71
Views
3
CrossRef citations to date
0
Altmetric
Special Topic: Leukemia and Lymphoma at the Interface between Cancer and Immunity

Transcription Factors as Therapeutic Targets in Lymphoid Malignancies

Pages 305-332 | Published online: 03 Aug 2009

REFERENCES

  • S.J. Korsmeyer, Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes, Annu. Rev. Immunol., 10: 785–807, 1992.
  • A.T. Look, Oncogenic transcription factors in the human acute leukemias, Science, 278: 1059–1064, 1997.
  • O. Bernard, P. Guglielmi, P. Jonveaux, D. Cherif, S. Gisselbrecht, M. Mauchauffe, R. Berger, C.J. Larsen, and D. Mathieu-Mahul, Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T-cell leukemias, Genes Chromosomes Cancer, 1: 194–208, 1990.
  • D.L. Saltman, J.D. Mellentin, S.D. Smith, and M.L. Cleary, Mapping of translocation breakpoints on the short arm of chromosome 19 in acute leukemias by in situ hybridization, Genes Chromosomes Cancer, 2: 259–265, 1990.
  • J.D. Mellentin, C. Murre, T.A. Donlon, P.S. McCaw, S.D. Smith, A.J. Carroll, M.E. McDonald, D. Baltimore, and M.L. Cleary, The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias, Science, 246: 379–382, 1989.
  • Poel S. Ziemin-van der, N.R. McCabe, H.J. Gill, R. Espinosa, III, Y. Patel, A. Harden, P. Rubinelli, S.D. Smith, M.M. LeBeau, J.D. Rowley, , et al., Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias, Proc. Natl. Acad. Sci. U.S.A., 88: 10735–10739, 1991.
  • E. Brownell, H.P. Fell, P.W. Tucker, Kessel A.H. Geurts van, A. Hagemeijer, and N.R. Rice, Regional localization of the human c-rel locus using translocation chromosome analysis, Oncogene, 2: 527–529, 1988.
  • B. Rayet and C. Gelinas, Aberrant rel/nfkb genes and activity in human cancer, Oncogene, 18: 6938–6947, 1999.
  • E. Cabannes, G. Khan, F. Aillet, R.F. Jarrett, and R.T. Hay, Mutations in the IkBa gene in Hodgkin's disease suggest a tumour suppressor role for IkappaBalpha, Oncogene, 18: 3063–3070, 1999.
  • D. Krappmann, F. Emmerich, U. Kordes, E. Scharschmidt, B. Dorken, C. Scheidereit. Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg cells, Oncogene, 18: 943–953, 1999.
  • B. Adams, P. Dorfler, A. Aguzzi, Z. Kozmik, P. Urbanek, I. Maurer-Fogy, and M. Busslinger, Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis, Genes Dev., 6: 1589–1607, 1992.
  • C.G. Mullighan, S. Goorha, I. Radtke, C.B. Miller, E. Coustan-Smith, J.D. Dalton, K. Girtman, S. Mathew, J. Ma, S.B. Pounds, X. Su, C.H. Pui, M.V. Relling, W.E. Evans, S.A. Shurtleff, and J.R. Downing, Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia, Nature, 446: 758–764, 2007.
  • R. Dalla-Favera, M. Bregni, J. Erikson, D. Patterson, R.C. Gallo, and C.M. Croce, Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. U.S.A., 79: 7824–7827, 1982.
  • M.H. Kramer, J. Hermans, E. Wijburg, K. Philippo, E. Geelen, J.H. van Krieken, D. de Jong, E. Maartense, E. Schuuring, and P.M. Kluin, Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma, Blood, 92: 3152–3162, 1998.
  • T. Palomero, W.K. Lim, D.T. Odom, M.L. Sulis, P.J. Real, A. Margolin, K.C. Barnes, J. O' Neil, D. Neuberg, A.P. Weng, , et al., NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth, Proc. Natl. Acad. Sci. U.S.A., 103: 18261–18266, 2006.
  • G. Gaidano, P. Ballerini, J.Z. Gong, G. Inghirami, A. Neri, E.W. Newcomb, I.T. Magrath, D.M. Knowles, and R. Dalla-Favera, p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U.S.A., 88: 5413–5417, 1991.
  • A. Neri, L. Baldini, D. Trecca, L. Cro, E. Polli, and A.T. Maiolo, p53 gene mutations in multiple myeloma are associated with advanced forms of malignancy, Blood, 81: 128–135, 1993.
  • A. Sakashita, T. Hattori, C.W. Miller, H. Suzushima, N. Asou, K. Takatsuki, and H.P. Koeffler, Mutations of the p53 gene in adult T-cell leukemia, Blood, 79: 477–480, 1992.
  • A.P. Weng, A.A. Ferrando, W. Lee, J.P.T. Morris, L.B. Silverman, C. Sanchez-Irizarry, S.C. Blacklow, A.T. Look, and J.C. Aster, Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia, Science, 306: 269–271, 2004.
  • C. Grabher, H. von Boehmer, and A.T. Look, Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia, Nat. Rev. Cancer, 6: 347–359, 2006.
  • A. Sambandam, I. Maillard, V.P. Zediak, L. Xu, R.M. Gerstein, J.C. Aster, W.S. Pear, and A. Bhandoola, Notch signaling controls the generation and differentiation of early T lineage progenitors, Nat. Immunol., 6: 663–670, 2005.
  • S.M. Lehar, J. Dooley, A.G. Farr, and M.J. Bevan, Notch ligands Delta 1 and Jagged1 transmit distinct signals to T-cell precursors, Blood, 105: 1440–1447, 2005.
  • A. Wilson, H.R. MacDonald, and F. Radtke, Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus, J. Exp. Med., 194: 1003–1012, 2001.
  • D.J. Izon, J.C. Aster, Y. He, A. Weng, F.G. Karnell, V. Patriub, L. Xu, S. Bakkour, C. Rodriguez, D. Allman, and W.S. Pear, Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1, Immunity, 16: 231–243, 2002.
  • J.C. Pui, D. Allman, L. Xu, S. DeRocco, F.G. Karnell, S. Bakkour, J.Y. Lee, T. Kadesch, R.R. Hardy, J.C. Aster, and W.S. Pear, Notch1 expression in early lymphopoiesis influences B versus T lineage determination, Immunity, 11: 299–308, 1999.
  • T.M. Schmitt and J.C. Zuniga-Pflucker, Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro, Immunity, 17: 749–756, 2002.
  • B.H. Ye, G. Cattoretti, Q. Shen, J. Zhang, N. Hawe, R. de Waard, C. Leung, M. Nouri-Shirazi, A. Orazi, R.S. Chaganti, , et al., The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation, Nat. Genet., 16: 161–170, 1997.
  • G. Cattoretti, C.C. Chang, K. Cechova, J. Zhang, B.H. Ye, B. Falini, D.C. Louie, K. Offit, R.S. Chaganti, and R. Dalla-Favera, BCL-6 protein is expressed in germinal-center B cells, Blood, 86: 45–53, 1995.
  • A.L. Shaffer, X. Yu, Y. He, J. Boldrick, E.P. Chan, and L.M. Staudt, BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control, Immunity, 13: 199–212, 2000.
  • R.T. Phan and R. Dalla-Favera, The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells, Nature, 432: 635–639, 2004.
  • S.M. Ranuncolo, J.M. Polo, J. Dierov, M. Singer, T. Kuo, J. Greally, R. Green, M. Carroll, and A. Melnick, Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR, Nat. Immunol., 8: 705–714, 2007.
  • B.H. Ye, F. Lista, F. Lo Coco, D.M. Knowles, K. Offit, R.S. Chaganti, and R. Dalla-Favera, Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma, Science, 262: 747–750, 1993.
  • G.L. Condorelli, F. Facchiano, M. Valtieri, E. Proietti, L. Vitelli, V. Lulli, K. Huebner, C. Peschle, and C.M. Croce, T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice, Cancer Res., 56: 5113–5119, 1996.
  • D.A. Dedera, E.K. Waller, D.P. LeBrun, A. Sen-Majumdar, M.E. Stevens, G.S. Barsh, and M.L. Cleary, Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice, Cell, 74: 833–843, 1993.
  • S. Iida, P.H. Rao, M. Butler, P. Corradini, M. Boccadoro, B. Klein, R.S. Chaganti, and R. Dalla-Favera, Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma, Nat. Genet., 17: 226–230, 1997.
  • S. Iida and R. Ueda, Multistep tumorigenesis of multiple myeloma: Its molecular delineation, Int. J. Hematol., 77: 207–212, 2003.
  • M. Karin, Nuclear factor-kappaB in cancer development and progression, Nature, 441: 431–436, 2006.
  • T. Okamoto, T. Sanda, and K. Asamitsu, NF-kappaB signaling and carcinogenesis, Curr. Pharm. Des., 13: 447–462, 2007.
  • A.A. Ferrando, D.S. Neuberg, J. Staunton, M.L. Loh, C. Huard, S.C. Raimondi, F.G. Behm, C.H. Pui, J.R. Downing, D.G. Gilliland, , et al., Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia, Cancer Cell, 1: 75–87, 2002.
  • B.D. Yu, J.L. Hess, S.E. Horning, G.A. Brown, and S.J. Korsmeyer, Altered Hox expression and segmental identity in Mll-mutant mice, Nature, 378: 505–508, 1995.
  • A.A. Ferrando, S.A. Armstrong, D.S. Neuberg, S.E. Sallan, L.B. Silverman, S.J. Korsmeyer, and A.T. Look, Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: Dominance of HOX dysregulation, Blood, 102: 262–268, 2003.
  • R. Sen and D. Baltimore, Multiple nuclear factors interact with the immunoglobulin enhancer sequences, Cell, 46: 705–716, 1986.
  • C. Kunsch, S.M. Ruben, and C.A. Rosen, Selection of optimal kappaB/Rel DNA-binding motifs: Interaction of both subunits of NF-kappaB with DNA is required for transcriptional activation, Mol. Cell. Biol., 12: 4412–4421, 1992.
  • B.B. Aggarwal and Y. Takada, Pro-apototic and anti-apoptotic effects of tumor necrosis factor in tumor cells. Role of nuclear transcription factor NF-kappaB, Cancer Treat. Res., 126: 103–127, 2005.
  • C. Chen, L.C. Edelstein, and C. Gelinas, The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L) Mol. Cell. Biol., 20: 2687–2695, 2000.
  • C.Y. Wang, M.W. Mayo, R.G. Korneluk, D.V. Goeddel, and A.S. Baldwin Jr, NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation, Science, 281: 1680–1683, 1998.
  • M. Hinz, D. Krappmann, A. Eichten, A. Heder, C. Scheidereit, and M. Strauss, NF-kappaB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition, Mol. Cell. Biol., 19: 2690–2698, 1999.
  • K. Tozawa, S. Sakurada, K. Kohri, and T. Okamoto, Effects of anti-nuclear factor kappaB reagents in blocking adhesion of human cancer cells to vascular endothelial cells, Cancer Res., 55: 4162–4167, 1995.
  • A. van de Stolpe, E. Caldenhoven, B.G. Stade, L. Koenderman, J.A. Raaijmakers, J.P. Johnson, and P.T. van der Saag, 12-O-tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter, J. Biol. Chem., 269: 6185–6192, 1994.
  • D. Chilov, E. Kukk, S. Taira, M. Jeltsch, J. Kaukonen, A. Palotie, V. Joukov, and K. Alitalo, Genomic organization of human and mouse genes for vascular endothelial growth factor C, J. Biol. Chem., 272: 25176–25183, 1997.
  • Q.W. Xie, Y. Kashiwabara, and C. Nathan, Role of transcription factor NF-kappaB/Rel in induction of nitric oxide synthase, J. Biol. Chem., 269: 4705–4708, 1994.
  • V.B. Andela, E.M. Schwarz, J.E. Puzas, R.J. O' Keefe, and R.N. Rosier, Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB, Cancer Res., 60: 6557–6562, 2000.
  • Y.J. Jung, J.S. Isaacs, S. Lee, J. Trepel, and L. Neckers, IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis, Faseb J., 17: 2115–2117, 2003.
  • M.P. Duyao, A.J. Buckler, and G.E. Sonenshein, Interaction of an NF-kappaB-like factor with a site upstream of the c-myc promoter, Proc. Natl. Acad. Sci. U. S. A., 87: 4727–4731, 1990.
  • T.D. Gilmore, Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel, Oncogene, 18: 6925–6937, 1999.
  • K.M. Wood, M. Roff, and R.T. Hay, Defective IkappaBalpha in Hodgkin cell lines with constitutively active NF-kappaB, Oncogene, 16: 2131–2139, 1998.
  • R.C. Bargou, F. Emmerich, D. Krappmann, K. Bommert, M.Y. Mapara, W. Arnold, H.D. Royer, E. Grinstein, A. Greiner, C. Scheidereit, and B. Dorken, Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells, J. Clin. Invest., 100: 2961–2969, 1997.
  • U. Kordes, D. Krappmann, V. Heissmeyer, W.D. Ludwig, and C. Scheidereit, Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells, Leukemia, 14: 399–402, 2000.
  • T. Sanda, S. Iida, H. Ogura, K. Asamitsu, T. Murata, K.B. Bacon, R. Ueda, and T. Okamoto, Growth inhibition of multiple myeloma cells by a novel IkappaB kinase inhibitor, Clin. Cancer Res., 11: 1974–1982, 2005.
  • A.C. Bharti, S. Shishodia, J.M. Reuben, D. Weber, R. Alexanian, Raj-S. Vadhan, Z. Estrov, M. Talpaz, and B.B. Aggarwal, Nuclear factor-kappaB and STAT3 are constitutively active in CD138 + cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis, Blood, 103: 3175–3184, 2004.
  • N. Mori, M. Fujii, S. Ikeda, Y. Yamada, M. Tomonaga, D.W. Ballard, and N. Yamamoto, Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells, Blood, 93: 2360–2368, 1999.
  • T. Sanda, K. Asamitsu, H. Ogura, S. Iida, A. Utsunomiya, R. Ueda, and T. Okamoto, Induction of cell death in adult T-cell leukemia cells by a novel IkappaB kinase inhibitor, Leukemia, 20: 590–598, 2006.
  • S. Mathew, V.V. Murty, R. Dalla-Favera, and R.S. Chaganti, Chromosomal localization of genes encoding the transcription factors, c-rel, NF-kappa Bp50, NF-kappa Bp65, and lyt-10 by fluorescence in situ hybridization, Oncogene, 8: 191–193, 1993.
  • J. Houldsworth, S. Mathew, P.H. Rao, K. Dyomina, D.C. Louie, N. Parsa, K. Offit, and R.S. Chaganti, REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma, Blood, 87: 25–29, 1996.
  • P.H. Rao, J. Houldsworth, K. Dyomina, N.Z. Parsa, J.C. Cigudosa, D.C. Louie, L. Popplewell, K. Offit, S.C. Jhanwar, and R.S. Chaganti, Chromosomal and gene amplification in diffuse large B-cell lymphoma, Blood, 92: 234–240, 1998.
  • J.J. Yunis, M.G. Mayer, M.A. Arnesen, D.P. Aeppli, M.M. Oken, and G. Frizzera, bcl-2 and other genomic alterations in the prognosis of large-cell lymphoma, N. Engl. J. Med., 320: 1047–1054, 1989.
  • D. Trecca, L. Guerrini, N.S. Fracchiolla, M. Pomati, L. Baldini, A.T. Maiolo, and A. Neri, Identification of a tumor-associated mutant form of the NF-kappaB RelA gene with reduced DNA-binding and transactivating activities, Oncogene, 14: 791–799, 1997.
  • N.S. Fracchiolla, L. Lombardi, M. Salina, A. Migliazza, L. Baldini, E. Berti, L. Cro, E. Polli, A.T. Maiolo, and A. Neri, Structural alterations of the NF-kappaB transcription factor lyt-10 in lymphoid malignancies, Oncogene, 8: 2839–2845, 1993.
  • A. Migliazza, L. Lombardi, M. Rocchi, D. Trecca, C.C. Chang, R. Antonacci, N.S. Fracchiolla, P. Ciana, A.T. Maiolo, and A. Neri, Heterogeneous chromosomal aberrations generate 3′ truncations of the NFKB2/lyt-10 gene in lymphoid malignancies, Blood, 84: 3850–3860, 1994.
  • A. Neri, C.C. Chang, L. Lombardi, M. Salina, P. Corradini, A.T. Maiolo, R.S. Chaganti, and R. Dalla-Favera, B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappaB p50, Cell, 67: 1075–1087, 1991.
  • S. Thakur, H.C. Lin, W.T. Tseng, S. Kumar, R. Bravo, F. Foss, C. Gelinas, and A.B. Rabson, Rearrangement and altered expression of the NFKB-2 gene in human cutaneous T-lymphoma cells, Oncogene, 9: 2335–2344, 1994.
  • C.C. Chang, J. Zhang, L. Lombardi, A. Neri, and R. Dalla-Favera, Rearranged NFKB-2 genes in lymphoid neoplasms code for constitutively active nuclear transactivators, Mol. Cell. Biol., 15: 5180–5187, 1995.
  • G. Franzoso, L. Carlson, L. Poljak, E.W. Shores, S. Epstein, A. Leonardi, A. Grinberg, T. Tran, T. Scharton-Kersten, M. Anver, , et al., Mice deficient in nuclear factor (NF)-kappaB/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture, J. Exp. Med., 187: 147–159, 1998.
  • S. Liptay, R.M. Schmid, N.D. Perkins, P. Meltzer, M.R. Altherr, J.D. McPherson, J.J. Wasmuth, and G.J. Nabel, Related subunits of NF-kappaB map to two distinct loci associated with translocations in leukemia, NFKB1 and NFKB2, Genomics, 13: 287–292, 1992.
  • R. Ferrier, R. Nougarede, S. Doucet, B. Kahn-Perles, J. Imbert, and D. Mathieu-Mahul, Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105, Oncogene, 18: 995–1005, 1999.
  • T.W. McKeithan, H. Ohno, and M.O. Diaz, Identification of a transcriptional unit adjacent to the breakpoint in the 14;19 translocation of chronic lymphocytic leukemia, Genes Chromosomes Cancer, 1: 247–255, 1990.
  • L. Michaux, J. Dierlamm, I. Wlodarska, V. Bours, H. Van den Berghe, and A. Hagemeijer, t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases, Cancer Genet. Cytogenet., 94: 36–43, 1997.
  • H. Ohno, G. Takimoto, and T.W. McKeithan, The candidate proto-oncogene BCL3 is related to genes implicated in cell lineage determination and cell cycle control, Cell, 60: 991–997, 1990.
  • S.T. Ong, M.L. Hackbarth, L.C. Degenstein, D.A. Baunoch, J. Anastasi, and T.W. McKeithan, Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice, Oncogene, 16: 2333–2343, 1998.
  • J.Y. Reuther, G.W. Reuther, D. Cortez, A.M. Pendergast, and A.S. Baldwin Jr, A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation, Genes Dev., 12: 968–981, 1998.
  • K. Ohshima, H. Muta, C. Kawasaki, K. Muta, V. Deyev, M. Kanda, Y. Kumano, E.R. Podack, and M. Kikuchi, Bcl10 expression, rearrangement and mutation in MALT lymphoma: Correlation with expression of nuclear factor-kappaB, Int. J. Oncol., 19: 283–289, 2001.
  • J. Ruland, G.S. Duncan, A. Elia, I. del Barco Barrantes, L. Nguyen, S. Plyte, D.G. Millar, D. Bouchard, A. Wakeham, P.S. Ohashi, and T.W. Mak, Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure, Cell, 104: 33–42, 2001.
  • R. Horie, M. Watanabe, T. Ishida, T. Koiwa, S. Aizawa, K. Itoh, M. Higashihara, M.E. Kadin, and T. Watanabe, The NPM-ALK oncoprotein abrogates CD30 signaling and constitutive NF-kappaB activation in anaplastic large cell lymphoma, Cancer Cell, 5: 353–364, 2004.
  • S.S. Mir, B.W. Richter, and C.S. Duckett, Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells, Blood, 96: 4307–4312, 2000.
  • T. Suzuki, H. Hirai, and M. Yoshida, Tax protein of HTLV-1 interacts with the Rel homology domain of NF-kappaB p65 and c-Rel proteins bound to the NF-kappaB binding site and activates transcription, Oncogene, 9: 3099–3105, 1994.
  • M.J. Yin, L.B. Christerson, Y. Yamamoto, Y.T. Kwak, S. Xu, F. Mercurio, M. Barbosa, M.H. Cobb, and R.B. Gaynor, HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation, Cell, 93: 875–884, 1998.
  • G. Xiao, M.E. Cvijic, A. Fong, E.W. Harhaj, M.T. Uhlik, M. Waterfield, and S.C. Sun, Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: Evidence for the involvement of IKKalpha, EMBO J., 20: 6805–6815, 2001.
  • N. Hironaka, K. Mochida, N. Mori, M. Maeda, N. Yamamoto, and S. Yamaoka, Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells, Neoplasia, 6: 266–278, 2004.
  • X. Jiang, N. Takahashi, N. Matsui, T. Tetsuka, and T. Okamoto, The NF-kappaB activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536, J. Biol. Chem., 278: 919–926, 2003.
  • J.L. Pomerantz and D. Baltimore, Two pathways to NF-kappaB, Mol. Cell, 10: 693–695, 2002.
  • H. Ichikawa, Y. Takada, A. Murakami, and B.B. Aggarwal, Identification of a novel blocker of I kappaB alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappaB-regulated gene products, J. Immunol., 174: 7383–7392, 2005.
  • A.C. Bharti, N. Donato, S. Singh, and B.B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappaB and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis, Blood, 101: 1053–1062, 2003.
  • Y. Li, F. Ahmed, S. Ali, P.A. Philip, O. Kucuk, and F.H. Sarkar, Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells, Cancer Res., 65: 6934–6942, 2005.
  • C.M. Lin, S.T. Huang, Y.C. Liang, M.S. Lin, C.M. Shih, Y.C. Chang, T.Y. Chen, and C.T. Chen, Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappaB in mouse macrophages, Planta Med., 71: 748–753, 2005.
  • A.G. Bowie and L.A. O' Neill, Vitamin C inhibits NF-kappaB activation by TNF via the activation of p38 mitogen-activated protein kinase, J. Immunol., 165: 7180–7188, 2000.
  • M.A. Fiedler, K. Wernke-Dollries, and J.M. Stark, Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132, Am. J. Respir. Cell. Mol. Biol., 19: 259–268, 1998.
  • K. Ozaki, H. Takeda, H. Iwahashi, S. Kitano, and S. Hanazawa, NF-kappaB inhibitors stimulate apoptosis of rabbit mature osteoclasts and inhibit bone resorption by these cells, FEBS Lett., 410: 297–300, 1997.
  • T. Hideshima, D. Chauhan, P. Richardson, C. Mitsiades, N. Mitsiades, T. Hayashi, N. Munshi, L. Dang, A. Castro, V. Palombella, J. Adams, and K.C. Anderson, NF-kappaB as a therapeutic target in multiple myeloma, J. Biol. Chem., 277: 16639–16647, 2002.
  • C. Brostjan, J. Anrather, V. Csizmadia, G. Natarajan, and H. Winkler, Glucocorticoids inhibit E-selectin expression by targeting NF-kappaB and not ATF/c-Jun, J. Immunol., 158: 3836–3844, 1997.
  • A. Hilgendorff, H. Muth, B. Parviz, A. Staubitz, W. Haberbosch, H. Tillmanns, and H. Holschermann, Statins differ in their ability to block NF-kappaB activation in human blood monocytes. Int. J. Clin. Pharmacol. Ther., 41: 397–401, 2003.
  • J.P. Yang, J.P. Merin, T. Nakano, T. Kato, Y. Kitade, and T. Okamoto, Inhibition of the DNA-binding activity of NF-kappaB by gold compounds in vitro, FEBS Lett., 361: 89–96, 1995.
  • K.E. Traber, H. Okamoto, C. Kurono, M. Baba, C. Saliou, T. Soji, L. Packer, and T. Okamoto, Anti-rheumatic compound aurothioglucose inhibits tumor necrosis factor-alpha-induced HIV-1 replication in latently infected OM10.1 and Ach2 cells, Int. Immunol., 11: 143–150, 1999.
  • J.A. Keifer, D.C. Guttridge, B.P. Ashburner, and A.S. Baldwin Jr., Inhibition of NF-kappaB activity by thalidomide through suppression of IkappaB kinase activity, J. Biol. Chem., 276: 22382–22387, 2001.
  • T. Hideshima, P. Richardson, D. Chauhan, V.J. Palombella, P.J. Elliott, J. Adams, and K.C. Anderson, The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells, Cancer Res., 61: 3071–3076, 2001.
  • P.G. Richardson, B. Barlogie, J. Berenson, S. Singhal, S. Jagannath, D. Irwin, S.V. Rajkumar, G. Srkalovic, M. Alsina, R. Alexanian, , et al., A phase 2 study of bortezomib in relapsed, refractory myeloma, N. Engl. J. Med., 348: 2609–2617, 2003.
  • T. Murata, M. Shimada, S. Sakakibara, T. Yoshino, H. Kadono, T. Masuda, M. Shimazaki, T. Shintani, K. Fuchikami, K. Sakai, , et al., Discovery of novel and selective IKK-beta serine-threonine protein kinase inhibitors. Part 1, Bioorg. Med. Chem. Lett., 13: 913–918, 2003.
  • T. Murata, M. Shimada, H. Kadono, S. Sakakibara, T. Yoshino, T. Masuda, M. Shimazaki, T. Shintani, K. Fuchikami, K.B. Bacon, , et al., Synthesis and structure-activity relationships of novel IKK-beta inhibitors. Part 2: Improvement of in vitro activity. Bioorg. Med. Chem. Lett., 14: 4013–4017, 2004.
  • N. Mori, Y. Yamada, S. Ikeda, Y. Yamasaki, K. Tsukasaki, Y. Tanaka, M. Tomonaga, N. Yamamoto, and M. Fujii, Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells, Blood, 100: 1828–1834, 2002.
  • K. Umezawa and C. Chaicharoenpong, Molecular design and biological activities of NF-kappaB inhibitors, Mol. Cells, 14: 163–167, 2002.
  • R. Ahmad, D. Raina, C. Meyer, S. Kharbanda, and D. Kufe, Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179, J. Biol. Chem., 281: 35764–35769, 2006.
  • P. Chambon, A decade of molecular biology of retinoic acid receptors, FASEB J., 10: 940–954, 1996.
  • M.F. Boehm, L. Zhang, L. Zhi, M.R. McClurg, E. Berger, M. Wagoner, D.E. Mais, C.M. Suto, J.A. Davies, R.A. Heyman, , et al., Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells, J. Med. Chem., 38: 3146–3155, 1995.
  • L. Nagy, V.A. Thomazy, G.L. Shipley, L. Fesus, W. Lamph, R.A. Heyman, R.A. Chandraratna, and P.J. Davies, Activation of retinoid X receptors induces apoptosis in HL-60 cell lines, Mol. Cell. Biol., 15: 3540–3551, 1995.
  • C.B. Stephensen, R. Rasooly, X. Jiang, M.A. Ceddia, C.T. Weaver, R.A. Chandraratna, and R.P. Bucy, Vitamin A enhances in vitro Th2 development via retinoid X receptor pathway, J. Immunol., 168: 4495–4503, 2002.
  • R. Rasooly, G.U. Schuster, J.P. Gregg, J.H. Xiao, R.A. Chandraratna, and C.B. Stephensen, Retinoid x receptor agonists increase bcl2a1 expression and decrease apoptosis of naive T lymphocytes, J. Immunol., 175: 7916–7929, 2005.
  • C.B. Stephensen, A.D. Borowsky, and K.C. Lloyd, Disruption of Rxra gene in thymocytes and T lymphocytes modestly alters lymphocyte frequencies, proliferation, survival and T helper type 1/type 2 balance, Immunology, 121: 484–498, 2007.
  • N. Engedal, A. Ertesvag, and H.K. Blomhoff, Survival of activated human T lymphocytes is promoted by retinoic acid via induction of IL-2, Int. Immunol., 16: 443–453, 2004.
  • D. Mucida, Y. Park, G. Kim, O. Turovskaya, I. Scott, M. Kronenberg, and H. Cheroutre, Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid, Science, 317: 256–260, 2007.
  • Q. Chen and A.C. Ross, Inaugural article: Vitamin A and immune function: retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells, Proc. Natl. Acad. Sci. U.S.A., 102: 14142–14149, 2005.
  • C. Gratas, M.L. Menot, C. Dresch, and C. Chomienne, Retinoid acid supports granulocytic but not erythroid differentiation of myeloid progenitors in normal bone marrow cells, Leukemia, 7: 1156–1162, 1993.
  • T.R. Breitman, S.E. Selonick, and S.J. Collins, Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci. U.S.A., 77: 2936–2940, 1980.
  • M. Ponzoni, P. Bocca, V. Chiesa, A. Decensi, V. Pistoia, L. Raffaghello, C. Rozzo, and P.G. Montaldo, Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation, Cancer Res., 55: 853–861, 1995.
  • X.P. Lu, A. Fanjul, N. Picard, M. Pfahl, D. Rungta, K. Nared Hood, B. Carter, J. Piedrafita, S. Tang, and E. Fabbrizio, Novel retinoid-related molecules as apoptosis inducers and effective inhibitors of human lung cancer cells in vivo, Nat. Med., 3: 686–690, 1997.
  • Y.H. Chen, P. Desai, R.T. Shiao, D. Lavelle, A. Haleem, and J. Chen, Inhibition of myeloma cell growth by dexamethasone and all-trans retinoic acid: synergy through modulation of interleukin-6 autocrine loop at multiple sites, Blood, 87: 314–323, 1996.
  • T. Sanda, T. Kuwano, S. Nakao, S. Iida, T. Ishida, H. Komatsu, K. Shudo, M. Kuwano, M. Ono, and R. Ueda, Antimyeloma effects of a novel synthetic retinoid Am80 (Tamibarotene) through inhibition of angiogenesis, Leukemia, 19: 901–909, 2005.
  • R. Dolcetti, P. Zancai, R. Cariati, and M. Boiocchi, In vitro effects of retinoids on the proliferation and differentiation features of Epstein-Barr virus-immortalized B lymphocytes, Leuk. Lymphoma., 29: 269–281, 1998.
  • T. Yamaguchi, Y. Maeda, S. Ueda, Y. Hijikata, Y. Morita, J.I. Miyatake, M. Matsuda, and A. Kanamaru, Dichotomy of all-trans retinoic acid inducing signals for adult T-cell leukemia, Leukemia, 19: 1010–1017, 2005.
  • C. Zhang and M. Duvic, Treatment of cutaneous T-cell lymphoma with retinoids, Dermatol. Ther., 19: 264–271, 2006.
  • P. Zancai, J. Dal Col, S. Piccinin, M. Guidoboni, R. Cariati, S. Rizzo, M. Boiocchi, R. Maestro, and R. Dolcetti, Retinoic acid stabilizes p27Kip1 in EBV-immortalized lymphoblastoid B cell lines through enhanced proteasome-dependent degradation of the p45Skp2 and Cks1 proteins, Oncogene, 24: 2483–2494, 2005.
  • A.H. Rook, M. Kubin, F.E. Fox, Z. Niu, M. Cassin, B.R. Vowels, S.L. Gottleib, E.C. Vonderheid, S.R. Lessin, and G. Trinchieri, The potential therapeutic role of interleukin-12 in cutaneous T-cell lymphoma, Ann. N.Y. Acad. Sci., 795: 310–318, 1996.
  • L. Meunier, K. Bohjanen, J.J. Voorhees, and K.D. Cooper, Retinoic acid upregulates human Langerhans cell antigen presentation and surface expression of HLA-DR and CD11c, a beta 2 integrin critically involved in T-cell activation, J. Invest. Dermatol., 103: 775–779, 1994.
  • M. Duvic, K. Hymes, P. Heald, D. Breneman, A.G. Martin, P. Myskowski, C. Crowley, and R.C. Yocum, Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II–III trial results, J. Clin. Oncol., 19: 2456–2471, 2001.
  • N. Sidell, T. Taga, T. Hirano, T. Kishimoto, and A. Saxon, Retinoic acid-induced growth inhibition of a human myeloma cell line via down-regulation of IL-6 receptors, J. Immunol., 146: 3809–3814, 1991.
  • A. Ogata, N. Nishimoto, Y. Shima, K. Yoshizaki, and T. Kishimoto, Inhibitory effect of all-trans retinoic acid on the growth of freshly isolated myeloma cells via interference with interleukin-6 signal transduction, Blood, 84: 3040–3046, 1994.
  • Y.H. Chen, D. Lavelle, J. DeSimone, S. Uddin, L.C. Platanias, and M. Hankewych, Growth inhibition of a human myeloma cell line by all-trans retinoic acid is not mediated through downregulation of interleukin-6 receptors but through upregulation of p21(WAF1) Blood, 94: 251–259, 1999.
  • K. Koskela, T.T. Pelliniemi, K. Pulkki, and K. Remes, Treatment of multiple myeloma with all-trans retinoic acid alone and in combination with chemotherapy: a phase I/II trial, Leuk. Lymphoma, 45: 749–754, 2004.
  • T. Sanda, S. Iida, S. Kayukawa, and R. Ueda, Induction of class II major histocompatibility complex expression in human multiple myeloma cells by retinoid, Haematologica, 92: 115–120, 2007.
  • K. Takagi, M. Suganuma, H. Kagechika, K. Shudo, M. Ninomiya, Y. Muto, and H. Fujiki, Inhibition of ornithine decarboxylase induction by retinobenzoic acids in relation to their binding affinities to cellular retinoid-binding proteins, J. Cancer Res. Clin. Oncol., 114: 221–224, 1988.
  • Y. Hashimoto, H. Kagechika, and K. Shudo, Expression of retinoic acid receptor genes and the ligand-binding selectivity of retinoic acid receptors (RAR's) Biochem Biophys Res Commun, 166: 1300–1307, 1990.
  • T. Tobita, A. Takeshita, K. Kitamura, K. Ohnishi, M. Yanagi, A. Hiraoka, T. Karasuno, M. Takeuchi, S. Miyawaki, R. Ueda, T. Naoe, and R. Ohno, Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid, Blood, 90: 967–973, 1997.
  • P. Silacci, A. Mottet, V. Steimle, W. Reith, and B. Mach, Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA, J. Exp. Med., 180: 1329–1336, 1994.
  • N. Ghosh, I. Gyory, G. Wright, J. Wood, and K.L. Wright, Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells, J. Biol. Chem., 276: 15264–15268, 2001.
  • K.C. Anderson, Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions, Exp. Hematol., 35: 155–162, 2007.
  • T. Hideshima, C. Mitsiades, G. Tonon, P.G. Richardson, and K.C. Anderson, Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets, Nat. Rev. Cancer, 7: 585–598, 2007.
  • S. Minucci and P.G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer, Nat. Rev. Cancer, 6: 38–51, 2006.
  • B.D. Strahl and C.D. Allis, The language of covalent histone modifications, Nature, 403: 41–45, 2000.
  • B.M. Turner, Cellular memory and the histone code, Cell, 111: 285–291, 2002.
  • R. Claus and M. Lubbert, Epigenetic targets in hematopoietic malignancies, Oncogene, 22: 6489–6496, 2003.
  • J. Arts, S. de Schepper, and K. Van Emelen, Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics, Curr. Med. Chem., 10: 2343–2350, 2003.
  • C.S. Mitsiades, N.S. Mitsiades, C.J. McMullan, V. Poulaki, R. Shringarpure, T. Hideshima, M. Akiyama, D. Chauhan, N. Munshi, X. Gu, , et al., Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications, Proc. Natl. Acad. Sci. U.S.A., 101: 540–545, 2004.
  • C. Zhang, V. Richon, X. Ni, R. Talpur, and M. Duvic, Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action, J. Invest. Dermatol., 125: 1045–1052, 2005.
  • T. Sanda, T. Okamoto, Y. Uchida, H. Nakagawa, S. Iida, S. Kayukawa, T. Suzuki, T. Oshizawa, T. Suzuki, N. Miyata, and R. Ueda, Proteome analyses of the growth inhibitory effects of NCH-51, a novel histone deacetylase inhibitor, on lymphoid malignant cells, Leukemia, 2007, [E pub ahead of print].
  • C. Hubbert, A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, and T.P. Yao, HDAC6 is a microtubule-associated deacetylase, Nature, 417: 455–458, 2002.
  • A. Insinga, S. Monestiroli, S. Ronzoni, R. Carbone, M. Pearson, G. Pruneri, G. Viale, E. Appella, P. Pelicci, and S. Minucci, Impairment of p53 acetylation, stability and function by an oncogenic transcription factor, EMBO. J., 23: 1144–1154, 2004.
  • O.R. Bereshchenko, W. Gu, and R. Dalla-Favera, Acetylation inactivates the transcriptional repressor BCL6, Nat. Genet., 32: 606–613, 2002.
  • P. Bali, M. Pranpat, J. Bradner, M. Balasis, W. Fiskus, F. Guo, K. Rocha, S. Kumaraswamy, S. Boyapalle, P. Atadja, , et al., Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors, J. Biol. Chem., 280: 26729–26734, 2005.
  • J. Luo, F. Su, D. Chen, A. Shiloh, and W. Gu, Deacetylation of p53 modulates its effect on cell growth and apoptosis, Nature, 408: 377–381, 2000.
  • Y. Zhao, S. Lu, L. Wu, G. Chai, H. Wang, Y. Chen, J. Sun, Y. Yu, W. Zhou, Q. Zheng, , et al., Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1) Mol. Cell. Biol., 26: 2782–2790, 2006.
  • W.K. Kelly and P.A. Marks, Drug insight: histone deacetylase inhibitors–development of the new targeted anticancer agent suberoylanilide hydroxamic acid, Nat. Clin. Pract. Oncol., 2: 150–157, 2005.
  • P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene, 26: 1351–1356, 2007.
  • L. Huang, Y. Sowa, T. Sakai, and A.B. Pardee, Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites, Oncogene, 19: 5712–5719, 2000.
  • V.M. Richon, T.W. Sandhoff, R.A. Rifkind, and P.A. Marks, Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation, Proc. Natl. Acad. Sci. U.S.A., 97: 10014–10019, 2000.
  • M.J. Peart, G.K. Smyth, R.K. van Laar, D.D. Bowtell, V.M. Richon, P.A. Marks, A.J. Holloway, and R.W. Johnstone, Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors, Proc. Natl. Acad. Sci. U.S.A., 102: 3697–3702, 2005.
  • T. Hideshima, J.E. Bradner, J. Wong, D. Chauhan, P. Richardson, S.L. Schreiber, and K.C. Anderson, Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma, Proc. Natl. Acad. Sci. U.S.A., 102: 8567–8572, 2005.
  • J.S. Ungerstedt, Y. Sowa, W.S. Xu, Y. Shao, M. Dokmanovic, G. Perez, L. Ngo, A. Holmgren, X. Jiang, and P.A. Marks, Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors, Proc. Natl. Acad. Sci. U.S.A., 102: 673–678, 2005.
  • O.A. O'Connor, M.L. Heaney, L. Schwartz, S. Richardson, R. Willim, B. MacGregor-Cortelli, T. Curly, C. Moskowitz, C. Portlock, S. Horwitz, , et al., Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies, J. Clin. Oncol., 24: 166–173, 2006.
  • M. Duvic, R. Talpur, X. Ni, C. Zhang, P. Hazarika, C. Kelly, J.H. Chiao, J.F. Reilly, J.L. Ricker, V.M. Richon, and S.R. Frankel, Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL) Blood, 109: 31–39, 2007.
  • W.K. Kelly, O.A. O'Connor, L.M. Krug, J.H. Chiao, M. Heaney, T. Curley, B. MacGregore-Cortelli, W. Tong, J.P. Secrist, L. Schwartz, , et al., Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer, J. Clin. Oncol., 23: 3923–3931, 2005.
  • Q.C. Ryan, D. Headlee, M. Acharya, A. Sparreboom, J.B. Trepel, J. Ye, W.D. Figg, K. Hwang, E.J. Chung, A. Murgo, , et al., Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma, J. Clin. Oncol., 23: 3912–3922, 2005.
  • L.M. Golub, H.M. Lee, M.E. Ryan, W.V. Giannobile, J. Payne, and T. Sorsa, Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms, Adv. Dent. Res., 12: 12–26, 1998.
  • T. Suzuki, Y. Nagano, A. Kouketsu, A. Matsuura, S. Maruyama, M. Kurotaki, H. Nakagawa, and N. Miyata, Novel inhibitors of human histone deacetylases: design, synthesis, enzyme inhibition, and cancer cell growth inhibition of SAHA-based non-hydroxamates, J. Med. Chem., 48: 1019–1032, 2005.
  • L.W. Ellisen, J. Bird, D.C. West, A.L. Soreng, T.C. Reynolds, S.D. Smith, and J. Sklar, TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms, Cell, 66: 649–661, 1991.
  • J. O'Neil, J. Grim, P. Strack, S. Rao, D. Tibbitts, C. Winter, J. Hardwick, M. Welcker, J.P. Meijerink, R. Pieters, , et al., FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to {gamma}-secretase inhibitors, J. Exp. Med., 204: 1813–1824, 2007.
  • W.S. Pear, J.C. Aster, M.L. Scott, R.P. Hasserjian, B. Soffer, J. Sklar, and D. Baltimore, Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles, J. Exp. Med., 183: 2283–2291, 1996.
  • D. Shimizu, T. Taki, A. Utsunomiya, H. Nakagawa, K. Nomura, Y. Matsumoto, K. Nishida, S. Horiike, and M. Taniwaki, Detection of NOTCH1 mutations in adult T-cell leukemia/lymphoma and peripheral T-cell lymphoma, Int. J. Hematol., 85: 212–218, 2007.
  • L. Fu, N. Nara, and S. Tohda, Involvement of Notch signaling in myelodysplastic syndrome, Leuk. Res., 31: 1160–1161, 2007.
  • S.A. Armstrong and A.T. Look. Molecular genetics of acute lymphoblastic leukemia, J. Clin. Oncol., 23: 6306–6315, 2005.
  • E. Sicinska, I. Aifantis, L. Le Cam, W. Swat, C. Borowski, Q. Yu, A.A. Ferrando, S.D. Levin, Y. Geng, H. von Boehmer, and P. Sicinski, Requirement for cyclin D3 in lymphocyte development and T cell leukemias, Cancer Cell, 4: 451–461, 2003.
  • L.J. Beverly, D.W. Felsher, and A.J. Capobianco, Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression, Cancer Res., 65: 7159–7168, 2005.
  • S.M. Chan, A.P. Weng, R. Tibshirani, J.C. Aster, and P.J. Utz, Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia, Blood, 110: 278–286, 2007.
  • H.D. Lewis, M. Leveridge, P.R. Strack, C.D. Haldon, J. O'Neil, H. Kim, A. Madin, J.C. Hannam, A.T. Look, N. Kohl, , et al., Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem. Biol., 14: 209–219, 2007.
  • M.E. Fortini, Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling, Nat. Rev. Mol. Cell Biol., 3: 673–684, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.