1d-restricted NKT cells: An interstrain comparison, J. Immunol., 167: 1164–1173, 2001.
  • J. Yagi, U. Dianzani, H. Kato, T. Okamoto, T. Katsurada, D. Buonfiglio, T. Miyoshi-Akiyama, and T. Uchiyama, Identification of a new type of invariant Vα14+ T cells and responsiveness to a superantigen, Yersinia pseudotuberculosis-derived mitogen, J. Immunol., 163: 3083–3091, 1999.
  • A.K. Singh, J.Q. Yang, V.V. Parekh, J. Wei, C.R. Wang, S. Joyce, R.R. Singh, and L. Van Kaer, The natural killer T cell ligand alpha-galactosylceramide prevents or promotes pristane-induced lupus in mice, Eur. J. Immunol., 35: 1143–1154, 2005.
  • P.T. Lee, K. Benlagha, L. Teyton, and A. Bendelac, Distinct functional lineages of human Vα24 natural killer T cells, J. Exp. Med., 195: 637–641, 2002.
  • J.E. Gumperz, S. Miyake, T. Yamamura, and M.B. Brenner, Functionally distinct subsets of CDd-restricted NKT cells revealed by CD1d tetramer staining, J. Exp. Med., 195: 625–636, 2002.
  • Z.Y. Wang, S. Kusam, V. Munugalavadla, R. Kapur, R.R. Brutkiewicz, and A.L. Dent, Regulation of Th2 cytokine expression in NKT cells: Unconventional use of Stat6, GATA-3, and NFAT2, J. Immunol., 176: 880–888, 2006.
  • N.Y. Crowe, J.M. Coquet, S.P. Berzins, K. Kyparissoudis, R. Keating, D.G. Pellicci, Y. Hayakawa, D.I. Godfrey, and M.J. Smyth, Differential antitumor immunity mediated by NKT cell subsets in vivo, J. Exp. Med., 202: 1279–1288, 2005.
  • M. Lisbonne, S. Diem, A. de Castro Keller, J. Lefort, L.M. Araujo, P. Hachem, J.M. Fourneau, S. Sidobre, M. Kronenberg, M. Taniguchi, P. Van Endert, M. Dy, P. Askenase, M. Russo, B.B. Vargaftig, A. Herbelin, and M.C. Leite-de-Moraes, Cutting edge: Invariant Vα14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model, J. Immunol., 171: 1637–1641, 2003.
  • O. Akbari, P. Stock, E. Meyer, M. Kronenberg, S. Sidobre, T. Nakayama, M. Taniguchi, M.J. Grusby, R.H. DeKruyff, and D.T. Umetsu, Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity, Nat. Med., 9: 582–588, 2003.
  • O. Akbari, J.L. Faul, E.G. Hoyte, G.J. Berry, J. Wahlstrom, M. Kronenberg, R.H. DeKruyff, and D.T. Umetsu, CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma, N. Engl. J. Med., 354: 1117–1129, 2006.
  • S.Y. Thomas, C.M. Lilly, and A.D. Luster, Invariant natural killer T cells in bronchial asthma, N. Engl. J. Med., 354: 2613–2616, author reply 2613–2616, 2006.
  • E.H. Meyer, S. Goya, O. Akbari, G.J. Berry, P.B. Savage, M. Kronenberg, T. Nakayama, R.H. DeKruyff, and D.T. Umetsu, Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells, Proc. Natl. Acad. Sci. U.S.A., 103: 2782–2787, 2006.
  • H. Matsuda, T. Suda, J. Sato, T. Nagata, Y. Koide, K. Chida, and H. Nakamura, αGalactosylceramide, a ligand of natural killer T cells, inhibits allergic airway inflammation, Am. J. Respir. Cell. Mol. Biol., 33: 22–31, 2005.
  • J.O. Kim, D.H. Kim, W.S. Chang, C. Hong, S.H. Park, S. Kim, and C.Y. Kang, Asthma is induced by intranasal coadministration of allergen and natural killer T-cell ligand in a mouse model, J. Allergy. Clin. Immunol., 114: 1332–1338, 2004.
  • S. Finotto, M.F. Neurath, J.N. Glickman, S. Qin, H.A. Lehr, F.H. Green, K. Ackerman, K. Haley, P.R. Galle, S.J. Szabo, J.M. Drazen, G.T. De Sanctis, and L.H. Glimcher, Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet, Science, 295: 336–338, 2002.
  • S. Finotto, M. Hausding, A. Doganci, J.H. Maxeiner, H.A. Lehr, C. Luft, P.R. Galle, and L.H. Glimcher, Asthmatic changes in mice lacking T-bet are mediated by IL-13, Int. Immunol., 17: 993–1007, 2005.
  • T. Kallinich, S. Schmidt, E. Hamelmann, A. Fischer, S. Qin, W. Luttmann, J.C. Virchow, and R.A. Kroczek, Chemokine-receptor expression on T cells in lung compartments of challenged asthmatic patients, Clin. Exp. Allergy, 35: 26–33, 2005.
  • Y. Sen, B. Yongyi, H. Yuling, X. Luokun, H. Li, X. Jie, D. Tao, Z. Gang, L. Junyan, H. Chunsong, X. Zhang, J. Youxin, G. Feili, J. Boquan, and T. Jinquan, Vα24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3+ T cells upon CD226 engagement, J. Immunol., 175: 4914–4926, 2005.
  • M.R. Sears, J.M. Greene, A.R. Willan, E.M. Wiecek, D.R. Taylor, E.M. Flannery, J.O. Cowan, G.P. Herbison, P.A. Silva, and R. Poulton, A longitudinal, population-based, cohort study of childhood asthma followed to adulthood, N. Engl. J. Med., 349: 1414–1422, 2003.
  • P. Pohunek, J.O. Warner, J. Turzikova, J. Kudrmann, and W.R. Roche, Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma, Pediatr. Allergy. Immunol., 16: 43–51, 2005.
  • E.W. Gelfand, A. Joetham, Z.H. Cui, A. Balhorn, K. Takeda, C. Taube, and A. Dakhama, Induction and maintenance of airway responsiveness to allergen challenge are determined at the age of initial sensitization, J. Immunol., 173: 1298–1306, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.