294
Views
44
CrossRef citations to date
0
Altmetric
Original

Regulation of Type 1 Diabetes by NKT Cells

, , &
Pages 49-72 | Published online: 03 Aug 2009

REFERENCES

  • R. Tisch and H. McDevitt, Insulin-dependent diabetes mellitus, Cell, 85: 291–297, 1996.
  • M.A. Atkinson and G.S. Eisenbarth, Type 1 diabetes: New perspectives on disease pathogenesis and treatment, Lancet, 358: 221–229, 2001.
  • L.M. Maier and L.S. Wicker, Genetic susceptibility to type 1 diabetes, Curr. Opin. Immunol., 17: 601–608, 2005.
  • M.S. Anderson and J.A. Bluestone. The NOD mouse: A model of immune dysregulation, Annu. Rev. Immunol., 23: 447–485, 2005.
  • B.O. Roep, M. Atkinson, and M. von Herrath, Opinion: Satisfaction (not) guaranteed: Re-evaluating the use of animal models of type 1 diabetes, Nat. Rev. Immunol., 4: 989–997, 2004.
  • J.D. Katz, B. Wang, K. Haskins, C. Benoist, and D. Mathis, Following a diabetogenic T cell from genesis through pathogenesis, Cell, 74: 1089–1100, 1993.
  • A. Gonzalez, I. Andre-Schmutz, C. Carnaud, D. Mathis, and C. Benoist, Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes, Nat. Immunol., 2: 1117–1125, 2001.
  • R. Yasunami and J.F. Bach, Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice, Eur. J. Immunol., 18: 481–484, 1988.
  • A. Bendelac, M.N. Rivera, S.H. Park, and J.H. Roark, Mouse CD1-specific NK1 T cells: development, specificity, and function, Annu. Rev. Immunol., 15: 535–562, 1997.
  • M. Brigl and M.B. Brenner, CD1: Antigen presentation and T cell function, Annu. Rev. Immunol., 22: 817–890, 2004.
  • M. Kronenberg and L. Gapin, The unconventional lifestyle of NKT cells, Nat. Rev. Immunol., 2: 557–568, 2002.
  • S.B. Wilson and T.L. Delovitch, Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity, Nat. Rev. Immunol., 3: 211–222, 2003.
  • D.I. Godfrey and M. Kronenberg, Going both ways: Immune regulation via CD1d-dependent NKT cells, J. Clin. Invest., 114: 1379–1388, 2004.
  • J.M. Gombert, A. Herbelin, E. Tancrede-Bohin, M. Dy, C. Carnaud, and J.F. Bach, Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse, Eur. J. Immunol., 26: 2989–2998, 1996.
  • A.G. Baxter, S.J. Kinder, K.J. Hammond, R. Scollay, and D.I. Godfrey, Association between αβTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice, Diabetes, 46: 572–582, 1997.
  • M.J. Wagner, S. Hussain, M. Mehan, J.M. Verdi, and T.L. Delovitch, A defect in lineage fate decision during fetal thymic invariant NKT cell development may regulate susceptibility to type 1 diabetes, J. Immunol., 174: 6764–6771, 2005.
  • A. Lehuen, O. Lantz, L. Beaudoin, V. Laloux, C. Carnaud, A. Bendelac, J.F. Bach, and R.C. Monteiro, Overexpression of natural killer T cells protects Vα14- Jα281 transgenic nonobese diabetic mice against diabetes, J. Exp. Med., 188: 1831–1839, 1998.
  • M. Falcone, B. Yeung, L. Tucker, E. Rodriguez, and N. Sarvetnick, A defect in interleukin 12-induced activation and interferon gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus, J. Exp. Med., 190: 963–972, 1999.
  • K.J. Hammond, L.D. Poulton, L.J. Palmisano, P.A. Silveira, D.I. Godfrey, and A.G. Baxter, α/β-T cell receptor (TCR) + CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10, J. Exp. Med., 187: 1047–1056, 1998.
  • F.D. Shi, M. Flodstrom, B. Balasa, S.H. Kim, K. Van Gunst, J.L. Strominger, S.B. Wilson, and N. Sarvetnick, Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse, Proc. Natl. Acad. Sci. U.S.A., 98: 6777–6782, 2001.
  • B. Wang, Y.B. Geng, and C.R. Wang, CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes, J. Exp. Med., 194: 313–320, 2001.
  • Y.N. Naumov, K.S. Bahjat, R. Gausling, R. Abraham, M.A. Exley, Y. Koezuka, S.B. Balk, J.L. Strominger, M. Clare-Salzer, and S.B. Wilson, Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets, Proc. Natl. Acad. Sci. U. S. A., 98: 13838–13843, 2001.
  • C. Carnaud, J.M. Gombert, O. Donnars, H.J. Garchon, and A. Herbelin, Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex, J. Immunol., 166: 2404–2411, 2001.
  • L.M. Esteban, T. Tsoutsman, M.A. Jordan, D. Roach, L.D. Poulton, A. Brooks, O.V. Naidenko, S. Sidobre, D.I. Godfrey, and A.G. Baxter, Genetic control of NKT cell numbers maps to major diabetes and lupus loci, J. Immunol., 171: 2873–2878, 2003.
  • S. Sharif, G.A. Arreaza, P. Zucker, Q.S. Mi, J. Sondhi, O.V. Naidenko, M. Kronenberg, Y. Koezuka, T.L. Delovitch, J.M. Gombert, M. Leite-De-Moraes, C. Gouarin, R. Zhu, A. Hameg, T. Nakayama, M. Taniguchi, F. Lepault, A. Lehuen, J.F. Bach, and A. Herbelin, Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes, Nat. Med., 7: 1057–1062, 2001.
  • S. Hong, M.T. Wilson, I. Serizawa, L. Wu, N. Singh, O.V. Naidenko, T. Miura, T. Haba, D.C. Scherer, J. Wei, M. Kronenberg, Y. Koezuka, and L. Van Kaer, The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice, Nat. Med., 7: 1052–1056, 2001.
  • J.S. Bezbradica, A.K. Stanic, N. Matsuki, H. Bour-Jordan, J.A. Bluestone, J.W. Thomas, D. Unutmaz, L. Van Kaer, and S. Joyce, Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo, J. Immunol., 174: 4696–4705, 2005.
  • Q.S. Mi, D. Ly, P. Zucker, M. McGarry, and T.L. Delovitch, Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells, Diabetes, 53: 1303–1310, 2004.
  • Y. Yasunami, S. Kojo, H. Kitamura, A. Toyofuku, M. Satoh, M. Nakano, K. Nabeyama, Y. Nakamura, N. Matsuoka, S. Ikeda, M. Tanaka, J. Ono, N. Nagata, O. Ohara, and M. Taniguchi, Vα14 NK T cell-triggered IFN-gamma production by Gr-1 + CD11b + cells mediates early graft loss of syngeneic transplanted islets, J. Exp. Med., 202: 913–918, 2005.
  • S. Oki, A. Chiba, T. Yamamura, and S. Miyake, The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells, J. Clin. Invest., 113: 1631–1640, 2004.
  • M. Mizuno, M. Masumura, C. Tomi, A. Chiba, S. Oki, T. Yamamura, and S. Miyake, Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice, J. Autoimmun., 23: 293–300, 2004.
  • M. Falcone, F. Facciotti, N. Ghidoli, P. Monti, S. Olivieri, L. Zaccagnino, E. Bonifacio, G. Casorati, F. Sanvito, and N. Sarvetnick, Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice, J. Immunol., 172: 5908–5916, 2004.
  • V. Laloux, L. Beaudoin, D. Jeske, C. Carnaud, and A. Lehuen, NK T Cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen, J. Immunol., 166: 3749–3756, 2001.
  • J.A. Cain, J.A. Smith, J.K. Ondr, B. Wang, and J.D. Katz, NKT cells and IFN-γ establish the regulatory environment for the control of diabetogenic T cells in the nonobese diabetic mouse, J. Immunol., 176: 1645–1654, 2006.
  • S. Hussain, M. Wagner, D. Ly, and T.L. Delovitch, Role of regulatory invariant CD1d-restricted natural killer T-cells in protection against type 1 diabetes, Immunol Res, 31: 177–188, 2005.
  • L. Beaudoin, V. Laloux, J. Novak, B. Lucas, and A. Lehuen, NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic β cells, Immunity, 17: 725–736, 2002.
  • J. Novak, L. Beaudoin, T. Griseri, and A. Lehuen, Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts, J. Immunol., 174: 1954–1961, 2005.
  • S. Sakaguchi, Naturally arising CD4 + regulatory t cells for immunologic self-tolerance and negative control of immune responses, Annu. Rev. Immunol., 22: 531–562, 2004.
  • M.S. Vincent, D.S. Leslie, J.E. Gumperz, X. Xiong, E.P. Grant, and M.B. Brenner, CD1-dependent dendritic cell instruction, Nat. Immunol., 3: 1163–1168, 2002.
  • G. Galli, S. Nuti, S. Tavarini, L. Galli-Stampino, C. De Lalla, G. Casorati, P. Dellabona, and S. Abrignani, CD1d-restricted help to B cells by human invariant natural killer T lymphocytes, J. Exp. Med., 197: 1051–1057, 2003.
  • M. Exley, J. Garcia, S.B. Wilson, F. Spada, D. Gerdes, S.M. Tahir, K.T. Patton, R.S. Blumberg, S. Porcelli, A. Chott, and S.P. Balk, CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes, Immunology, 100: 37–47, 2000.
  • L. Brossay, D. Jullien, S. Cardell, B.C. Sydora, N. Burdin, R.L. Modlin, and M. Kronenberg, Mouse CD1 is mainly expressed on hemopoietic-derived cells, J. Immunol., 159: 1216–1224, 1997.
  • D. Elewaut, L. Brossay, S.M. Santee, O.V. Naidenko, N. Burdin, H. De Winter, J. Matsuda, C.F. Ware, H. Cheroutre, and M. Kronenberg, Membrane lymphotoxin is required for the development of different subpopulations of NK T cells, J. Immunol., 165: 671–679, 2000.
  • B. Pasquier, L. Yin, M.C. Fondaneche, F. Relouzat, C. Bloch-Queyrat, N. Lambert, A. Fischer, G. de Saint-Basile, and S. Latour, Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product, J. Exp. Med., 201: 695–701, 2005.
  • K.E. Nichols, J. Hom, S.Y. Gong, A. Ganguly, C.S. Ma, J.L. Cannons, S.G. Tangye, P.L. Schwartzberg, G.A. Koretzky, and P.L. Stein, Regulation of NKT cell development by SAP, the protein defective in XLP, Nat. Med., 11: 340–345, 2005.
  • S. Read, S. Mauze, C. Asseman, A. Bean, R. Coffman, and F. Powrie, CD38 + CD45RB(low) CD4 + T cells: A population of T cells with immune regulatory activities in vitro, Eur. J. Immunol., 28: 3435–3447, 1998.
  • P. Bansal-Pakala, A.G. Jember, and M. Croft, Signaling through OX40 (CD134) breaks peripheral T-cell tolerance, Nat. Med., 7: 907–912, 2001.
  • H. Kitamura, K. Iwakabe, T. Yahata, S. Nishimura, A. Ohta, Y. Ohmi, M. Sato, K. Takeda, K. Okumura, L. Van Kaer, T. Kawano, M. Taniguchi, and T. Nishimura, The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells, J. Exp. Med., 189: 1121–1128, 1999.
  • S. Fujii, K. Shimizu, C. Smith, L. Bonifaz, and R.M. Steinman, Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein, J. Exp. Med., 198: 267–279, 2003.
  • S. Kojo, K. Seino, M. Harada, H. Watarai, H. Wakao, T. Uchida, T. Nakayama, and M. Taniguchi, Induction of regulatory properties in dendritic cells by Vα14 NKT cells, J. Immunol., 175: 3648–3655, 2005.
  • S. Oki, C. Tomi, T. Yamamura, and S. Miyake, Preferential T(h)2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo, Int. Immunol., 17: 1619–1629, 2005.
  • L. Cederbom, H. Hall, and F. Ivars, CD4 + CD25 + regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells, Eur. J. Immunol., 30: 1538–1543, 2000.
  • Y.G. Chen, C.M. Choisy-Rossi, T.M. Holl, H.D. Chapman, G.S. Besra, S.A. Porcelli, D.J. Shaffer, D. Roopenian, S.B. Wilson, and D.V. Serreze, Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes, J. Immunol., 174: 1196–1204, 2005.
  • E. Dahlen, G. Hedlund, and K. Dawe, Low CD86 expression in the nonobese diabetic mouse results in the impairment of both T cell activation and CTLA-4 up-regulation, J. Immunol., 164: 2444–2456, 2000.
  • M.L. Albert, M. Jegathesan, and R.B. Darnell, Dendritic cell maturation is required for the cross-tolerization of CD8 + T cells, Nat. Immunol., 2: 1010–1017, 2001.
  • K. Roelofs-Haarhuis, X. Wu, and E. Gleichmann, Oral tolerance to nickel requires CD4 + invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells, J. Immunol., 173: 1043–1050, 2004.
  • H.J. Kim, S.J. Hwang, B.K. Kim, K.C. Jung, and D.H. Chung, NKT cells play critical roles in the induction of oral tolerance by inducing regulatory T cells producing IL-10 and transforming growth factor β, and by clonally deleting antigen-specific T cells, Immunology, 118: 101–111, 2006.
  • K.H. Sonoda, M. Exley, S. Snapper, S.P. Balk, and J. Stein-Streilein, CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site, J. Exp. Med., 190: 1215–1226, 1999.
  • K.H. Sonoda, D.E. Faunce, M. Taniguchi, M. Exley, S. Balk, and J. Stein-Streilein, NK T cell-derived IL-10 is essential for the differentiation of antigen- specific T regulatory cells in systemic tolerance, J. Immunol., 166: 42–50, 2001.
  • D.E. Faunce and J. Stein-Streilein, NKT cell-derived RANTES recruits APCs and CD8 + T cells to the spleen during the generation of regulatory T cells in tolerance, J. Immunol., 169: 31–38, 2002.
  • S. Jiang, D.S. Game, D. Davies, G. Lombardi, and R.I. Lechler, Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4 + CD25 + regulatory T cells? Eur. J. Immunol., 35: 1193–1200, 2005.
  • R. Liu, A. La Cava, X.F. Bai, Y. Jee, M. Price, D.I. Campagnolo, P. Christadoss, T.L. Vollmer, L. Van Kaer, and F.D. Shi, Cooperation of invariant NKT cells and CD4 + CD25 + T regulatory cells in the prevention of autoimmune myasthenia, J. Immunol., 175: 7898–7904, 2005.
  • D. Ly, Q.-S. Mi, S. Hussain, and T. Delovitch, Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4 + CD25 + regulatory T cells, J. Immunol., 177: 3695–3704, 2006.
  • R.S. Liblau, F.S. Wong, L.T. Mars, and P. Santamaria, Autoreactive CD8 T cells in organ-specific autoimmunity: Emerging targets for therapeutic intervention, Immunity, 17: 1–6, 2002.
  • T. Griseri, L. Beaudoin, J. Novak, L.T. Mars, F. Lepault, R. Liblau, and A. Lehuen, Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells, J. Immunol., 175: 2091–2101, 2005.
  • R.T. Graser, T.P. DiLorenzo, F. Wang, G.J. Christianson, H.D. Chapman, D.C. Roopenian, S.G. Nathenson, and D.V. Serreze, Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions, J. Immunol., 164: 3913–3918, 2000.
  • M.A. Atkinson, M.A. Bowman, L. Campbell, B.L. Darrow, D.L. Kaufman, and N.K. Maclaren. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes, J. Clin. Invest., 94: 2125–2129, 1994.
  • B.O. Roep, H.S. Hiemstra, N.C. Schloot, R.R. De Vries, A. Chaudhuri, P.O. Behan, and J.W. Drijfhout. Molecular mimicry in type 1 diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not Coxsackie virus, Ann. N. Y. Acad. Sci., 958: 163–165, 2002.
  • J. Verdaguer, D. Schmidt, A. Amrani, B. Anderson, N. Averill, and P. Santamaria. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice, J. Exp. Med., 186: 1663–1676, 1997.
  • A.W. Jahng, I. Maricic, B. Pedersen, N. Burdin, O. Naidenko, M. Kronenberg, Y. Koezuka, and V. Kumar, Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1789–1799, 2001.
  • A.K. Singh, M.T. Wilson, S. Hong, D. Olivares-Villagomez, C. Du, A.K. Stanic, S. Joyce, S. Sriram, Y. Koezuka, and L. Van Kaer, Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1801–1811, 2001.
  • L.T. Mars, V. Laloux, K. Goude, S. Desbois, A. Saoudi, L. Van Kaer, H. Lassmann, A. Herbelin, A. Lehuen, and R.S. Liblau, Cutting edge: Vβ14-Jβ281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice, J. Immunol., 168: 6007–6011, 2002.
  • P.T. Lee, K. Benlagha, L. Teyton, and A. Bendelac, Distinct functional lineages of human V(α)24 natural killer T cells, J. Exp. Med., 195: 637–641, 2002.
  • J.E. Gumperz, S. Miyake, T. Yamamura, and M.B. Brenner, Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining, J. Exp. Med., 195: 625–636, 2002.
  • J.L. Matsuda, O.V. Naidenko, L. Gapin, T. Nakayama, M. Taniguchi, C.R. Wang, Y. Koezuka, and M. Kronenberg, Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers, J. Exp. Med., 192: 741–754, 2000.
  • K. Benlagha, A. Weiss, A. Beavis, L. Teyton, and A. Bendelac, In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers, J. Exp. Med., 191: 1895–1903, 2000.
  • M. Terabe, S. Matsui, N. Noben-Trauth, H. Chen, C. Watson, D.D. Donaldson, D.P. Carbone, W.E. Paul, and J.A. Berzofsky, NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway, Nat. Immunol., 1: 515–520, 2000.
  • M. Terabe, S. Matsui, J.M. Park, M. Mamura, N. Noben-Trauth, D.D. Donaldson, W. Chen, S.M. Wahl, S. Ledbetter, B. Pratt, J.J. Letterio, W.E. Paul, and J.A. Berzofsky, Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: Abrogation prevents tumor recurrence, J. Exp. Med., 198: 1741–1752, 2003.
  • N.Y. Crowe, J.M. Coquet, S.P. Berzins, K. Kyparissoudis, R. Keating, D.G. Pellicci, Y. Hayakawa, D.I. Godfrey, and M.J. Smyth, Differential antitumor immunity mediated by NKT cell subsets in vivo, J. Exp. Med., 202: 1279–1288, 2005.
  • V. Laloux, L. Beaudoin, C. Ronet, and A. Lehuen, Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes, J. Immunol., 168: 3251–3258, 2002.
  • S. Cardell, S. Tangri, S. Chan, M. Kronenberg, C. Benoist, and D. Mathis, CD1-restricted CD4 + T cells in major histocompatibility complex class II-deficient mice, J. Exp. Med., 182: 993–1004, 1995.
  • M. Stenstrom, M. Skold, A. Ericsson, L. Beaudoin, S. Sidobre, M. Kronenberg, A. Lehuen, and S. Cardell, Surface receptors identify mouse NK1.1 + T cell subsets distinguished by function and T cell receptor type, Eur. J. Immunol., 34: 56–65, 2004.
  • M. Skold, N.N. Faizunnessa, C.R. Wang, and S. Cardell, CD1d-specific NK1.1 + T cells with a transgenic variant TCR, J. Immunol., 165: 168–174, 2000.
  • N. Duarte, M. Stenstrom, S. Campino, M.L. Bergman, M. Lundholm, D. Holmberg, and S.L. Cardell, Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells, J. Immunol., 173: 3112–3118, 2004.
  • S.B. Wilson, S.C. Kent, K.T. Patton, T. Orban, R.A. Jackson, M. Exley, S. Porcelli, D.A. Schatz, M.A. Atkinson, S.P. Balk, J.L. Strominger, and D.A. Hafler, Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes, Nature, 391: 177–181, 1998.
  • S.B. Wilson, S.C. Kent, H.F. Horton, A.A. Hill, P.L. Bollyky, D.A. Hafler, J.L. Strominger, and M.C. Byrne, Multiple differences in gene expression in regulatory Vα 24Jα Q T cells from identical twins discordant for type I diabetes, Proc. Natl. Acad. Sci. U. S. A., 97: 7411–7416, 2000.
  • A. Kukreja, G. Cost, J. Marker, C. Zhang, Z. Sun, K. Lin-Su, S. Ten, M. Sanz, M. Exley, B. Wilson, S. Porcelli, and N. Maclaren, Multiple immuno-regulatory defects in type-1 diabetes, J. Clin. Invest., 109: 131–140, 2002.
  • P.T. Lee, A. Putnam, K. Benlagha, L. Teyton, P.A. Gottlieb, and A. Bendelac, Testing the NKT cell hypothesis of human IDDM pathogenesis, J. Clin. Invest., 110: 793–800, 2002.
  • Y. Oikawa, A. Shimada, S. Yamada, Y. Motohashi, Y. Nakagawa, J. Irie, T. Maruyama, and T. Saruta, High frequency of vα24(+) vβ11(+) T-cells observed in type 1 diabetes, Diabetes Care, 25: 1818–1823, 2002.
  • S.P. Berzins, K. Kyparissoudis, D.G. Pellicci, K.J. Hammond, S. Sidobre, A. Baxter, M.J. Smyth, M. Kronenberg, and D.I. Godfrey, Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: Implications for human studies, Immunol. Cell Biol., 82: 247–252, 2004.
  • S.C. Kent, Y. Chen, S.M. Clemmings, V. Viglietta, N.S. Kenyon, C. Ricordi, B. Hering, and D.A. Hafler, Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells, J. Immunol., 175: 4458–4464, 2005.
  • L.T. Mars, J. Novak, R.S. Liblau, and A. Lehuen, Therapeutic manipulation of iNKT cells in autoimmunity: Modes of action and potential risks, Trends Immunol., 25: 471–476, 2004.
  • O. Akbari, P. Stock, E. Meyer, M. Kronenberg, S. Sidobre, T. Nakayama, M. Taniguchi, M.J. Grusby, R.H. DeKruyff, and D.T. Umetsu, Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity, Nat. Med., 9: 582–588, 2003.
  • M. Terabe and J.A.c. Berzofsky, Immunoregulatory T cells in tumor immunity, Curr. Opin. Immunol., 16: 157–162, 2004.
  • A. Jahng, I. Maricic, C. Aguilera, S. Cardell, R.C. Halder, and V. Kumar, Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide, J. Exp. Med., 199: 947–957, 2004.
  • E. Pal, T. Tabira, T. Kawano, M. Taniguchi, S. Miyake, and T. Yamamura, Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα14 NK T cells, J. Immunol., 166: 662–668, 2001.
  • G. Giaccone, C.J. Punt, Y. Ando, R. Ruijter, N. Nishi, M. Peters, B.M. von Blomberg, R.J. Scheper, H.J. van der Vliet, A.J. van den Eertwegh, M. Roelvink, J. Beijnen, H. Zwierzina, and H.M. Pinedo, A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors, Clin. Cancer Res., 8: 3702–3709, 2002.
  • M. Nieda, M. Okai, A. Tazbirkova, H. Lin, A. Yamaura, K. Ide, R. Abraham, T. Juji, D.J. Macfarlane, and A.J. Nicol, Therapeutic activation of Vα24 + Vβ11 + NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity, Blood, 103: 383–389, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.