336
Views
7
CrossRef citations to date
0
Altmetric
Original

Clinical Potential of Targeting Bruton's Tyrosine Kinase

Pages 43-69 | Published online: 03 Aug 2009

REFERENCES

  • Leukemia and Lymphoma Society. Leukemia, lymphoma, myeloma facts, 2006–2007, www.leukemia-lymphoma.org Available at
  • National Cancer Institute. A snapshot of leukemia, http://planning.cancer.gov/disease/snapshots.shtml Available at
  • National Cancer Institute, http://seer.cancer.gov Available at
  • National Cancer Institute, www.cancer.gov Leukemia. Available at
  • National Cancer Institute. American Cancer Society. What are the key statistics about acute lymphoblastic leukemia, www.cancer.org Available at
  • American Cancer Society. What are the key statistics about chronic lymphocytic leukemia, www.cancer.org Available at
  • Gaynon P. S. Childhood acute lymphoblastic leukaemia and relapse. Br. J. Haematol. 2005; 131: 579–587
  • Gaynon P., Trigg M., Uckun F. M. Childhood acute lymphoblastic leukemia. Cancer Medicine Fifth ed., James Holland, Emil Frei, Robert Bast. B. C. Decker, OntarioCanada 2000
  • Pui C. H., Evans W. E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 2006; 354: 166–178
  • Leukemia and Lymphoma Society. Leukemia facts and statistics, http://www.leukemia-lymphoma.org/all_page?item_id=9346 Available at
  • Uckun F. M., Morar S. Q. Vinorelbine-based salvage chemotherapy for therapy-refractory aggressive leukemias. Br. J. Hematol. 2006; 135: 500–508
  • Chessells J. M., Veys P., Kempski H., Henley P., Leiper A., Webb D., Hann I. M. Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br. J. Haematol., 2003; 123: 396–405
  • Gaynon P. S. Childhood acute lymphoblastic leukaemia and relapse. Br. J. Haematol. 2005; 131: 579–587
  • Uckun F. M., Nachman J. B., Sather H. N., Sensel M. G., Kraft P., Steinherz P. G., Lange B., Hutchinson R., Reaman G. H., Gaynon P. S., et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children's Cancer Group. Cancer, 1998; 83: 2030–2039
  • Vilmer E., Suciu S., Ferster A., Bertrand Y., Cave H., Thyss A., Benoit Y., Dastugue N., Fournier M., Souillet G., et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia, 2000; 14: 2257–2266
  • Einsiedel H. G., von Stackelberg A., Hartmann R., Fengler R., Schrappe M., Janka-Schaub G., Mann G., Hahlen K., Gobel U., Klingebiel T., et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J. Clin. Oncol., 2005; 23: 7942–7950
  • Pui C. H., Evans W. E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 2006; 354: 166–178
  • Nachman J. B., Sather H. N., Sensel M. G., et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N. Engl. J. Med. 1998; 338: 1663–1671
  • Gaynon P. S., Trigg M. E., Heerema N. A., et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia, 2000; 14: 2223–2233
  • Kamps W. A., Bokkerink J. P., Hakvoort-Cammel F. G., et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996). Leukemia, 2002; 16: 1099–1111
  • Silverman L. B., Gelber R. D., Dalton V. K., et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91–0. Blood, 2001; 97: 1211–1218
  • Vilmer E., Suciu S., Ferster A., et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Leukemia, 2000; 14: 2257–2266
  • Gustafsson G., Schmiegelow K., Forestier E., et al. Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of central nervous system irradiation. Leukemia, 2000; 14: 2267–2275
  • Uckun F. M., Sensel M. G., Sun L., Steinherz P. G., Trigg M. E., Heerema N. A., Sather H. N., Reaman G. H., Gaynon P. S. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood 1998; 91: 735–746
  • Larson R. A. The U. S. trials in adult acute lymphoblastic leukemia. Ann. Hematol. 2004; 83: S127–S128, (Suppl 1)
  • Annino L., Vegna M. L., Camera A., et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood, 2002; 99: 863–871
  • Goekbuget N., Arnold R., Buechner T., et al. Intensification of induction and consolidation improves only subgroups of adult ALL: analysis of 1200 patients in GMALL study 05/93. Blood 2001; 98: 802
  • Kantarjianm H., Thomas D., O'Brien S., et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer 2004; 101: 2788–2801
  • Thomas X., Boiron J. M., Huguet F., et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J. Clin. Oncol. 2004; 22: 4075–4086
  • Abbott B. L. Chronic lymphocytic leukemia: recent advances in diagnosis and treatment. Oncologist 2006; 11: 21–30
  • Tolomeo M., Simoni D. Drug resistance and apoptosis in cancer treatment: development of new apoptosis-inducing agents active in drug resistant malignancies. Curr. Med. Chem. Anti-Cancer Agents 2002; 2: 387–401
  • Gentile M., Mauro F. R., Guarini A., Foa R. New developments in the diagnosis, prognosis and treatment of chronic lymphocytic leukemia. Curr. Opin. Oncol. 2005; 17: 597–604
  • Krishnan B., Matutes E., Dearden C. Prolymphocytic leukemias. Semin. Oncol. 2006; 33: 257–263
  • Byrd J. C., Lin T. S., Grever M. R. Treatment of relapsed chronic lymphocytic leukemia: old and new therapies. Semin. Oncol. 2006; 33: 210–219
  • Abbott B. L. Chronic lymphocytic leukemia: recent advances in diagnosis and treatment. Oncologist 2006; 11: 21–30
  • Tsimberidou A. M., Keating M. J. Richter's transformation in chronic lymphocytic leukemia. Semin. Oncol. 2006; 33: 250–256
  • Wierda W. G., O'Brien S. M. Initial therapy for patients with chronic lymphocytic leukemia. Semin. Oncol. 2006; 33: 202–209
  • Uckun F. M. Treating Chronic Leukemias. Minnesota Physician 2002; 16: 14
  • Evrard S., Gaussem P., Helley D., Darnige L. [Prognostic factors in chronic lymphocytic leukaemia: contribution of recent biological markers]. Ann. Biol. Clin. (Paris) 2005; 63: 589–597
  • Molica S., Vitelli G., Levato D., Giannarelli D., Vacca A., Cuneo A., Ribatti D., Digiesi G. Serum angiogenin is not elevated in patients with early B-cell chronic lymphocytic leukemia but is prognostic factor for disease progression. Eur. J. Haematol. 2004; 73: 36–42
  • Korte W., Cogliatti S. [Chronic lymphocytic leukemia–the old and the new]. Ther. Umsch. 2004; 61: 151–156
  • Pangalis G. A., Vassilakopoulos T. P., Dimopoulou M. N., Siakantaris M. P., Kontopidou F. N., Angelopoulou M. K. B-chronic lymphocytic leukemia: practical aspects. Hematol. Oncol. 2002; 20: 103–146
  • Faria de J. R., de Oliveira J. S., Delbone de Faria R. M., Silva M. R., Goihman S., Yamamoto M., et al. Prognosis related to staging systems for chronic lymphocytic leukemia. Sao Paulo Med. J., 2000; 118: 83–88
  • Moreno C., Villamor N., Colomer D., Esteve J., Martino R., Nomdedeu J., Bosch F., Guillermo Lopez-A., Campo E., Sierra J., et al. Allogeneic stem-cell transplantation may overcome the adverse prognosis of unmutated VH gene in patients with chronic lymphocytic leukemia. J. Clin. Oncol., 2005; 23: 3433–3438
  • Lin K., Glenn M. A., Harris R. J., Duckworth A. D., Dennett S., Cawley J. C., Zuzel M., Slupsky J. R. c-Abl expression in chronic lymphocytic leukemia cells: clinical and therapeutic implications. Cancer Res. 2006; 66: 7801–7809
  • Rodriguez A., Martinez N., Camacho F. I., Ruiz-Ballesteros E., Algara P., Garcia J. F., Menarguez J., Alvaro T., Fresno M. F., Solano F., et al. Variability in the degree of expression of phosphorylated IkappaBalpha in chronic lymphocytic leukemia cases with nodal involvement. Clin. Cancer Res., 2004; 10: 6796–6806
  • American Cancer Society. What are the key statistics about non-hodgkin's lymphoma, www.cancer.org Available at
  • Vassilev A. O., Tibbles H. E., DuMez D., Venkatachalam T. K., Uckun F. M. Targeting JAK3 and BTK tyrosine kinases with rationally-designed inhibitors. Curr. Drug Targets 2006; 3: 327–343
  • Tibes R., Trent J., Kurzrock R. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 357
  • Chalandon Y., Schwaller J. Targeting mutated protein tyrosine kinases and their signaling pathways in hematologic malignancies. Haematologica 2005; 90: 949
  • Traxler P. Tyrosine kinases as targets in cancer therapy—successes and failures. Expert Opin Ther Targets 2003; 7: 215
  • Krause D. S., Van R. A. Etten. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005; 353: 172
  • Uckun F. M., Tibbles H. E., Vassilev A. O. Bruton's tyrosine kinase as a new therapeutic target. Curr. Med. Chem. 2007, (In press)
  • Schwartzberg P. L., Finkelstein L. D., Readinger J. A. TEC-family kinases: regulators of T-helper-cell differentiation. Nat. Rev. Immunol. 2005; 5: 284
  • Vassilev A. O., Uckun F. M. Therapeutic potential of inhibiting Bruton's tyrosine kinase, (BTK). Curr. Pharm. Des. 2004; 10: 1757
  • Kurosaki T., Tsukada S. BLNK: connecting Syk and Btk to calcium signals. Immunity 2000; 12: 1
  • Tsukada S., Simon M. I., Witte O. N., et al. Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase. Proc. Natl. Acad. Sci. USA. 1994; 91: 11256
  • Lindvall J. M., Blomberg K. E., Valiaho J., et al. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 2005; 203: 200
  • Vassilev A., Ozer Z., Navara C., et al. Bruton's tyrosine kinase as an inhibitor of the Fas/CD95 death-inducing signaling complex. J. Biol. Chem. 1999; 274: 1646
  • Uckun F. M. Bruton's tyrosine kinase (BTK) as a dual-function regulator of apoptosis. Biochem. Pharmacol. 1998; 56: 683
  • Uckun F. M., Waddick K. G., Mahajan S., et al. BTK as a mediator of radiation-induced apoptosis in DT-40 lymphoma B cells. Science 1996; 273: 1096
  • Bajpai U. D., Zhang K., Teutsch M., et al. Bruton's tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J. Exp. Med. 2000; 191: 1735
  • Kawakami Y., Miura T., Bissonnette R., et al. Bruton's tyrosine kinase regulates apoptosis and JNK/SAPK kinase activity. Proc. Natl. Acad. Sci. USA. 1997; 94: 3938
  • Mahajan S., Vassilev A., Sun N., et al. Transcription factor STAT5A is a substrate of Bruton's tyrosine kinase in B cells. J. Biol. Chem. 2001; 276: 31216
  • Varnai P., Rother K. I., Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J. Biol. Chem. 1999; 274: 10983
  • Petro J. B., Khan W. N. Phospholipase C-gamma 2 couples Bruton's tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. J. Biol. Chem. 2001; 276: 1715
  • Qiu Y., Kung H. J. Signaling network of the Btk family kinases. Oncogene. 2000; 19: 5651
  • Rajaiya J., Nixon J. C., Ayers N., Desgranges Z. P., Roy A. L., Webb C. F. Induction of immunoglobulin heavy-chain transcription through the transcription factor Bright requires TFII-I. Mol. Cell. Biol. 2006; 26: 4758–4768
  • Brunner C., Wirth T. Btk expression is controlled by Oct and BOB.1/OBF.1. Nucleic Acids Res. 2006; 34: 1807–1815
  • Tahvanainen J., Pykalainen M., Kallonen T., Lahteenmaki H., Rasool O., Lahesmaa R. Enrichment of nucleofected primary human CD4+ T cells: a novel and efficient method for studying gene function and role in human primary T helper cell differentiation. J. Immunol. Methods 2006; 310: 30–39
  • Popescu F. D. Antisense-and RNA interference-based therapeutic strategies in allergy. J. Cell. Mol. Med. 2005; 9: 840–853
  • Filen J. J., Nyman T. A., Korhonen J., Goodlett D. R., Lahesmaa R. Characterization of microsomal fraction proteome in human lymphoblasts reveals the down-regulation of galectin-1 by interleukin-12. Proteomics 2005; 5: 4719–4732
  • Iwaki S., Tkaczyk C., Satterthwaite A. B., Halcomb K., Beaven M. A., Metcalfe D. D., Gilfillan A. M. Btk plays a crucial role in the amplification of Fc epsilonRI-mediated mast cell activation by kit. J. Biol. Chem. 2005; 280: 40261–40270
  • Lindvall J. M., Blomberg K. E., Wennborg A., Smith C. I. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells. Cell Immunol. 2005; 235: 46–55
  • Doyle S. L., Jefferies C. A., O'Neill L. A. Bruton's tyrosine kinase is involved in p65-mediated transactivation and phosphorylation of p65 on serine 536 during NFkappaB activation by lipopolysaccharide. J. Biol. Chem., 2005; 280: 23496–23501
  • Rajaiya J., Hatfield M., Nixon J. C., Rawlings D. J., Webb C. F. Bruton's tyrosine kinase regulates immunoglobulin promoter activation in association with the transcription factor Bright. Mol. Cell Biol. 2005; 25: 2073–2084
  • Pykalainen M., Kinos R., Valkonen S., Rydman P., Kilpelainen M., Laitinen L. A., Karjalainen J., Nieminen M., Hurme M., Kere J., Laitinen T., Lahesmaa R. Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high serum IgE phenotypes. J. Allergy Clin. Immunol. 2005; 115: 80–87
  • Takatsu K. [Role of interleukin-5 in immune regulation and inflammation]. Nippon Rinsho 2004; 62: 1941–1951
  • Ruiz-Ballesteros E., Mollejo M., Rodriguez A., Camacho F. I., Algara P., Martinez N., Pollan Sanchez-A. Aguilera M., Menarguez J., Campo E., et al. Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Blood, 2005; 106: 1831–1838
  • Kaku H., Horikawa K., Obata Y., Kato I., Okamoto H., Sakaguchi N., Gerondakis S., Takatsu K. NF-kappaB is required for CD38-mediated induction of C(gamma)1 germline transcripts in murine B lymphocytes. Int. Immunol. 2002; 14: 1055–1064
  • Mohamed A. J., Vargas L., Nore B. F., et al. Nucleocytoplasmic shuttling of Bruton's tyrosine kinase. J. Biol. Chem. 2000; 275: 40614
  • Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 2005; 103: 1551–1560
  • Fulda S., Debatin K. M. Targeting apoptosis pathways in cancer therapy. Curr Cancer Drug Targets 2004; 4: 569–576
  • Ghobrial I. M., Witzig T. E., Adjei A. A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 2005; 55: 178–194
  • Uckun F. M., Pallisgaard N., Hokland P., Navara C., Narla R., Gaynon P. S., Sather H., Heerema N. Expression of TEL-AML1 fusion transcripts and response to induction therapy in standard risk acute lymphoblastic leukemia. Leuk Lymphoma. 2001; 42(1–2)41–56
  • Narla R., Navara C., Sarquis M., Uckun F. M. Chemosensitivity of TEL-AML1 fusion transcript positive acute lymphoblastic leukemia cells. Leuk Lymphoma. 2001; 41(5–6)615–623
  • Holleman A., et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N. Engl. J. Med. 2004; 351: 533–542
  • Wuchter C., et al. In vitro susceptibility to dexamethasone-and doxorubicin-induced apoptotic cell death in context of maturation stage, responsiveness to interleukin 7, and early cytoreduction in vivo in childhood T-cell acute lymphoblastic leukemia. Blood 2002; 99: 4109–4115
  • Tibbles H., Vassilev A., Uckun F. M. A dual function anti-leukemic agent with anti-thrombotic activity. Leuk Lymphoma 2002; 43: 1121–1127
  • Kaufmann S. H., Vaux D. L. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene 2003; 22: 7414–7430
  • Feldhahn N., Klein F., Mooster J. L., et al. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J. Exp. Med. 2005; 201: 1837
  • Mao C., Zhou M., Uckun F. M. Crystal structure of Bruton's tyrosine kinase domain suggests a novel pathway for activation and provides insights into the molecular basis of X-linked agammaglobulinemia. J. Biol. Chem. 2001; 276: 41435
  • Mahajan S., Ghosh S., Sudbeck E. A., et al. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J. Biol. Chem. 1999; 274: 9587
  • Uckun F. M., Zheng Y., Cetkovic-Cvrlje M., et al. In vivo pharmacokinetic features, toxicity profile, and chemosensitizing activity of alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide (LFM-A13), a novel antileukemic agent targeting Bruton's tyrosine kinase. Clin. Cancer Res. 2002; 8: 1224
  • Kim Y. J., Sekiya F., Poulin B., Bae Y. S., Rhee S. G. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol. Cell. Biol. 2004; 24: 9986–9999
  • Heinonen J. E., Smith C. I., Nore B. F. Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett. 2002; 527: 274–278
  • Glassford J., Soeiro I., Skarell S. M., Banerji L., Holman M., Klaus G. G., Kadowaki T., Koyasu S., Lam E. W. BCR targets cyclin D2 via Btk and the p85alpha subunit of PI3-K to induce cell cycle progression in primary mouse B cells. Oncogene 2003; 22: 2248–2259
  • Feldhahn N., Rio P., Soh B. N., Liedtke S., Sprangers M., Klein F., Wernet P., Jumaa H., Hofmann W. K., Hanenberg H., et al. Deficiency of Bruton's tyrosine kinase in B cell precursor leukemia cells. Proc. Natl. Acad. Sci. USA 2005; 102: 13266–13271
  • Fernandes M. J., Lachance G., Pare Rollet-E. Labelle G., Naccache P. H. Signaling through CD16b in human neutrophils involves the Tec family of tyrosine kinases. J. Leukoc. Biol., 2005; 78: 524–532
  • Uckun F. M., Dibirdik I., Qazi S., Vassilev A., Ma H., Mao C., Benyumov A., Emami K. H. In vitro and in vivo anti-breast cancer activity of LFM-A13, a potent inhibitor of polo-like kinase (PLK). Bioorg. Med. Chem. 2006
  • Tibbles H. E., Samuel P., Erbeck D., Mahajan S., Uckun F. M. In vivo toxicity and antithrombotic profile of the oral formulation of the antileukemic agent, LFM-A13-F. Arzneimittelforschung/Drug Res. 2004; 54(6)330–339
  • Uckun F. M., Tibbles H., Venkatachalam T. K., DuMez D., Erbeck D. Preclinical toxicity and pharmacokinetics of the BTK-targeting antileukemic drug candidate, α-cyano-β-hydroxy-β-methyl-N-(2,5-dibromophenyl) propenamide (LFM-A13). Arzneimittelforschung. 2007; 57(1)31–46
  • “BTK inhibitors and methods for their identification and use.”. US Patent No. 6365626, April 2, 2002
  • Conley M. E., Broides A., Hernandez-Trujillo V., Howard V., Kanegane H., Miyawaki T., Shurtleff S. A. Genetic analysis of patients with defects in early B-cell development. Immunol. Rev. 2005; 203: 216–234
  • Lindvall J. M., Blomberg K. E., Valiaho J., Vargas L., Heinonen J. E., Berglof A., Mohamed A. J., Nore B. F., Vihinen M., Smith C. I. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 2005; 203: 200–215
  • Verbruggen G., De Backer S., Deforce D., Demetter P., Cuvelier C., Veys E., Elewaut D. X linked agammaglobulinaemia and rheumatoid arthritis. Ann. Rheum. Dis. 2005; 64: 1075–1078
  • Liljeroos M., Vuolteenaho R., Morath S., Hartung T., Hallman M., Ojaniemi M. Bruton's tyrosine kinase together with PI 3-kinase are part of Toll-like receptor 2 multiprotein complex and mediate LTA induced Toll-like receptor 2 responses in macrophages. Cell. Signal. 2007; 19: 625–633
  • Horwood N. J., Page T. H., McDaid J. P., Palmer C. D., Campbell J., Mahon T., Brennan F. M., Webster D., Foxwell B. M. Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J. Immunol. 2006; 176: 3635–3641
  • Horwood N. J., Mahon T., McDaid J. P., Campbell J., Mano H., Brennan F. M., Webster D., Foxwell B. M. Bruton's tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor α production. J. Exp. Med. 2003; 197: 1603–1611
  • Gilbert C., Levasseur S., Desaulniers P., Dusseault A. A., Thibault N., Bourgoin S. G., Naccache P. H. Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. II. Effects of LFM-A13, a specific Btk inhibitor. J. Immunol. 2003; 170: 5235–5243
  • Fernandes M. J., Lachance G., Pare G., Rollet-Labelle E., Naccache P. H. Signaling through CD16b in human neutrophils involves the Tec family of tyrosine kinases. J. Leukoc. Biol. 2005; 78: 524–532
  • Matsuo K., Hotokezaka H., Ohara N., Fujimura Y., Yoshimura A., Okada Y., Hara Y., Yoshida N., Nakayama K. Analysis of amphotericin B-induced cell signaling with chemical inhibitors of signaling molecules. Microbiol. Immunol. 2006; 50: 337–347
  • Olsson S., Sundler R. Different roles for non-receptor tyrosine kinases in arachidonate release induced by zymosan and Staphylococcus aureus in macrophages. J. Inflamm. (Lond) 2006; 3: 8
  • http://www.medicinenet.com/asthma/page2.htm MedicineNet.com Asthma information. Available at
  • American Lung Association. Epidemiology & Statistics Unit. Trends in Asthma Morbidity and Mortality. 2005, http://www.lungusa.org Available at
  • Heinonen J. E., Smith C. I., Nore B. F. Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett. 2002; 527: 274–278
  • Thomas E. D. Stem cell transplantation: past, present and future. Arch. Immunol. Ther. Exp. (Warsz) 1997; 45: 1–5
  • O'Reilly R. J., Papadopoulos E. B. Allogeneic Transplantation., 4th ed. William and Wilkins, Baltimore 1997
  • Trigg M. E. Bone marrow transplantation for treatment of leukemia in children. Pediatr Clin. North Am. 1988; 35: 933–948
  • Ramsay N. K., Kersey J. H. Indications for marrow transplantation in acute lymphoblastic leukemia. Blood 1990; 75: 815–818
  • Butturini A., Gale R. P. Allogeneic bone marrow transplantation for leukemia. Curr. Opin. Hematol. 1994; 1: 402–405
  • Henslee-Downey P. J. Mismatched bone marrow transplantation. Curr. Opin. Oncol. 1995; 7: 115–121
  • Leelasiri A., Greer J. P., Stein R. S., Goodman S., Brandt S. A., Edwards J. R., Wolff S. N. Graft-versus-host-disease prophylaxis for matched unrelated donor bone marrow transplantation: comparison between cyclosporine-methotrexate and cyclosporine-methotrexate-methylprednisolone. Bone Marrow Transplant 1995; 15: 401–405
  • Porter D. L., Jr., Collins R. H., Shpilberg O., Drobyski W. R., Connors J. M., Sproles A., Antin J. H. Long-term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol. Blood Marrow Transplant., 1999; 5: 253–261
  • Orchard P. J., Miller J. S., McGlennen R., Davies S. M., Ramsay N. K. Graft-versus-leukemia is sufficient to induce remission in juvenile myelomonocytic leukemia. Bone Marrow Transplant 1998; 22: 201–3
  • Slavin S., Nagler A., Shapira M., Panigrahi S., Samuel S., Or A. Non-myeloablative allogeneic stem cell transplantation focusing on immunotherapy of life-threatening malignant and non-malignant diseases. Crit. Rev. Oncol. Hematol. 2001; 39: 25–29
  • Champlin R. Nonmyeloablative chemotherapy with allogeneic hematopoietic transplantation as adoptive immunotherapy for malignancies. Hemotology. ASH Education Program Book 1999; 413–416
  • Spitzer T. R., McAfee S., Sackstein R., Colby C., Toh H. C., Multani P., Saidman S., Weyouth D. W., Preffer F., Poliquin C., Foley A., et al. Intentional induction of mixed chimerism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor bone marrow transplantation for refractory hematologic malignancies. Biol. Blood Marrow Transplant, 2000; 6: 309–320
  • Martin P. J., Hansen J. A., Torok-Storb B., Durnam D., Przepiorka D., O'Quigley J., Sanders J., Sullivan K. M., Witherspoon R. P., Deeg H. J., et al. Graft failure in patients receiving T-cell depleted HLA-identical allogeneic marrow transplants. Bone Marrow Transplant, 1988; 3: 445–456
  • Marmont A. M., Horowitz M., Gale R., Sobocinski K., Ash R., van Bekkum D., Champlin R., Dicke K., Goldman J., Good R., Herzig R., Hong R., et al. T cell depletion of HLA-identical transplants in leukemia. Blood, 1991; 78: 2120–2130
  • Poynton C. T cell depletion in bone marrow transplantation. Bone Marrow Transplant 1988; 3: 265–279
  • Berenson R. J., Shpall E. J., Auditore-Hargreaves K., Heimfeld S., Jacobs C., Krieger M. S. Transplantation of CD34+ hematopoietic progenitor cells. Cancer Invest, 1996; 14: 589–596
  • O'Reilly R. J. Allogeneic bone marrow transplantation: current status and future directions. Blood 1983; 62: 941–964
  • Apperly J. F., Jones L., Hale G., Waldmann H., Hows J., Rombos Y., Tsatalas C., Marcus R. E., Goolden A. W., Gordon-Smith E. C., et al. Bone marrow transplantation for patients with chronic myeloid leukemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukemic relapse. Bone Marrow Transplant, 1986; 1: 53–60
  • Cetkovic-Cvrlje M., Uckun F. M. Dual targeting of Bruton's tyrosine kinase and Janus kinase 3 with rationally designed inhibitors prevents graft-versus-host disease (GVHD) in a murine allogeneic bone marrow transplantation model. Br. J. Haematol. 2004; 126: 821–827
  • Sierko E., Wojtukiewicz M. Z. Platelets and angiogenesis in malignancy. Semin Thromb. Hemost. 2004; 30: 95–108
  • Zacharski L. R., Prandoni P., Monreal M. Warfarin versus low-molecular-weight heparin therapy in cancer patients. Oncologist 2005; 10: 72–79
  • Ameriso S. F. [The treatment of cerebrovascular disorders with anticoagulants and platelet aggregation inhibitors]. Rev. Neurol., 1999; 29: 1285–1290
  • Michiels J. J. Aspirin and platelet-lowering agents for the prevention of vascular complications in essential thrombocythemia. Clin. Appl. Thromb. Hemost. 1999; 5: 247–251
  • Barsness G. W., Buller C., Ohman E. M., Schechter E., Pucillo A., Taylor M. A., Miller M. J., Reiner J. S., Churchill D., Chandler A. B., et al. Reduced thrombus burden with abciximab delivered locally before percutaneous intervention in saphenous vein grafts. Am. Heart J., 2000; 139: 824–829
  • Foussas S., Alexopoulos D., Stefanadis C., Olympios C., Voudris V., Hatzimiltiadis S., Sionis D., Vavouranakis E., Vrahatis A., Fakiolas C., et al. Antiplatelet is superior to anticoagulant treatment after coronary stenting: fewer coronary and other events within 30 days after stenting. Angiology, 2000; 51: 289–294
  • Fredrickson B. J., Turner N. A., Kleiman N. S., Graziadei N., Maresh K., Mascelli M. A., Effron M. B., McIntire L. V. Effects of abciximab, ticlopidine, and combined Abciximab/Ticlopidine therapy on platelet and leukocyte function in patients undergoing coronary angioplasty. Circulation 2000; 101: 1122–1129
  • Guilmot J. L., Diot E., Gruel Y. [Contribution of platelet aggregation inhibitors in the prevention of complications of atherothrombosis]. Presse Med. 2000; 29: 709–716
  • Roe M. T., Sapp S. K., Lincoff A. M. Glycoprotein IIb/IIIa inhibitors in acute coronary syndromes. Cleve Clin. J. Med. 2000; 67: 131–140
  • Sukavaneshvar S., Solen K. A., Mohammad S. F. An in-vitro model to study device-induced thrombosis and embolism: evaluation of the efficacy of tirofiban, aspirin, and dipyridamole. Thromb Haemost 2000; 83: 322–326
  • Segal J. B., McNamara R. L., Miller M. R., Kim N., Goodman S. N., Powe N. R., Robinson K. A., Bass E. B. Prevention of thromboembolism in atrial fibrillation. A meta-analysis of trials of anticoagulants and antiplatelet drugs. J. Gen. Intern. Med. 2000; 15: 56–67
  • Sugidachi A., Asai F., Ogawa T., Inoue T., Koike H. The in vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties. Br. J. Pharmacol. 2000; 129: 1439–1446
  • Verstraete M. Synthetic inhibitors of platelet glycoprotein IIb/IIIa in clinical development. Circulation 2000; 101: E76–E80
  • Yuk D. Y., Lee H. Y., Ryu C. K., Hong J. T., Kang W. S., Yoo H. S., Yun Y. P. Studies on the antithrombotic and antiplatelet activities of NQ304, a newly synthesized naphthoquinone derivative. Arzneimittelforschung 2000; 50: 254–259
  • Tibbles H. E., Samuel P., Erbeck D., Mahajan S., Uckun F. M. In vivo toxicity and antithrombotic profile of the oral formulation of the antileukemic agent, LFM-A13-F. Arzneimittelforschung 2004; 54: 330–339
  • Gibbins J. M., Okuma M., Farndale R., Barnes M., Watson S. P. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett. 1997; 413: 255–259
  • Moroi M., Jung S. M. Platelet receptors for collagen. Thromb Haemost 1997; 78: 439–444
  • Tsuji M., Ezumi Y., Arai M., Takayama H. A novel association of Fc receptor gamma-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J. Biol. Chem. 1997; 272: 23528–23531
  • Quek L. S., Bolen J., Watson S. P. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr. Biol. 1998; 8: 1137–1140
  • Uckun F. M., Vassilev A. O., Bartell S., Zheng Y., Mahajan S., Tibbles H. E. The anti-leukemic bruton's tyrosine kinase inhibitor LFM-A13 prevents fatal thromboembolism. Leukemia Lymphoma 2003; 44: 1569–1577
  • Takaya N., Katoh Y., Iwabuchi K., Hayashi I., Konishi H., Itoh S., Okumura K., Ra C., Nagaoka I., Daida H. Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2005; 39: 856–864
  • Wymann M. P., Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys Acta 1998; 1436: 127–150
  • Oda A., Ikeda Y., Ochs H. D., Druker B. J., Ozaki K., Handa M., Ariga T., Sakiyama Y., Witte O. N., Wahl M. I. Rapid tyrosine phosphorylation and activation of Bruton's tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking. Blood 2000; 95: 1663–1670
  • Gibbins J. M. Platelet adhesion signalling and the regulation of thrombus formation. J. Cell. Sci. 2004; 117: 3415–3425
  • Watson S. Collagen receptor signalling in platelets:extending the role of the ITAM. Immunology Today 1998; 19: 260–264
  • Guinamard R., Aspenstrom P., Fougereau M., Chavrier P., Guillemot J. C. Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett. 1998; 434: 431–436
  • Snapper S. B., Rosen F. S. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu. Rev. Immunol. 1999; 17: 905–929
  • Gross B. S., Wilde J. I., Quek L., Chapel H., Nelson D. L., Watson S. P. Regulation and function of WASp in platelets by the collagen receptor, glycoprotein VI. Blood 1999; 94: 4166–4176
  • Laffargue M., Ragab-Thomas J. M., Ragab A., Tuech J., Missy K., Monnereau L., Blank U., Plantavid M., Payrastre B., Raynal P., et al. Phosphoinositide 3-kinase and integrin signalling are involved in activation of Bruton tyrosine kinase in thrombin-stimulated platelets. FEBS Lett., 1999; 443: 66–70
  • Mukhopadhyay S., Ramars A. S., Dash D. Bruton's tyrosine kinase associates with the actin-based cytoskeleton in activated platelets. J. Cell Biochem. 2001; 81: 659–665
  • Mukhopadhyay S., Ramars A. S., Ochs H. D., Dash D. Bruton's tyrosine kinase is a substrate of calpain in human platelets. FEBS Lett. 2001; 505: 37–41
  • Redondo P. C., Amor Ben-N., Salido G. M., et al. Ca2+-independent activation of Bruton's tyrosine kinase is required for store-mediated Ca2+ entry in human platelets. Cell Signal. 2005; 17: 1011
  • Crosby D., Poole A. W. Interaction of Bruton's tyrosine kinase and protein kinase Ctheta in platelets. Cross-talk between tyrosine and serine/threonine kinases. J. Biol. Chem., 200; 277: 9958–9965
  • Mitchell L. G. A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with L-asparaginase. Cancer 2003; 97: 508
  • Gomes M. P., Deitcher S. R. Diagnosis of venous thromboembolic disease in cancer patients. Oncology (Huntingt) 2003; 17: 126

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.