169
Views
21
CrossRef citations to date
0
Altmetric
Original

Immunobiology of Stiff-Person Syndrome

&
Pages 79-92 | Published online: 03 Aug 2009

REFERENCES

  • Lang B., Dale R. C., Vincent A. New autoantibody mediated disorders of the central nervous system. Curr. Opin. Neurol. 2003; 16: 351–357
  • Levy L. M., Dalakas M. C., Floeter M. K. The stiff-person syndrome: an autoimmune disorder affecting neurotransmission of gamma-aminobutyric acid. Ann. Intern. Med. 1999; 131: 522–530
  • Raju R., Foote J., Banga J. P., Hall T. R., Padoa C. J., Dalakas M. C., Ortqvist E., Hampe C. S. Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients. J. Immunol. 2005; 175: 7755–7762
  • Murinson B. B., Vincent A. Stiff-person syndrome: autoimmunity and the central nervous system. CNS. Spectr. 2001; 6: 427–433
  • Moersch F. P., Woltman H. W. Progressive fluctuating muscular rigidity and spasm (“stiff-man” syndrome); report of a case and some observations in 13 other cases. Proc. Staff. Meet. Mayo Clin. 1956; 31: 421–427
  • Gordon E. E., Januszko D. M., Kaufman L. A critical survey of stiff-man syndrome. Am. J. Med. 1967; 42: 582–599
  • Lorish T. R., Thorsteinsson G., Howard F. M. Jr., Stiff-man syndrome updated. Mayo Clin. Proc. 1989; 64: 629–636
  • Goetz C. G., Klawans H. L. On the mechanism of sudden death in Moersch-Woltman syndrome. Neurology 1983; 33: 930–932
  • Blum P., Jankovic J. Stiff-person syndrome: an autoimmune disease. Mov Disord. 1991; 6: 12–20
  • Solimena M., Folli F., Denis-Donini S., Comi G. C., Pozza G., De Camilli P., Vicari A. M. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N. Engl. J. Med. 1988; 318: 1012–1020
  • Solimena M., Folli F., Aparisi R., Pozza G., De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N. Engl. J. Med. 1990; 322: 1555–1560
  • Butler M. H., Solimena M., Dirkx R., Jr., Hayday A., De Camilli P. Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome. J. Exp. Med. 1993; 178: 2097–2106
  • Dalakas M. C., Fujii M., Li M., McElroy B. The clinical spectrum of anti-GAD antibody-positive patients with stiff-person syndrome. Neurology 2000; 55: 1531–1535
  • Fenalti G., Law R. H., Buckle A. M., Langendorf C., Tuck K., Rosado C. J., Faux N. G., Mahmood K., Hampe C. S., Banga J. P., Wilce M., Schmidberger J., Rossjohn J., El Kabbani O., Pike R. N., Smith A. I., Mackay I. R., Rowley M. J., Whisstock J. C. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 2007; 14: 280–286
  • Asada H., Kawamura Y., Maruyama K., Kume H., Ding R. G., Kanbara N., Kuzume H., Sanbo M., Yagi T., Obata K. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. U. S.A 1997; 94: 6496–6499
  • Kash S. F., Johnson R. S., Tecott L. H., Noebels J. L., Mayfield R. D., Hanahan D., Baekkeskov S. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 14060–14065
  • Patel A. B., de Graaf R. A., Martin D. L., Battaglioli G., Behar K. L. Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo. J. Neurochem. 2006; 97: 385–396
  • Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990; 347: 151–156
  • Tuomi T., Rowley M. J., Knowles W. J., Chen Q. Y., McAnally T., Zimmet P. Z., Mackay I. R. Autoantigenic properties of native and denatured glutamic acid decarboxylase: evidence for a conformational epitope. Clin. Immunol. Immunopathol. 1994; 71: 53–59
  • Daw K., Ujihara N., Atkinson M., Powers A. C. Glutamic acid decarboxylase autoantibodies in stiff-man syndrome and insulin-dependent diabetes mellitus exhibit similarities and differences in epitope recognition. J. Immunol. 1996; 156: 818–825
  • Bjork E., Velloso L. A., Kampe O., Karlsson F. A. GAD autoantibodies in IDDM, stiff-man syndrome, and autoimmune polyendocrine syndrome type I recognize different epitopes. Diabetes 1994; 43: 161–165
  • Hawa M. I., Fava D., Medici F., Deng Y. J., Notkins A. L., De Mattia G., Leslie R. D. Antibodies to IA-2 and GAD65 in type 1 and type 2 diabetes: isotype restriction and polyclonality. Diabetes Care 2000; 23: 228–233
  • Lohmann T., Londei M., Hawa M., Leslie R. D. Humoral and cellular autoimmune responses in stiff person syndrome. Ann. N. Y. Acad. Sci. 2003; 998: 215–222
  • Tian J., Olcott A. P., Hanssen L. R., Zekzer D., Middleton B., Kaufman D. L. Infectious Th1 and Th2 autoimmunity in diabetes-prone mice. Immunol. Rev. 1998; 164: 119–127
  • Dinkel K., Meinck H. M., Jury K. M., Karges W., Richter W. Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann. Neurol. 1998; 44: 194–201
  • Levy L. M., Levy-Reis I., Fujii M., Dalakas M. C. Brain gamma-aminobutyric acid changes in stiff-person syndrome. Arch Neurol. 2005; 62: 970–974
  • Rakocevic G., Raju R., Dalakas M. C. Anti-glutamic acid decarboxylase antibodies in the serum and cerebrospinal fluid of patients with stiff-person syndrome: correlation with clinical severity. Arch. Neurol. 2004; 61: 902–904
  • Burns T. M., Phillips L. H., Jones H. R. Stiff person syndrome does not always occur with maternal passive transfer of GAD65 antibodies. Neurology 2005; 64: 399–400
  • Nemni R., Caniatti L. M., Gironi M., Bazzigaluppi E., De Grandis D. Stiff person syndrome does not always occur with maternal passive transfer of GAD65 antibodies. Neurology 2004; 62: 2101–2102
  • Vianello M., Tavolato B., Armani M., Giometto B. Cerebellar ataxia associated with anti-glutamic acid decarboxylase autoantibodies. Cerebellum 2003; 2: 77–79
  • Ramirez-Montealegre D., Chattopadhyay S., Curran T. M., Wasserfall C., Pritchard L., Schatz D., Petitto J., Hopkins D., She J. X., Rothberg P. G., Atkinson M., Pearce D. A. Autoimmunity to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Neurology 2005; 64: 743–745
  • Manto M. U., Laute M. A., Aguera M., Rogemond V., Pandolfo M., Honnorat J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann. Neurol. 2007; 61: 544–551
  • Alarcon-Segovia D., Ruiz-Arguelles A., Llorente L. Broken dogma: penetration of autoantibodies into living cells. Immunol. Today 1996; 17: 163–164
  • Wenthold R. J., Skaggs K. K., Reale R. R. Retrograde axonal transport of antibodies to synaptic membrane components. Brain Res. 1984; 304: 162–165
  • Vicari A. M., Folli F., Pozza G., Comi G. C., Comola M., Canal N., Besana C., Borri A., Tresoldi M., Solimena M. Plasmapheresis in the treatment of stiff-man syndrome. N. Engl. J. Med. 1989; 320: 1499
  • Brashear H. R., Phillips L. H. Autoantibodies to GABAergic neurons and response to plasmapheresis in stiff-man syndrome. Neurology 1991; 41: 1588–1592
  • Hao W., Davis C., Hirsch I. B., Eng L. J., Daniels T., Walsh D., Lernmark A. Plasmapheresis and immunosuppression in stiff-man syndrome with type 1 diabetes: a 2-year study. J. Neurol. 1999; 246: 731–735
  • De Camilli P., Thomas A., Cofiell R., Folli F., Lichte B., Piccolo G., Meinck H. M., Austoni M., Fassetta G., Bottazzo G. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J. Exp. Med. 1993; 178: 2219–2223
  • Butler M. H., Hayashi A., Ohkoshi N., Villmann C., Becker C. M., Feng G., De Camilli P., Solimena M. Autoimmunity to gephyrin in Stiff-Man syndrome. Neuron 2000; 26: 307–312
  • Sommer C., Weishaupt A., Brinkhoff J., Biko L., Wessig C., Gold R., Toyka K. V. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 2005; 365: 1406–1411
  • Raju R., Rakocevic G., Chen Z., Hoehn G., Semino-Mora C., Shi W., Olsen R., Dalakas M. C. Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome. Brain 2006; 129: 3270–3276
  • Ishizawa K., Komori T., Okayama K., Qin X., Kaneko K., Sasaki S., Iwata M. Large motor neuron involvement in Stiff-man syndrome: a qualitative and quantitative study. Acta Neuropathol. (Berl) 1999; 97: 63–70
  • Warich-Kirches M., Von Bossanyi P., Treuheit T., Kirches E., Dietzmann K., Feistner H., Wittig H. Stiff-man syndrome: possible autoimmune etiology targeted against GABA-ergic cells. Clin. Neuropathol. 1997; 16: 214–219
  • Christadoss P., Dauphinee M. J. Immunotherapy for myasthenia gravis: a murine model. J. Immunol. 1986; 136: 2437–2440
  • Raju R., Zhan W. Z., Karachunski P., Conti-Fine B., Sieck G. C., David C. Polymorphism at the HLA-DQ locus determines susceptibility to experimental autoimmune myasthenia gravis. J. Immunol. 1998; 160: 4169–4174
  • Nepom G. T. Class II antigens and disease susceptibility. Annu. Rev. Med. 1995; 46: 17–25
  • Quinn A., McInerney M., Huffman D., McInerney B., Mayo S., Haskins K., Sercarz E. T cells to a dominant epitope of GAD65 express a public CDR3 motif. Int. Immunol. 2006; 18: 967–979
  • Nepom G. T., Lippolis J. D., White F. M., Masewicz S., Marto J. A., Herman A., Luckey C. J., Falk B., Shabanowitz J., Hunt D. F., Engelhard V. H., Nepom B. S. Identification and modulation of a naturally processed T cell epitope from the diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hGAD65). Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 1763–1768
  • Hummel M., Durinovic-Bello I., Bonifacio E., Lampasona V., Endl J., Fessele S., Then B. F., Trenkwalder C., Standl E., Ziegler A. G. Humoral and cellular immune parameters before and during immunosuppressive therapy of a patient with stiff-man syndrome and insulin dependent diabetes mellitus. J. Neurol. Neurosurg. Psychiatry 1998; 65: 204–208
  • Schloot N. C., Batstra M. C., Duinkerken G., de Vries R. R., Dyrberg T., Chaudhuri A., Behan P. O., Roep B. O. GAD65-Reactive T cells in a non-diabetic stiff-man syndrome patient. J. Autoimmun. 1999; 12: 289–296
  • Pugliese A., Solimena M., Awdeh Z. L., Alper C. A., Bugawan T., Erlich H. A., De Camilli P., Eisenbarth G. S. Association of HLA-DQB1*0201 with stiff-man syndrome. J. Clin. Endocrinol. Metab 1993; 77: 1550–1553
  • Lohmann T., Hawa M., Leslie R. D., Lane R., Picard J., Londei M. Immune reactivity to glutamic acid decarboxylase 65 in stiffman syndrome and type 1 diabetes mellitus. Lancet 2000; 356: 31–35
  • Matsuo H., Batocchi A. P., Hawke S., Nicolle M., Jacobson L., Vincent A., Newsom-Davis J., Willcox N. Peptide-selected T cell lines from myasthenia gravis patients and controls recognize epitopes that are not processed from whole acetylcholine receptor. J. Immunol. 1995; 155: 3683–3692
  • Nagvekar N., Corlett L., Jacobson L. W., Matsuo H., Chalkley R., Driscoll P. C., Deshpande S., Spack E. G., Willcox N. Scanning a DRB3*0101 (DR52a)-restricted epitope cross-presented by DR3: overlapping natural and artificial determinants in the human acetylcholine receptor. J. Immunol. 1999; 162: 4079–4087
  • Christen U., von Herrath M. G. Infections and autoimmunity—good or bad?. J. Immunol. 2005; 174: 7481–7486
  • Bach J. F. Infections and autoimmune diseases. J. Autoimmun. 2005; 25: 74–80, Suppl
  • Fujinami R. S., von Herrath M. G., Christen U., Whitton J. L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin. Microbiol. Rev. 2006; 19: 80–94
  • Horwitz M. S., Bradley L. M., Harbertson J., Krahl T., Lee J., Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med. 1998; 4: 781–785
  • Kouskoff V., Korganow A. S., Duchatelle V., Degott C., Benoist C., Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell 1996; 87: 811–822
  • Srinivasappa J., Saegusa J., Prabhakar B. S., Gentry M. K., Buchmeier M. J., Wiktor T. J., Koprowski H., Oldstone M. B., Notkins A. L. Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J. Virol. 1986; 57: 397–401
  • Salloway S., Mermel L. A., Seamans M., Aspinall G. O., Nam Shin J. E., Kurjanczyk L. A., Penner J. L. Miller-Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect. Immun. 1996; 64: 2945–2949
  • Prendergast M. M., Moran A. P. Lipopolysaccharides in the development of the Guillain-Barre syndrome and Miller Fisher syndrome forms of acute inflammatory peripheral neuropathies. J. Endotoxin. Res. 2000; 6: 341–359
  • Levin M. C., Lee S. M., Kalume F., Morcos Y., Dohan F. C., Jr., Hasty K. A., Callaway J. C., Zunt J., Desiderio D., Stuart J. M. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat. Med. 2002; 8: 509–513
  • Schwimmbeck P. L., Dyrberg T., Drachman D. B., Oldstone M. B. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J. Clin. Invest. 1989; 84: 1174–1180
  • Norris S. J. Antigenic variation with a twist—the Borrelia story. Mol. Microbiol. 2006; 60: 1319–1322
  • Wormser G. P. Clinical practice. Early Lyme disease. N. Engl. J. Med. 2006; 354: 2794–2801
  • Chuenkova M. V., Pereiraperrin M. Enhancement of tyrosine hydroxylase expression and activity by Trypanosoma cruzi parasite-derived neurotrophic factor. Brain Res. 2006; 1099: 167–175
  • Ercolini A. M., Miller S. D. Role of immunologic cross-reactivity in neurological diseases. Neurol. Res. 2005; 27: 726–733
  • Bachmaier K., Neu N., de la Maza L. M., Pal S., Hessel A., Penninger J. M. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283: 1335–1339
  • Fujinami R. S., Oldstone M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–1045
  • Panoutsakopoulou V., Sanchirico M. E., Huster K. M., Jansson M., Granucci F., Shim D. J., Wucherpfennig K. W., Cantor H. Analysis of the relationship between viral infection and autoimmune disease. Immunity 2001; 15: 137–147
  • James J. A., Neas B. R., Moser K. L., Hall T., Bruner G. R., Sestak A. L., Harley J. B. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001; 44: 1122–1126
  • Amedei A., Bergman M. P., Appelmelk B. J., Azzurri A., Benagiano M., Tamburini C., van der Z. R., Telford J. L., Vandenbroucke-Grauls C. M., D'Elios M. M., Del Prete G. Molecular mimicry between Helicobacter pylori antigens and H+, K+ –adenosine triphosphatase in human gastric autoimmunity. J. Exp. Med. 2003; 198: 1147–1156
  • Wucherpfennig K. W., Strominger J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995; 80: 695–705
  • Wucherpfennig K. W. T cell receptor crossreactivity as a general property of T cell recognition. Mol. Immunol 2004; 40: 1009–1017
  • Jameson S. C., Bevan M. J. T cell receptor antagonists and partial agonists. Immunity 1995; 2: 1–11
  • Tallquist M. D., Weaver A. J., Pease L. R. Degenerate recognition of alloantigenic peptides on a positive-selecting class I molecule. J. Immunol. 1998; 160: 802–809
  • Kersh G. J., Allen P. M. Essential flexibility in the T-cell recognition of antigen. Nature 1996; 380: 495–498
  • Garcia K. C., Degano M., Pease L. R., Huang M., Peterson P. A., Teyton L., Wilson I. A. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 1998; 279: 1166–1172
  • Hassin-Baer S., Kirson E. D., Shulman L., Buchman A. S., Bin H., Hindiyeh M., Markevich L., Mendelson E. Stiff-person syndrome following West Nile fever. Arch. Neurol. 2004; 61: 938–941
  • Atkinson M. A., Bowman M. A., Campbell L., Darrow B. L., Kaufman D. L., Maclaren N. K. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest 1994; 94: 2125–2129
  • Hiemstra H. S., Schloot N. C., van Veelen P. A., Willemen S. J., Franken K. L., van Rood J. J., de Vries R. R., Chaudhuri A., Behan P. O., Drijfhout J. W., Roep B. O. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 3988–3991
  • Li L., Hagopian W. A., Brashear H. R., Daniels T., Lernmark A. Identification of autoantibody epitopes of glutamic acid decarboxylase in stiff-man syndrome patients. J. Immunol. 1994; 152: 930–934
  • Kim J., Namchuk M., Bugawan T., Fu Q., Jaffe M., Shi Y., Aanstoot H. J., Turck C. W., Erlich H., Lennon V., Baekkeskov S. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus. J. Exp. Med. 1994; 180: 595–606
  • Petersen J. S., Kulmala P., Clausen J. T., Knip M., Dyrberg T. Progression to type 1 diabetes is associated with a change in the immunoglobulin isotype profile of autoantibodies to glutamic acid decarboxylase (GAD65). Childhood Diabetes in Finland Study Group. Clin. Immunol. 1999; 90: 276–281
  • Dalakas M. C., Li M., Fujii M., Jacobowitz D. M. Stiff person syndrome: quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology 2001; 57: 780–784
  • Baekkeskov S., Landin M., Kristensen J. K., Srikanta S., Bruining G. J., Mandrup-Poulsen T., de Beaufort C., Soeldner J. S., Eisenbarth G., Lindgren F. Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes. J. Clin. Invest. 1987; 79: 926–934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.