243
Views
9
CrossRef citations to date
0
Altmetric
Special Topic: Leukemia and Lymphoma at the Interface between Cancer and Immunity

Role of Txk, a Member of the Tec Family of Tyrosine Kinases, in Immune-Inflammatory Diseases

&
Pages 333-348 | Published online: 03 Aug 2009

REFERENCES

  • S.J. Szabo, S.T. Kim, G.L. Costa, X. Zhang, C.G. Fathman, and L.H. Glimcher, A novel transcription factor, T-bet, directs Th1 lineage commitment, Cell, 100: 655–669, 2000.
  • A.C. Mullen, A.S. Hutchins, F.A. High, H.W. Lee, K.J. Sykes, L.A. Chodosh, and S.L. Reiner, Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction, Nat. Immunol., 3: 652–658, 2002.
  • W. Zheng and R.A. Flavell, The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells, Cell, 89: 587–596, 1997.
  • M. Messi, I. Giacchetto, K. Nagata, A. Lanzavecchia, G. Natoli, and F. Sallusto, Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes, Nat. Immunol., 4: 78–86, 2003.
  • O. Komine, K. Hayashi, W. Natsume, T. Watanabe, Y. Seki, N. Seki, R. Yagi, W. Sukzuki, H. Tamauchi, K. Hozumi, , et al., The Runx1 transcription factor inhibits the differentiation of naive CD4 + T cells into the Th2 lineage by repressing GATA3 expression, J. Exp. Med., 198: 51–61, 2003.
  • K.Y. Lee, F. D'Acquisto, M.S. Hayden, J.H. Shim, and S. Ghosh, PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation, Science, 308: 114–118, 2005.
  • D. Wang, R. Matsumoto, Y. You, T. Che, X.Y. Lin, S.L. Gaffen, and X. Lin, CD3/CD28 costimulation induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1, Mol. Cell. Biol., 24: 164–171, 2004.
  • O. Gaide, B. Favier, D.F. Legler, D. Bonnet, B. Brissoni, S. Valitutti, C. Bron, J. Tschopp, and M. Thome, CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation, Nat. Immunol., 3: 836–843, 2002.
  • D. Wang, Y. You, S.M. Case, L.M. McAllister-Lucas, L. Wang, P.S. DiStefano, G. Nuñez, J. Bertin, and X.A. Lin, A requirement for Carma1 TCR-induced NF-kappa B activation, Nat. Immunol., 3: 830– 835, 2002.
  • J.L. Pomerantz, E.M. Denny, and D. Baltimore, CARD11 mediates factor specific activation of NF-kappaB by the T cell receptor complex, EMBO J., 21: 5184–5194, 2002.
  • J.E. Jun, L.E. Wilson, C.G. Vinuesa, S. Lesage, M. Blery, L.A. Miosge, M.C. Cook, E.M. Kucharska, H. Hara, J.M. Penninger, , et al., Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis, Immunity, 18: 751–762, 2003.
  • H. Hara, T. Wada, C. Bakal, I. Kozieradzki, S. Suzuki, N. Suzuki, M. Nghiem, E.K. Griffiths, C. Krawczyk, B. Bauer, , et al. The MAGUK family protein CARD11 is essential for lymphocyte activation, Immunity, 18: 763–775, 2003.
  • S. Ryeom, R.J. Greenwald, A.H. Sharpe, and F. McKeon, The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin, Nat. Immunol., 4: 874–881, 2003.
  • L.P. Kane, J. Lin, and A. Weiss, Signal transduction by the TCR for antigen, Curr. Opin. Immunol., 12: 242–249, 2000.
  • J. Lin and A. Weiss, T cell receptor signaling, J. Cell Sci., 114: 243–244, 2001.
  • P.L. Schwartzberg, L.D. Finkelstein, and J.A. Readinger, TEC-family kinases regulators of T-helper-cell differentiation, Nat. Rev. Immunol., 5: 284–295, 2005.
  • L.J. Berg, L.D. Finkelstein, J.A. Lucas, and P.L. Schwartzberg, Tec family kinases in T lymphocyte development and function, Annu. Rev. Immunol., 23: 549–600, 2005.
  • L.D. Finkelstein and P.L. Schwartzberg, Tec kinases: Shaping T-cell activation through actin, Trends Cell. Biol., 14: 443–451, 2004.
  • A. Takesono, L.D. Finkelstein, and P.L. Schwartzberg, Beyond calcium: New signaling pathways for Tec family kinases, J. Cell. Sci., 115: 3039–3048, 2002.
  • C.I. Smith, T.C. Islam, P.T. Mattsson, A.J. Mohamed, B.F. Nore, and M. Vihinen, The Tec family of cytoplasmic tyrosine kinases: Mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species, Bioessays, 23: 436–446, 2001.
  • R.N. Haire, Y. Ohta, J.E. Lewis, S.M. Fu, P. Kroisel, and G.W. Litman, TXK, a novel human tyrosine kinase expressed in T cells shares sequence identity with Tec family kinases and maps to 4p12, Hum. Mol. Genet., 3: 897–901, 1994.
  • L.O. Atherly, J.A. Lucas, M. Felices, C.C. Yin, S.L. Reiner, and L.J. Berg, The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells, Immunity, 25: 79–91, 2006.
  • C. Broussard, C. Fleischacker, R. Horai, M. Chetana, A.M. Venegas, L.L. Sharp, S.M. Hedrick, B.J. Fowlkes, and P.L. Schwartzberg, Altered development of CD8+ T cell lineages in mice deficient for the Tec kinases Itk and Rlk, Immunity, 25: 93–104, 2006.
  • S. Dubois, T.A. Waldmann, and J.R. Muller, ITK and IL-15 support two distinct subsets of CD8+ T cells, Proc. Natl Acad. Sci. U. S. A, 103: 12075–12080, 2006.
  • X.C. Liao and D.R. Littman, Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk, Immunity, 3: 757–769, 1995.
  • K.Q. Liu, S.C. Bunnell, C.B. Gurniak, and L.J. Berg, T cells receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells, J. Exp. Med., 187: 1721–1727, 1998.
  • E.M. Schaeffer, J. Debnath, G. Yap, D. McVicar, X.C. Liao, D.R. Littman, A. Sher, H.E. Varmus, M.J. Lenardo, and P.L. Schwartzberg, Requirement for Tec kinases Rlk and Itk in T cells receptor signaling and immunity, Science, 284: 638–641, 1999.
  • H. Schneider, B. Guerette, C. Guntermann, and C.E. Rudd, Resting lymphocyte kinase (Rlk/Txk) targets lymphoid adaptor SLP-76 in the cooperative activation of interleukin-2 transcription in T-cells, J. Biol. Chem., 275: 3835–3840, 2000.
  • K. Rajagopal, C.L. Sommers, D.C. Decker, , et al., RIBP, a novel Rlk/Txk and itk-binding adaptor protein that regulates T cell activation, J. Exp. Med., 190: 1657–1668, 1999.
  • J. Kashiwakura, N. Suzuki, H. Nagafuchi, M. Takeno, Y. Takeba, Y. Shimoyama, and T. Sakane, Txk, a nonreceptor tyrosine kinase of the Tec family, is expressed in T helper type 1 cells and regulates interferon gamma production in human T lymphocytes, J. Exp. Med., 190: 1147–1154, 1999.
  • Y. Takeba, H. Nagafuchi, M. Takeno, J. Kashiwakura, and N. Suzuki, Txk, a member of nonreceptor tyrosine kinase of Tec family, acts as a Th1 cell-specific transcription factor and regulates IFN-gamma gene transcription, J. Immunol., 168: 2365–2370, 2002.
  • T. Maruyama, K. Nara, H. Yoshikawa, and N. Suzuki, Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1alpha and regulates interferon-gamma gene transcription in Th1 cells, Clin. Exp. Immunol., 147: 164–175, 2007.
  • H.M. Wilcox and L.J. Berg, Itk phosphorylation sites are required for functional activity in primary T cells, J. Biol. Chem., 278: 37112–37121, 2003.
  • M. Chamorro, M.J. Czar, J. Debnath, G. Cheng, M.J. Lenardo, H.E. Varmus, and P.L. Schwartzberg, Requirements for activation and RAFT localization of the T-lymphocyte kinase Rlk/Txk, BMC Immunol., 2: 3, 2001.
  • C.L. Sommers, R.L. Rabin, A. Grinberg, H.C. Tsay, J. Farber, and P.E. Love, A role for the Tec family tyrosine kinase Txk in T cell activation and thymocyte selection, J. Exp. Med., 190: 1427–1438, 1999.
  • J. Kashiwakura, N. Suzuki, M. Takeno, S. Itoh, T. Oku, T. Sakane, S. Nakajin, and S. Toyoshima, Evidence of autophosphorylation in Txk: Y91 is an autophosphorylation site, Biol. Pharm. Bull., 25: 718–721, 2002.
  • L. Virag and C. Szabo, The therapeutic potential of poly(ADP-ribose) polymerase inhibitors, Pharmacol. Rev., 54: 375–429, 2002.
  • F.J. Oliver, J. Ménissier-de Murcia, C. Nacci, P. Decker, R. Andriantsitohaina, S. Muller, G. de la Rubia, J.C. Stoclet, and G. de Murcia, Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly(ADP-ribose) polymerase-1 deficient mice, EMBO J., 18: 4446–4454, 1999.
  • P.O. Hassa, M. Covic, S. Hasan, R. Imhof, and M.O. Hottiger, The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function, J. Biol. Chem., 276: 45588–45597, 2001.
  • A. Chiarugi, Inhibitors of poly(ADP-ribose) polymerase-1 suppress transcriptional activation in lymphocytes and ameliorate autoimmune encephalomyelitis in rats, Br. J. Pharmacol., 137: 761–770, 2002.
  • G.S. Scott, R.B. Kean, T. Mikheeva, M.J. Fabis, J.G. Mabley, C. Szabo, and D.C. Hooper, The therapeutic effects of PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,Ndimethylacetamide.HCl], a selective inhibitor of poly(ADP-ribose) polymerase, in experimental allergic encephalomyelitis are associated with immunomodulation, J. Pharmacol. Exp. Ther., 310: 1053–1061, 2004.
  • T. Sakane, New perspective on Behcet's disease, Int. Rev. Immunol., 14: 89–96, 1997.
  • T. Sakane, M. Takeno, N. Suzuki, and G. Inaba, Behcet's disease, N. Engl. J. Med., 341: 1284–1291, 1999.
  • A. Gul, Behcet's disease: An update on the pathogenesis, Clin. Exp. Rheumatol., 19: S6–S12, 2001.
  • H. Yazici, I. Fresko, and S. Yurdakul, Behcet's syndrome: Disease manifestations, management, and advances in treatment, Nat. Clin. Pract. Rheumatol., 3: 148–155, 2007.
  • D.L. Kastner, Intermittent and periodic arthritic syndromes, In: W.J. Koopman, (Ed.), Arthritis and Allied Conditions: A Textbook Of Rheumatology, 13th ed. Vol. 1. Baltimore: Williams & Wilkins, pp. 1279–1306, 1997.
  • V.G. Kaklamani, G. Variopoulos, and P.G. Kaklamanis, Behcet's disease, Semin. Arthritis Rheum., 27: 197–217, 1998.
  • R. Rajendram and N.A. Rao, Molecular mechanisms in Behcet's disease, Br. J. Ophthalmol., 87: 1199–1200, 2003.
  • N. Sugi-Ikai, M. Nakazawa, S. Nakamura, S. Ohno, and M. Minami, Increased frequencies of interleukin-2- and interferon-gamma-producing T cells in patients with active Behcet's disease, Invest. Ophthalmol. Vis. Sci., 39: 996–1004, 1998.
  • N. Suzuki, K. Nara, and T. Suzuki, Skewed Th1 responses caused by excessive expression of Txk, a member of the Tec family of tyrosine kinases, in patients with Behcet's disease, Clin. Med. Res., 4: 147–151, 2006.
  • K. Hamzaoui, K. Ayed, A. Slim, M. Hamza, and J. Touraine, Natural killer cell activity, interferon-gamma and antibodies to herpes viruses in patients with Behcet's disease, Clin. Exp. Immunol., 79: 28–34, 1990.
  • M.A. Frassanito, R. Dammacco, P. Cafforio, and F. Dammacco, Th1 polarization of the immune response in Behcet's disease: A putative pathogenetic role of interleukin-12, Arthritis Rheum., 42: 1967–1974, 1999.
  • K. Hamzaoui, A. Hamzaoui, F. Guemira, M. Bessioud, M. Hamza, and K. Ayed, Cytokine profile in Behcet's disease patients. Relationship with disease activity, Scand. J. Rheumatol., 31: 205–210, 2002.
  • H. Nagafuchi, M. Takeno, H. Yoshikawa, M.S. Kurokawa, K. Nara, E. Takada, C. Masuda, M. Mizoguchi, and N. Suzuki, Excessive expression of Txk, a member of the Tec family of tyrosine kinases, contributes to excessive Th1 cytokine production by T lymphocytes in patients with Behcet's disease, Clin. Exp. Immunol., 139: 363–370, 2005.
  • Y. Imamura, S.M. Kurokawa, H. Yoshikawa, K. Nara, E. Takada, C. Masuda, S. Tsukikawa, T. Ozaki, T. Matsuda, and N. Suzuki, Involvement of Th1 cell and heat shock protein 60 in the pathogenesis of intestinal Behcet's disease, Clin. Exp. Immunol., 139: 371–378, 2005.
  • E.D. Harris, Rheumatoid arthritis: Pathophysiology and implications for treatment, N. Engl. J. Med., 322: 1277–1289, 1990.
  • J. Dudler and A.K. So, T cells and related cytokines, Curr. Opin. Rheumatol., 10: 207–211, 1998.
  • M.L. Toh and P. Miossec, The role of T cells in rheumatoid arthritis: New subsets and new targets, Curr. Opin. Rheumatol., 19: 284–288, 2007.
  • P. Miossec and W. van den Berg, Th1/Th2 cytokine balance in arthritis, Arthritis Rheum., 40: 2105–2115, 1997.
  • F. Brennan and J. Beech, Update on cytokines in rheumatoid arthritis, Curr. Opin. Rheumatol., 19: 296–301, 2007.
  • J. Furuzawa-Carballeda, M.I. Vargas-Rojas, and A.R. Cabral, Autoimmune inflammation from the Th17 perspective, Autoimmun. Rev., 6: 169–175, 2007.
  • D.Y. Leung, Atopic dermatitis: The skin as a window into the pathogenesis of chronic allergic diseases, J. Allergy Clin. Immunol., 96: 302– 318, 1995.
  • N. Novak and T. Bieber, Allergic and nonallergic forms of atopic diseases, J. Allergy Clin. Immunol., 112: 252–262, 2003.
  • J.P. Allam and N. Novak, The pathophysiology of atopic eczema, Clin. Exp. Dermatol., 31: 89–93, 2006.
  • M. Akdis, A. Trautmann, S. Klunker, I. Daigle, U.C. Kucuksezer, W. Deglmann, R. Disch, K. Blaser, and C.A. Akdis, T helper (Th) 2 predominance in atopic diseases is due to preferential apoptosis of circulating memory/effector Th1 cells, FASEB J., 17: 1026–1035, 2003.
  • F.C. van Reijsen, C.A. Bruijnzeel-Koomen, F.S. Kalthoff, E. Maggi, S. Romagnani, J.K. Westland, and G.C. Mudde, Skin-derived aeroallergen-specific T-cell clones of Th2 phenotype in patients with atopic dermatitis, J. Allergy Clin. Immunol., 90: 184–193, 1992.
  • G. Del Prete, E. Maggi, P. Parronchi, et al. IL-4 is an essential factor for the IgE synthesis induced in vitro by human T-cell clones and their supernatants, J. Immunol., 140: 4193–4198, 1988.
  • D. Vercelli, H.H. Jabara, R.P. Lauener, and R.S. Geha, IL-4 inhibits the synthesis of IFN-gamma and induces the synthesis of IgE in human mixed lymphocyte cultures, J. Immunol., 144: 570–573, 1990.
  • W.S. Alexander and D.J. Hilton, The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response, Annu. Rev. Immunol., 22: 503–529, 2004.
  • D.L. Krebs and D.J. Hilton, SOCS: Physiological suppressors of cytokine signaling, J. Cell. Sci., 113: 2813–2819,2000.
  • Y. Seki, K. Hayashi, A. Matsumoto, , et al., Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation, Proc. Natl. Acad. Sci. U. S. A., 99: 13003–13008, 2002.
  • M.L. Tang, A.S. Kemp, J. Thorburn, and D.J. Hill, Reduced interferon-gamma secretion in neonates and subsequent atopy, Lancet., 344: 983–985, 1994.
  • S.Y. Liao, T.N. Liao, B.L. Chiang, M.S. Huang, C.C. Chen, C.C. Chou, and K.H. Hsieh, Decreased production of IFN-gamma and increased production of IL-6 by cord blood mononuclear cells of newborns with a high risk of allergy, Clin. Exp. Allergy, 26: 397–405, 1996.
  • S. Arakawa, Y. Hatano, and K. Katagiri, Differential expression of mRNA for Th1 and Th2 cytokine-associated transcription factors and suppressors of cytokine signalling in peripheral blood mononuclear cells of patients with atopic dermatitis, Clin. Exp. Immunol., 135: 505–510, 2004.
  • M. Takeno, H. Yoshikawa, M. Kurokawa, Y. Takeba, J.I. Kashiwakura, M. Sakaguchi, H. Yasueda, and N. Suzuki, Th1-dominant shift of T cell cytokine production, and subsequent reduction of serum immunoglobulin E response by administration in vivo of plasmid expressing Txk/Rlk, a member of Tec family tyrosine kinases, in a mouse model, Clin. Exp. Allergy, 34: 965–70, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.