89
Views
11
CrossRef citations to date
0
Altmetric
Original

Therapeutic Potential of CD1d-Restricted Invariant Natural Killer T Cell–based Treatment for Autoimmune Diseases

&
Pages 73-94 | Published online: 03 Aug 2009

REFERENCES

  • L.S.K. Walker and A.K. Abbas, The enemy within: Keeping self-reactive T cells at bay in the periphery, Nat. Rev. Immunol., 2: 11–19, 2002.
  • C.C. Goodnow, J. Sprent, B. Fazekas de St. Groth, and C.G. Vinuesa, Cellular and genetic mechanism of self-tolerance and autoimmunity, Nature, 435: 590–597, 2005.
  • B. Kyewski and J. Derbinski, Self-representation is the thymus: An extended view, Nat. Rev. Immunol., 4: 688–698, 2004.
  • M. Kronenberg, Toward an understanding of NKT cell biology: Progress and paradoxes, Annu. Rev. Immunol., 26: 877–900, 2005.
  • S.B Wilson and T.L. Delovitch, Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity, Nat. Rev. Immunol., 3: 211–222, 2003.
  • J.E. Gumperz, S. Miyake, T. Yamamura, and M.B. Brenner, Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d etramer staining, J. Exp. Med., 195: 625–636, 2002.
  • L.T. Mars, J. Novak, R.S. Liblau, and A. Lehuen, Therapeutic manipulation of iNKT cells in autoimmunity: Modes of action and potential risks, Trends Immunol., 25: 471–476, 2004.
  • L.V. Kaer, α-Galactosylceramide therapy for autoimmune diseases: Prospects and obstacles, Nat. Rev. Immunol., 5: 31–42, 2005.
  • K.O.A. Yu and S.A. Porcelli, The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy, Immmunol. Lett., 100: 42–55, 2005.
  • S.L. Cardell, The natural killer T lymphocyte: A player in the complex regulation of autoimmune diabetes in non-obese diabetic mice, Clin. Exp. Immmunol., 143: 197–202, 2005.
  • O. Akbari, P. Stock, E. Meyer, M. Kronenberg, S. Sidobre, T. Nakayama, M. Taniguchi, M.J. Grusby, R.H. Dekruyff, and D.T. Umetsu, Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity, Nat. Med., 9: 582–588, 2003.
  • M. Lisbonne, S. Diem, A. de Castro Keller, J. Lefort, L.M. Araujo, P. Hachem, J.M. Fourneau, S. Sidobre, M. Kronenberg, M. Taniguchi, P. Van Endert M. Dy, P. Askenase, M. Russo, B.B. Vargafig, A. Herbelin, and M.C. Leite-de-Morase, Invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperactivity in an experimental asthma model, J. Immunol., 171: 1637–1641, 2003.
  • O. Akbari, J.L. Faul, E.G. Hoyte, G.J. Berry, J. Wahlstrom, M. Kronenberg, R.H. DeKruyff, and D.T. Umetsu, CD4 + invariant T-cell-receptor + natural killer T cells in bronchial asthma, N. Engl. J. Med., 354: 1117–1129, 2006.
  • Y. Nakai, K. Iwabuchi, S. Fujii, N. Ishimori, N. Dashtsoodol, K. Watano, T. Mishima, C. Iwabuchi, S. Tanaka, J.S. Bezbradica, T. Nakayama, M. Taniguchi, S. Miyake, T. Yamamura, A. Kitabatake, S. Joyce, L. Van Kaer, and K. Onoe, Natural killer T cells accelerate atherogenesis in mice, Blood, 104: 2051–2059, 2004.
  • E. Tupin, A. Nicoletti, R. Elhage, M. Rudling, H.G. Ljunggren, G.K. Hansson, and G.P. Berne, CD1d-dependent activation of NKT cells aggravates atherosclerosis, J. Exp. Med., 199: 417–422, 2004.
  • A. Chiba, S. Oki, K. Miyamoto, H. Hashimoto, T. Yamamura, and S. Miyake, Suppression of collagen-induced arthritis by natural killer activation with OCH, a sphingosine-truncated analog of α-galactosylceramide, Arthritis Rheum., 50: 305–313, 2004.
  • A. Chiba, S. Kaieda, S. Oki, T. Yamamura, and S. Miyake, The involvement of Vα14 natural killer T cells in the pathogenesis of murine models of arthritis, Arthritis Rheum., 52: 1941–1948, 2005.
  • Y. Ohnishi, A. Tsutsumi, D. Goto, S. Itoh, I. Matsumoto, M. Taniguchi, and T. Sumida, TCR Vα14 + natural killer T cell function and effector T cells in mice with collagen-induced arthritis, Clin. Exp. Immunol., 141: 47–53, 2005.
  • H.Y. Kim, H.J. Kim, H.S. Min, E.S. Park, S.H. Park, and D.H. Chung, NKT cells promote antibody-induced arthritis by suppressing transforming growth β1 production, J Exp. Med., 201: 41–47, 2005.
  • J. Mattner, K.L. Debord, N. Ismail, R.D. Goff, C. Cantu III, D. Zhou, P. Saint-Mezard, V. Wang, Y. Gao, N. Yin, K. Hoebe, O. Schneewind, D. Walker, B. Beuter, L. Teyton, P.B. Savage, and A. Bendelac, Exoenous and endogenous glycolipid antigens activate NKT cells during microbial infections, Nature, 434: 525–529, 2005.
  • Y. Kinjo, D. Wu, G. Kim, G.W. Xing, M.A. Poles, D.D. Ho, M. Suji, K. Kawahara, C.H. Won, and M. Kronenberg, Recognition of bacterial glycosphingolipids by natural killer T cells, Nature, 434: 520–525, 2005.
  • K. Fischer, E. Scotet, M. Niemeyer, H. Koebernick, J. Zerrahn, S. Maillet, R. Hurwitz, M. Kursar, M. Bonneville, S.H. Kaufmann, and U.E. Schaible, Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricgted T cells, Proc. Natl. Acad. Sci. U. S. A., 101: 10685–10690, 2004.
  • H.J. van Der Vliet, N. Nishi, T.D. de Gruijil, B.M. von Blomberg, A.J. van den Eertwegh, H.M. Pinedo, G. Giaccone, and R.J. Scheer, Human natural killer T cells acquire a memory-activated phenotype before birth, Blood, 95: 2440–2442, 2000.
  • A. D'Andrea, D. Goux, C. De Lalla, Y. Koezuka, D. Montagna, A. Moretta, P. Dellabona, G. Casorati, and S. Abrignani, Neonatal invariant Vα24+ NKT lymphocytes are activated memory cells, Eur. J. Immunol., 30: 1544–1550, 2000.
  • S.H. Park, K. Benlagha, D. Lee, E. Balish, and A. Bendelac, Unaltered phenotype, tissue distribution and function of Vα14 (+) NKT cells in germ-free mice, Eur. J. Immunol., 30: 620–625, 2000.
  • S. Joyce, A.S. Woods, J.W. Yewdell, J.R. Bennink, A.D. De Lilva, A. Boesteanu, S.P. Balk, R.J. Cotter, and R.R. Brutkiewicz, Ntural ligand of mouse CD1d1: Cellular glycosylphosphatidylinositol, Science, 279: 1541–1544, 1998.
  • J.E. Gumperz, C. Roy, A. Makowska, D. Lum, M. Sugita, T. Podrebarac, Y. Koezuka, S.A. Porcelli, S. Cardell, M.B. Brenner, S.M. Behar, Murine CD1d-restricted T cell recognition of cellular lipids, Immunity, 12: 211–221, 2000.
  • D. Zhou, J. Mattner, Cantu III, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y.P. Wu, T. Yamashita, S. Teneberg, D. Wang, R.L. Proia, S.B. Levery, P.B. Savage, L. Teyton, and A. Bendelac, Lysosomal glycosphingolipid recognition by NKT cells, Science, 306: 1786–1789, 2004.
  • T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, and H. Koseki, Taniguchi M CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides, Science, 278: 1626–1629, 1997.
  • L. Brossay, M. Chioda, N. Burdin, Y. Koezuka, G. Casorati, P. Dellabona, and M. Kronenberg, CD1d-mediated recognition of an a-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution, J. Exp. Med., 188: 1521–1528, 1998.
  • F.M. Spada, Y. Koezuka, and S.A. Porcelli, CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells, J. Exp. Med., 188: 1529–1534, 1998.
  • T. Yoshimoto and W.E. Paul, CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3, J. Exp. Med., 179: 1285–1295, 1994.
  • J.L. Matsuda, L. Gapin, J.L. Baron, S. Sidbre, D.B. Stetson, M. Mohrs, R.M. Locksley, and M. Kronenerg, Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo, Proc. Natl. Acad. Sci. U. S. A., 100: 8395–8400, 2003.
  • D.B. Stetson, M. Mohrs, R.L. Reinhardt, J.L. Baron, Z.E. Wang, L. Gapin, M. Kronenberg, and R.M. Locksley, Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function, J. Exp. Med., 198: 1069–1076, 2003.
  • J.T. Michael, A.S. Weinmann, J.L. Matsuda, R. Salomon, P.J. Farnham, C.A. Biron, L. Gapin, and L.H. Glimcher, T-bet regulates the terminal maturation and homeostasis of NK and Vα14 NKT cells, Immunity, 20: 477–494, 2004.
  • N.Y. Crowe, A.P. Uldrich, K. Kyparissoudis, K.J. Hammond, Y. Hayakawa, S. Sidobre, R. Keating, M. Kroneneberg, M.J. Smyth, and D.I. Godfrey, Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells, J. Immunol., 171: 4020–4027, 2003.
  • M.T. Wilson, C. Johansson, D. Olivares-Villagomez, A.K. Singh, A.K. Stanic, C.R. Wang, S. Joyce, M.J. Wick, and L. Van Kaer, Te response of natual killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion, Proc. Natl. Acad. Sci. U. S. A., 100: 10913–10918, 2003.
  • M. Harada, K. Seino, H. Wakao, S. Sakata, Y. Ishizuka, T. Ito, S. Kojo, T. Nakayama, and M. Taniguchi Down-regulation of the invariant Valpha14 antigen receptor in NKT cells upon activation, Int. Immunol., 16: 241–247, 2004.
  • C. Carnaud, D. Lee, O. Donnars, S.H. Park, A. Beavis, Y. Koeauka, and A. Bendelac, Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cell, J. Immunol., 163: 4647–4650, 1999.
  • H. Kitamura, K. Iwakabe, T. Yahata, S. Nishimura, A. Ohta, Y. Ohmi, M. Sato, K. Takeda, K. Okumura, L. Van Kaer, T. Kawano, M. Taniguchi, and T. Nishimura, The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells, J. Exp. Med., 189: 1121–1128, 1999.
  • S. Fujii, K. Shimizu, C. Smith, L. Bonifaz, and R.M. Steinman, Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered proten, J. Exp. Med., 198: 267–279, 2003.
  • J.D. Wesley, S.H. Robbins, S. Sidobre, M. Kronenberg, S. Terrizzi, and L. Brossay, Cutting edge: IFN-γ signaling to macrophages is required for optimal Vα14i NK T/NK cell cross-talk, J. Immunol., 174: 3864–3868, 2005.
  • H. Kitamura, A. Ohta, M. Sekimoto, M. Sato, K. Iwakabe, M. Nakui, T. Yahata H.K. Meng, T. Koda, S. Nishimura, T. Kawano, M. Taniguchi, and T. Nishijura, α-galactosylceramide induces early B-cell activation through IL-4 production by NKT cells, Cell. Immmunol., 199: 37–42, 2000.
  • K. Miyamoto, S. Miyake, and T.A. Yamamura, Synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th2 bias of natural killer T cells, Nature, 413: 531–534, 2001.
  • S. Oki, A. Chiba, T. Yamamura, and S. Miyake, The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells, J. Clin. Invest., 113: 1631–1640, 2004.
  • M. Koch, V.S. Stronge, D. Shepherd, S.D. Gadola, B. Mathew, G. Ritter, A.R. Fersht, G.S. Besra, R.R. Schmidt, E.Y. Jones, and V. Cerundolo, The crystal structure of human CD1d with and without alpha-galactosylceramide, Nat. Immunol., 6: 819–826, 2005.
  • M.A. Aronica, A. Mora, D.B. Mitchell, P.W. Finn, J.E. Johnson, J.R. Sheller, and M.R. Boothby, Preferential role for NF-kappa B/Rel signaling in the type 1 but not type 2 T cell-dependent immune response in vivo, J. Immunol., 163: 5116–5124, 1999.
  • B.A. Hilliard, N. Mason, L. Xu, J. Sun, S.E. Lamhamedi-Cherradi, H.C. Liou, C. Hunter, and Y.H. Chen, Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation, J. Clin. Invest., 110: 843–850, 2002.
  • W. Wang, W.F. Tam, C.C. Hughes, S. Rath, and R. Sen, Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation, Immunity, 6: 165–174, 1997.
  • O. Rott, E. Cash, and B. Fleischer, Phosphodiesterase inhibitor pentoxifylline, a selective suppressor of T helper type 1-but not type 2-associated lymphokine production, prevents induction of experimental autoimmune encephalomyelitis in Lewis rats, Eur. J. Immunol., 23: 1745–1751, 1993.
  • S. Feske, R. Draeger, H.H. Peter, K. Eichmann, and A. Rao, The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells, J. Immunol., 165: 297–305, 2000.
  • C.M. Porter and N.A. Clipstone, Sustained NFAT signaling promotes a Th1-like pattern of gene expression in primary murine CD4 + T cells, J. Immunol., 168: 4936–4945, 2002.
  • S. Oki, C. Tomi, T. Yamamura, and S. Miyake, Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo, Int. Immunol., 17: 1619–1629, 2005.
  • V. Parekh, A.K. Singh, M.T. Wilson, D. Olivares-Villagomez, J.S. Gezbradica, H. Inazawa, H. Ehara, T. Sakai, I. Serizawa, L. Wu, C.R. Wang, S. Joyce, and L. Van Kaer, Quantitative and qualitative differences in the in vivo response of NKT cells to distinct alpha- and beta-anomeric glycolipids, J. Immunol., 173: 3693–3706, 2004.
  • J.R. Ortaldo, H.A. Youg, R.T. Winkler-Pickett J. R. EW Bere, W.J. Murphy, and R.H. Wiltrout, Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides, J. Immunol., 172: 943–953, 2004.
  • E. Pal, T. Tabira, T. Kawano, M. Taniguchi, S. Miyake, and T. Yamamura, Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα 14 NK T cells, J. Immunol., 166: 662–668, 2001.
  • H. Kitamura, K. Iwakabe, T. Yahata, S. Nishimura, A. Ohta, Y. Ohmi, M. Sato, K. Takeda, K. Okumura, L. Van Kaer, T. Kawano, M. Taniguchi, and T. Nishimura, The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells, J. Exp. Med., 189: 1121–1128, 1999.
  • O. Schulz, A.D. Edwards, M. Schito, J. Aliberti, S. Manickasingham, A. Sher, and C. Reis e Sousa, CD40 treggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal, Immunity, 13: 453–462, 2000.
  • P.L. Vieira, E.C. de Jong, E.A. Wierenga, M.L. Kapsenberg, and P. Kalinski, Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction, J. Immunol., 164: 4507–4512, 2000.
  • M.P. Hayes, F.J. Murph, and P.R. Burd, Interferon-gamma-dependent inducible expression of the human interleukin-12 p35 gene in monocytes initiates from a TATA-containing promoter distinct from the CpG-rich promoter acive in Epstein-Barr virus-transformed lymphoblastoid cells, Blood, 91: 4645–4651, 1998.
  • X. Ma, J.M. Chow, G. Gri, G. Cara, F. Geroosa, S.F. Wolf, R. Dzialo, and G. Trnchier, The interleukin 12p40 gene promoter is primed by interferon gamma in monocytiv cells, J. Exp. Med., 183: 147–157, 1996.
  • R.D. Goff, Y. Gao, J. Mattner, D. Zhou, N. Yin, Cantu, CIII, L. Teyton, A. Bendelac, and P.B. Savage, Effects of lipid chain length in α-galactosylceramides on cytokine release by natural killer T cells, J. Am. Chem. Soc., 126: 13602–13603, 2004.
  • K.O. Yu, J.S. Im, A. Molano, Y. Dutronc, P.A. Illarionov, C. Forstier, N. Fujiwara, I. Aias, S. Miyake, T. Yamamura, Y.T. Chang, G.S. Besra, and S.A. Porcelli, Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides, Proc. Natl. Acad. Sci. U.S.A., 102: 3383–3388, 2005.
  • J. Schmieg, G. Yang, R.W. Franck, and M. Tsuji, Superior protection against malaria and melanoma metastases by a C-blycoside analogue of the natural killer T cell ligand α-galactosylceramide, J. Exp. Med., 198: 1631–1641, 2003.
  • L.M. Mars, V. Laloux, K. Goude, S. Desbois, A. Saoudi, L. Van Kaer, H. Lassmann, A. Herbelin, A. Lehuen, and R.S. Liblau, Vα14-Jα281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice, J. Immunol., 168: 6007–6011, 2002.
  • A. Teige, I. Teiga, S. Savasani, R. Bockermann, E. Mondoc, R. Holmdahl, and S. Issazadel-Navikas, CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis, J. Immunol., 172: 186–194 2004.
  • A.K. Singh, M.T. Wilson, S. Hong, D. Oliveres-Villagomez, C. Du, A.K. Stanic, S. Joyce, S. Siriam, Y. Koezka, and L. Van Kaer, Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1801–1811, 2001.
  • R. Furlan, A. Bergami, D. Cantarella, E. Brambilla, M. Taniguchi, P. Dellabona, G. Casorati, and G. Martino, Activation of invariant NKT cells by αGalCer administration protects mice from MOG35–55-induced EAE: Critical roles for administration route and IFN-γ Eur. J. Immunol., 33: 1830–1838, 2003.
  • AW. Jahng, I. Maricic, B. Pedersen, N. Burdin, and O. Naidenko, Activatin of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis, J. Exp. Med., 194: 1789–1799, 2001.
  • J.M. Gombert, A. Herbelin, E. Tancrede-Bohin, M. Dy, C. Carnaud, and J.F. Bach, Early quantitative and functional deficiency of NK1 + -like thymocytes in the NOD mouse, Eur. J. Immunol., 26: 2989–2998, 1996.
  • M. Falcone, B. Yeung, L. Tucker, E. Rodriguez, and N. Sarvetnick, A defect in interleukin 12-induced activation and interferon gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus J. Exp. Med., 190: 963–972, 1999.
  • D.I. Godfrey, S.J. Kinder, P. Silvera, and A.G. Baxter, Flow cytometric study of T cell development in NOD mice reveals a deficiency in alpha-beta TCR + CDR-CD8-thymocytes, J. Autoimmun., 10: 279–285, 1997.
  • L.D. Poulton, M.J. Smyth, C.G. Hawke, P. Silveira, D. Shepherd, O.V. Naidenko, D.I. Godfrey, and A.G. Baxter, Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice, Int. Immunol., 13: 887–896, 2001.
  • F.D. Shi, M. Flodstrom, B. Balasa, S.H. Kim, K. van Gunst, J.L. Strominger, S.B. Wilson, and N. Sarvetnick, Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse, Proc. Natl. Acad. Sci. U. S. A., 98: 6777–6782, 2001.
  • Y.N. Naumov, K.S. Bahjat, R. Gausling, R. Abraham, M.A. Exley, Y. Koezuka, S.B. Balk, J.L. Stominger, M. Clare-Salzer, and S.B. Wilson, Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets, Proc. Natl. Acad. Sci. U. S. A., 98: 13838–13843, 2001.
  • B. Wang, Y.-B. Geng, and C.-R. Wang, CD1-restrected NKT cells protect nonobese diabetic mice from developing diabetes, J. Exp. Med., 194: 313–320, 2001.
  • M. Falcone, F. Facciotti, N. Ghidoli, P. Monti, S. Olivieri, L. Zaccagnino, E. Bonifacio, G. Casorati, F. Sanvito, and N. Sarventrick, Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice, J. Immunol., 172: 5908–5916, 2004.
  • K.J.L. Hammond, L.D. Poulton, L.J. Almisano, P.A. Silveira, D.I. Godrey, and A.G. Bazter, α/β-T cell receptor (TCR)+ CD4−CD8− (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10, J. Exp. Med., 187: 1047–1056, 1998.
  • A. Lehuen, O. Lantz, L. Beaudoin, V. Laloux, C. Carnaud, A. Bendelac, J.-F. Bach, and R.C. Monteriro, Overexpression of natural killer T cells protects Vα14-Jα18 transgenic nonobese diabetic mice against diabetes, J. Exp. Med., 188: 1831–1839, 1998.
  • S. Hong, M.T. Wilson, I, Serizawa, L. Wu, N. Singh, O.V. Naidenko, T. Miura, T. Haba, D.C. Scherer, J. Wei, M. Kronenberg, Y. Koezuka, and L. Van Kaer, The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice, Nat. Med., 7: 1052–1056, 2001.
  • S. Sharif, G.A. Arreaza, P. Zucker, Q.-S. Mi, J. Sondhi, O.V. Naidenko, M. Kronenberg, Y. Koezuka, T.L. Delovitch, J.-M. Gombert, M. Leite-de-Moraes, C. Gouarin, R. Zhu, A. Hameg, T. Nakayama, M. Taniguchi, F. Lepault, A. Lehuen, J.-F. Bach, and A. Herbelin, Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes, Nat. Med., 7: 1057–1062, 2001.
  • M. Mizuno, M. Masumura, C. Tomi, A. Chiba, S. Oki, T. Yamamura, and S. Miyake, Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice, J. Autoimmun., 10: 279–285, 1997.
  • V. Laloux, L. Beaudoin, D. Jeske, C. Carnaud, and A. Lehuen, NKT cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen, J. Immunol., 166: 3749–3756, 2001.
  • L. Beaudoin, V. Laloux, J. Novak, B. Lucas, and A. Lehuen, NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells, Immunity, 17: 725–736, 2002.
  • J. Novak, L. Beaudoin, T. Griseri, and A. Lehuen, Inhibition of T cells differentiation into effectors by NKT cells requires cell contacts, J. Immunol., 174: 1954–1961, 2005.
  • Y.G. Chen, C.M. Choisy-Rossi, T.M. Holl, H.D. Champan, G.S. Besra, S.A. Porcelli, D.J. Shaffer, D. Roopenian, S.B. Wilson, and D.V. Serreze, Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes, J. Immunol., 174: 1196–1204, 2005.
  • A.S. Korganow, H. Ji, S. Mangialaio, V. Dchatelle, R. Pelanda, T. Martin, C. Degott, H. Kikutani, K. Rajewsky, J.L. Pasquali, C. Benoist, and D. Mathis, From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins, Immunity, 10: 451–461, 1999.
  • K. Terato, K.A. Hasty, R.A. Reife, M.A. Cremer, H. Kang, and J.M. Stuart, Induction of arthritis with monoclonal antibodies to collagen, J. Immunol., 148: 2103–2108, 1992.
  • J.Q. Yang, V. Saxena, H. Xu, L. van Kaer, C.-R. Wang, and R.R. Singh, Repeated α-galactosylceramide administration results in expansion of NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice, J. Immunol., 171: 4439–4446, 2003.
  • O.T.M. Chan, V. Paliwal, J.M. Mcniff, S.H. Park, A. Bendelac, and M.J. Schlomchik, Deficiency in β2-microglobulin, but not CD1, accelerates spontaneous lupus skin disease while inhibiting nephritis in MRL-Faslpr mice: An example of disease regulation at the organ level, J. Immunol., 167: 2985–2990, 2001.
  • J.-Q. Yang, V. Saxena, H. Xu, L. Van Kaer, C.-R. Wang, and R.R. Singh, Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis, J. Immunol., 171: 4439–4446, 2003.
  • A.K. Singh, J.Q. Yang, V.V. Parekh, J. Wei, C.R. Wang, S. Joyce, R.R. Singh, and L. van Kaer, The natural killer T cell ligand α-galactosylceramide prevents or promotes pristine-induced lupus in mice, Eur. J. Immunol., 35: 1143–1154, 2005.
  • S.R.M. Morshe, K. Mannoor, R.C. Halder, H. Kawamura, M. Bannai, H. Sekikawa, H. Watanabe, and T. Abo, Tissue-specific expansion of NTK and CD5+B cells at the onset of autoimmune disease in (NZB x NZW)F1 mice, Eur. J. Immunol., 32: 2551–2561, 2002.
  • C. Firestier, A. Molano, J.S. Im, Y. Dutronc, B. Diamond, A. Davidson, P.A. Illarionov, G.S. Besra, and S.A. Porcelli, Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White) F1 mice, J. Immunol., 175: 763–770, 2005.
  • D. Zeng, Y. Liu, S. Sidobre, M. Kronenberh, and S. Strober, Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus, J. Clin. Invest., 112: 1211–1222, 2003.
  • L.J. Saubermann, P. Beck, Y.P.D. Jong, R.S. Pitman, M.S. Ryan, H.S. Kim, M. Exley, S. Snapper, S.P. Balk, S.J. Hagen, O. Kanauchi, K. Motoki, T. Sakai, C. Terhorst, Y. Koezuka, D.K. Podolsky, and R.S. Blumerg, Activation o f natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice, Gastroenterology, 119: 119–128, 2000.
  • Y. Ueno, S. Tanaka, M. Sumi, S. Miyake, S. Tazuma, M. Taniguchi, T. Yamamura, and K. Chyayama, Single dose of OCH improges mucosal T helper type 1/T helper type 2 cytokine balance and prevents experimental colitis in the presence of Vα14 natural killer T cells in mice, Inflamm. Bowel Dis., 11: 35–41, 2005.
  • F. Heller, I.J. Fuss, E.E. Nieuwenhuis, R.S. Blumberg, and W. Strober, Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells, Immunity, 17: 629–38, 2002.
  • G. Giaccone, C.J. Punt, Y. Ando, T. Ruijter, N. Nishi, M. Peters, B.M. von Blomberg, R.J. Scheper, H.J. van der Vliet, A.J. van den Eertwegh, M. Roelvink, J. Beijnen, H. Zwierzina, and H.M. Pinedo, A phase I study of the natural killer T cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors, Clin. Cancer Res., 8: 3702–3709, 2002.
  • A. Ishikawa, S. Motohashi, E. Ishikawa, H. Fuchida, K. Higashino, M. Otsuji, T. Iizasa, T. Nakayama, M. Taniguchi, and T. Fujisawa, A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer, Clin. Cancer Res., 11: 1910–1917, 2005.
  • V.V. Parekh, M.T. Wilson, D. Olivares-Villagomez, A.K. Singh, L. Wu, C.R. Wang, S. Joyce, and L. Van Kaer, Glycolipid antigen induces long-term natural killer T cell anergy in mice, J. Clin. Invest., 115: 2572–2583, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.