106
Views
12
CrossRef citations to date
0
Altmetric
Original

Long-Lasting Tissue Inflammatory Processes Trigger Autoimmune Responses to Extracellular Matrix Molecules

, , , , &
Pages 137-175 | Published online: 03 Aug 2009

REFERENCES

  • Bosman F., Stamenkovic I. Functional structure and composition of extracellular matrix. J. Pathol. 2003; 200: 423–428
  • Nelson C. M., Bissell M. J. Of extracellular matrix, scaffolds, and signalling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell. Dev. Biol. 2006; 22: 287–309
  • Adachi E., Hopkinson I., Hayashi T. Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int. Rev. Cytol. 199; 173: 73–156
  • Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 1992; 27: 93–127
  • Gelse K., Poschl E., Aigner T. Collagens–structure, function, and biosynthesis. Adv. Drug. Deliv. Rev. 2003; 55: 1531–1546
  • Kuivaniemi H., Tromp G., Prockop D. J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991; 5: 2052–2060
  • Traub W., Piez K. A. The chemistry and structure of collagen. Adv. Protein Chem. 1971; 25: 243–352
  • Ricard-Blum S., Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol. Biol. (Paris) 2005; 53: 430–442
  • Antonicelli F., Bellon G., Debelle L., Hornebeck W. Elastin-elastases and inflamm-aging. Curr. Top. Dev. Biol. 2007; 79: 99–155
  • Culav E. M., Clark C. H., Merrilees M. J. Connective tissues: matrix composition and its relevance to physical therapy. Phys. Ther. 1999; 79: 308–319
  • Cattaruzza S., Perris R. Approaching the proteoglycome: molecular interactions of proteoglycans and their functional output. Macromol. Biosci. 2006; 6: 667–680
  • Hohenester E., Engel J. Domain structure and organisation of extracellular matrix proteins. Matrix Biol. 2002; 21: 115–128
  • Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J. 1994; 8: 823–831
  • Hsia H. C., Schwarzbauer J. E. Meet the tenascins: multifunctional and mysterious. J. Biol. Chem. 2005; 280: 26641–26644
  • Nathan C. Points of control in inflammation. Nature 2002; 420: 846–852
  • McIntyre T. M., Prescott S. M., Weyrich A. S., Zimmerman G. A. Cell-cell interactions: leukocyte-endothelial interactions. Curr. Opin. Hematol. 2003; 10: 150–158
  • Manzo A., Caporali R., Montecucco C., Pitzalis C. Role of chemokines and chemokine receptors in regulating specific leukocyte trafficking in the immune/inflammatory response. Clin. Exp. Rheumatol. 2003; 21: 501–508
  • Louis N. A., Hamilton K. E., Colgan S. P. Lipid mediator networks and leukocyte transmigration. Prostaglandins Leukot. Essent. Fatty Acids 2005; 73: 197–202
  • Monaco C., Andreakos E., Kiriakidis S., Feldmann M., Paleolog E. T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr. Drug Targets Inflamm. Allergy 2004; 3: 35–42
  • Martins P. S., Kallas E. G., Neto M. C., Dalboni M. A., Blecher S. and R. Salomão, Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock 2003; 20: 208–212
  • Carletto A., Bellavite P., Guarini P., Biasi D., Chirumbolo S., Caramaschi P., Bambara L. M., Corrocher R. Changes of fatty acid composition and oxidative metabolism of human neutrophils migrating into an inflammatory exudate. Inflammation 1996; 20: 123–137
  • Mantovani A. The interplay between primary and secondary cytokines. Cytokines involved in the regulation of monocyte recruitment. Drugs 1997; 54(Suppl 1)15–23
  • Furie M. B., Randolph G. J. Chemokines and tissue injury. Am. J. Pathol. 1995; 146: 1287–1301
  • Mantovani A., Garlanda C., Locati M., Rodriguez T. V., Feo S. G., Savino B., Vecchi A. Regulatory pathways in inflammation. Autoimmun. Rev. 2007; 7: 8–11
  • Mantovani A., Bonecchi R., Martinez F. O., Galliera E., Perrier P., Allavena P., Locati M. Tuning of innate immunity and polarized responses by decoy receptors. Int. Arch. Allergy Immunol. 2003; 132: 109–15
  • Buckley C. D., Pilling D., Lord J. M., Akbar A. N., Scheel-Toellner D., Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001; 22: 199–204
  • Lawrence T., Gilroy D. W. Chronic inflammation: a failure of resolution?. Int. J. Exp. Pathol. 2007; 88: 85–94
  • Opdenakker G., Dillen C., Fiten P., Martens E., Van Aelst I., Van den Steen P. E., Nelissen I., Starckx S., Descamps F. J., Hu J., Piccard H., Van Damme J., Wormald M. R., Rudd P. M., Dwek R. A. Remnant epitopes, autoimmunity and glycosylation. Biochim. Biophys. Acta. 2006; 1760: 610–615
  • Descamps F. J., Van den Steen P. E., Nelissen I., Van Damme J., Opdenakker G. Remnant epitopes generate autoimmunity: from rheumatoid arthritis and multiple sclerosis to diabetes. Adv. Exp. Med. Biol. 2003; 535: 69–77
  • Van den Steen P. E., Proost P., Grillet B., Brand D. D., Kang Damme A. H., Van J., Opdenakker G. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 2002; 16: 379–389
  • Van den Steen P. E., Grillet B., Opdenakker G. Gelatinase B participates in collagen II degradation and releases glycosylated remnant epitopes in rheumatoid arthritis. Adv. Exp. Med. Biol. 2005; 564: 45–55
  • Moudgil K. D., Sercarz E. E. Understanding crypticity is the key to revealing the pathogenesis of autoimmunity. Trends Immunol. 2005; 26: 355–359
  • Hogquist K. A., Baldwin T. A., Jameson S. C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol 2005; 5: 772–782
  • van den Boorn J. G., Le Poole I. C., Luiten R. M. T-cell avidity and tuning: the flexible connection between tolerance and autoimmunity. Int. Rev. Immunol. 2006; 25: 235–258
  • Setiady Y. Y., Agersborg S., Samy E. T., Lewis J. E., Tung K. S. Neonatal autoimmune disease: influence of CD4+ CD25+ regulatory T cells. Int. Rev. Immunol. 2005; 24: 227–45
  • Guerder S., Flavell R. A. Costimulation in tolerance and autoimmunity. Int. Rev. Immunol. 1995; 13: 135–146
  • Wardemann H., Nussenzweig M. C. B-cell self-tolerance in humans. Adv. Immunol. 2007; 95: 83–110
  • Lohr J., Knoechel B., Nagabhushanam V., Abbas A. K. T-cell tolerance and autoimmunity to systemic and tissue-restricted self-antigens. Immunol. Rev. 2005; 204: 116–27
  • Vanderlugt C. L., Miller S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2002; 2: 85–95
  • Lehmann P. V., Forsthuber T., Miller A., Sercarz E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992; 358: 155–157
  • Sercarz E. E., Lehmann P. V., Ametani A., Benichou G., Miller A., Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 1993; 11: 729–766
  • Goetzl E. J., Banda M. J., Leppert D. Matrix metalloproteinases in immunity. J. Immunol. 1996; 156: 1–4
  • Ratner S. Lymphocyte migration through extracellular matrix. Invasion Metastasis 1992; 12: 82–100
  • Schor H., Vaday G. G., Lider O. Modulation of leukocyte behavior by an inflamed extracellular matrix. Dev. Immunol. 2000; 7: 227–238
  • Woessner J. F., Jr. The family of matrix metalloproteinases. Ann. N. Y. Acad. Sci. 1994; 732: 11–21
  • Lemaitre V., D'Armiento J. Matrix metalloproteinases in development and disease. Birth Defects Res. (Part C) 2006; 78: 1–10
  • Brinckerhoff C. E., Matrisian L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell. Biol. 2002; 3: 207–214
  • Andreasen P. A., Egelund R., Petersen H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. CMLS, Cell. Mol. Life Sci. 2000; 57: 25–40
  • Fu X., Parks W. C., Heinecke J. W. Activation and silencing of matrix metalloproteinases. Semin. Cell Dev. Biol. 2008; 19: 2–13
  • Massova I., Kotra L. P., Fridman R., Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 1998; 12: 1075–1095
  • Tang B. L. ADAMTS: a novel family of extracellular matrix proteases. Int. J. Biochem. Cell. Biol. 2001; 33: 33–44
  • Buhling F., Waldburg N., Reisenauer A., Heimburg A., Golpon H., Welte T. Lysosomal cysteine proteases in the lung: role in protein processing and immunoregulation. Eur. Respir. J. 2004; 23: 620–628
  • Dickinson D. P. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit. Rev. Oral. Biol. Med. 2002; 13: 238–275
  • Iredale J. P. A cut above the rest? MMP-8 and liver fibrosis gene therapy. Gastroenterology 2004; 126: 1199–1201
  • Burrage P. S., Mix K. S., Brinckerhoff C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 2006; 11: 529–543
  • Shapiro S. D., Senior R. M. Matrix metalloproteinases. Matrix degradation and more. Am. J. Respir. Cell. Mol. Biol. 1999; 20: 1100–1102
  • Chapman H. A., Riese R. J., Shi G. P. Emerging roles for cysteine proteases in human biology. Annu. Rev, Physiol. 1997; 59: 63–88
  • Troen B. R. The regulation of cathepsin K gene expression. Ann. N. Y. Acad. Sci. 2006; 1068: 165–172
  • Cannon G. J., Swanson J. A. The macrophage capacity for phagocytosis. J. Cell. Sci. 1992; 101: 907–913
  • Wolters P. J., Chapman H. A. Importance of lysosomal cysteine proteases in lung disease. Respir. Res. 2000; 1: 170–177
  • Lah T. T., Buck M. R., Honn K. V., Crissman J. D., Rao N. C., Liotta L. A., Sloane B. F. Degradation of laminin by human tumor cathepsin B. Clin. Exp. Metastasis 1989; 7: 461–468
  • Mai J., Sameni M., Mikkelsen T., Sloane B. F. Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. Biol. Chem. 2002; 383: 1407–1413
  • Buck M. R., Karustis D. G., Day N. A., Honn K. V., Sloane B. F. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 1992; 282: 273–278
  • Pagano M. B., Bartoli M. A., Ennis T. L., Mao D., Simmons P. M., Thompson R. W., Pham C. T. Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms. Proc. Natl. Acad. Sci. U. S.A 2007; 104: 2855–2860
  • Eeckhout Y., Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 1977; 166: 21–31
  • Dinarello C. A. The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol. 2002; 20(5 Suppl 27)S1–13
  • Kleinert H., Schwarz P. M., Förstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 2003; 384: 1343–1364
  • Li H., Wallerath T. and U. Förstermann, Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 2002; 7: 132–147
  • Gatti R. M., Radi R., Augusto O. Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Lett. 1994; 348: 287–290
  • Kannan S. Free radical theory of autoimmunity. Theor. Biol. Med. Model 2006; 3: 22–36
  • Kurien B. T., Hensley K., Bachmann M., Scofield R. H. Oxidatively modified autoantigens in autoimmune diseases. Free Radic. Biol. Med. 2006; 41: 549–556
  • Del Carlo M., Schwartz D., Erickson E. A., Loeser R. F. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic. Biol. Med. 2007; 42: 1350–1358
  • Lu Y., Wahl L. M. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J. Immunol. 2005; 175: 5423–5429
  • Nelson K. K., Melendez J. A. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 2004; 37: 768–784
  • Billinghurst R. C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Rorabeck C., Mitchell P., Hambor J., Diekmann O., Tschesche H., Chen J., Van Wart H., Poole A. R. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 1997; 99: 1534–1545
  • Brenneisen P., Briviba K., Wlaschek M., Wenk J., Scharffetter-Kochanek K. Hydrogen peroxide (H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic. Biol. Med. 1997; 22: 515–524
  • Saari H., Suomalainen K., Lindy O., Konttinen Y. T., Sorsa T. Activation of latent human neutrophil collagenase by reactive oxygen species and serine proteases. Biochem. Biophys. Res. Commun. 1990; 171: 979–987
  • Ridnour L. A., Windhausen A. N., Isenberg J. S., Yeung N., Thomas D. D., Vitek M. P., Roberts D. D., Wink D. A. Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 16898–16903
  • van Dalen C. J., Winterbourn C. C., Kettle A. J. Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils. Biochem. J. 2006; 394: 707–713
  • Hawkins C. L., Brown B. E., Davies M. J. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis. Arch. Biochem. Biophys. 2001; 395: 137–145
  • Rees M. D., McNiven T. N., Davies M. J. Degradation of extracellular matrix and its components by hypobromous acid. Biochem. J. 2007; 401: 587–596
  • Rees M. D., Hawkins C. L., Davies M. J. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochem. J. 2004; 381: 175–184
  • Kennett E. C., Davies M. J. Degradation of matrix glycosaminoglycans by peroxynitrite/peroxynitrous acid: evidence for a hydroxyl-radical-like mechanism. Free Radic. Biol. Med. 2007; 42: 1278–1289
  • Sorsa T., Saari H., Konttinen Y. T., Suomalainen K., Lindy S., Uitto V. J. Non-proteolytic activation of latent human neutrophil collagenase and its role in matrix destruction in periodontal diseases. Int. J. Tissue. React. 1989; 11: 153–159
  • Zhao W., Diz D. I., Robbins M. E. Oxidative damage pathways in relation to normal tissue injury. Br. J. Radiol. 2007; 80: S23–31, (Spec No 1)
  • Mastruzzo C., Crimi N., Vancheri C. Role of oxidative stress in pulmonary fibrosis. Monaldi Arch. Chest. Dis. 2002; 57: 173–176
  • Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol. Aspects Med. 2000; 21: 49–98
  • Poli G., Parola M. Oxidative damage and fibrogenesis. Free Radic. Biol. Med. 1997; 22: 287–305
  • Kosmehl H., Berndt A., Katenkamp D. Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch. 1996; 429: 311–322
  • Brenmoehl J., Lang M., Hausmann M., Leeb S. N., Falk W., Scholmerich J., Goke M., Rogler G. Evidence for a differential expression of fibronectin splice forms ED-A and ED-B in Crohn's disease (CD) mucosa. Int. J. Colorectal Dis. 2007; 22: 611–623
  • Schenk S., Quaranta V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell. Biol. 2003; 13: 366–375
  • Kovacs E. J., DiPietro L. A. Fibrogenic cytokines and connective tissue production. FASEB J. 1994; 8: 854–861
  • Warnock M. G., Goodacre J. A. Cryptic T-cell epitopes and their role in the pathogenesis of autoimmune diseases. Br. J. Rheumatol. 1997; 36: 1144–1150
  • Lanzavecchia A. How can cryptic epitopes trigger autoimmunity?. J. Exp. Med. 1995; 181: 1945–1948
  • Djaballah H. Antigen processing by proteasomes: insights into the molecular basis of crypticity. Mol. Biol. Rep. 1997; 24: 63–67
  • Davis G. E., Bayless K. J., Davis M. J., Meininger G. A. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 2000; 156: 1489–1498
  • Van den Steen P. E., Proost P., Brand D. D., Kang A. H., Van Damme J., Opdenakker G. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. Biochemistry 2004; 43: 10809–10816
  • Xu J., Rodriguez D., Petitclerc E., Kim J. J., Hangai M., Moon Y. S., Davis G. E., Brooks P. C. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 2001; 154: 1069–1079
  • Ingham K. C., Brew S. A., Erickson H. P. Localization of a cryptic binding site for tenascin on fibronectin. J. Biol. Chem. 2004; 279: 28132–28135
  • Faisal Khan K. M., Laurie G. W., McCaffrey T. A., Falcone D. J. Exposure of cryptic domains in the alpha 1-chain of laminin-1 by elastase stimulates macrophages urokinase and matrix metalloproteinase-9 expression. J. Biol. Chem. 2002; 277: 13778–13786
  • Fukai F., Ohtaki M., Fujii N., Yajima H., Ishii T., Nishizawa Y., Miyazaki K., Katayama T. Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 1995; 34: 11453–11459
  • Nissim A., Winyard P. G., Corrigall V., Fatah R., Perrett D., Panayi G., Chernajovsky Y. Generation of neoantigenic epitopes after posttranslational modification of type II collagen by factors present within the inflamed joint. Arthritis Rheum. 2005; 52: 3829–3838
  • Makrygiannakis D., af Klint E., Lundberg I. E., Löfberg R., Ulfgren A. K., Klareskog L., Catrina A. I. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 2006; 65: 1219–1222
  • Burkhardt H., Sehnert B., Bockermann R., Engström A., Kalden J. R., Holmdahl R. Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur. J. Immunol. 2005; 35: 1643–1652
  • Bang H., Egerer K., Gauliard A., Lüthke K., Rudolph P. E., Fredenhagen G., Berg W., Feist E., Burmester G. R. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum. 2007; 56: 2503–2511
  • Chang X., Yamada R., Suzuki A., Kochi Y., Sawada T., Yamamoto K. Citrullination of fibronectin in rheumatoid arthritis synovial tissue. Rheumatology (Oxford) 2005; 44: 1374–1382
  • Mott J. D., Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 2004; 16: 558–564
  • Moshage H. Cytokines and the hepatic acute phase response. J. Pathol. 1997; 18: 257–266
  • Leroy V., Monier F., Bottari S., Trocme C., Sturm N., Hilleret M. N., Morel F., Zarski J. P. Circulating matrix metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and TIMP-2 as serum markers of liver fibrosis in patients with chronic hepatitis C: comparison with PIIINP and hyaluronic acid. Am. J. Gastroenterol. 2004; 99: 271–279
  • Giannelli G., Quaranta V., Antonaci S. Tissue remodeling in liver diseases. Histol. Histopathol. 2003; 18: 1267–1274
  • Iredale J. P. Model of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 2007; 117: 539–548
  • Punzi L., Betterle C. Chronic autoimmune thyroiditis and rheumatic manifestations. Joint Bone Spine 2004; 71: 275–283
  • Dayan C. M., Daniels G. H. Chronic autoimmune thyroiditis. New Engl. J. Med. 1996; 335: 99–105
  • Chen K., Wei Y., Sharp G. C., Braley-Mullen H. Inhibition of TGFbeta1 by anti-TGFbeta1 antibody or lisinopril reduces thyroid fibrosis in granulomatous experimental autoimmune thyroiditis. J. Immunol. 2002; 169: 6530–6538
  • Yazawa N., Fujimoto M., Tamaki K. Recent advances on pathogenesis and therapies in systemic sclerosis. Clin. Rev. Allergy Immunol 2007; 33: 107–112
  • Varga J., Jimenez S. A. Modulation of collagen gene expression: its relation to fibrosis in systemic sclerosis and other disorders. Annals Int. Med. 1995; 122: 60–62
  • Abraham D. J., Varga J. Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol. 2005; 26: 587–595
  • Medina C., Radomski M. W. Role of matrix metalloproteinases in intestinal inflammation. J. Pharmacol. Exp. Ther. 2006; 318: 933–938
  • Naito Y., Yoshikawa T. Role of matrix metalloproteinases in inflammatory bowel disease. Mol. Aspects Med. 2005; 26: 379–390
  • von Lampe B., Barthel B., Coupland S. E., Riecken E. O., Rosewicz S. Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 2000; 47: 63–73
  • Menzel K., Hausmann M., Obermeier E., Schreiter K., Dunger N., Bataille F., Falk W., Scholmerich J., Herfarth H., Rogler G., Cathepsins B. L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin. Exp. Immunol. 2006; 146: 169–180
  • Stumpf M., Cao W., Klinge U., Klosterhalfen B., Junge K., Krones C. J., Schumpelick V. Reduced expression of collagen type I and increased expression of matrix metalloproteinases 1 in patients with Crohn's disease. J. Invest. Surg. 2005; 18: 33–38
  • Gööz M., Shaker M., Gööz P., Smolka A. J. Interleukin 1beta induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut 2003; 52: 1250–1256
  • Caruso R., Fina D., Peluso I., Fantini M. C., Tosti C., Del Vecchio Blanco G., Paoluzi O. A., Caprioli F., Andrei F., Stolfi C., Romano M., Ricci V., MacDonald T. T., Pallone F., Monteleone G. IL-21 is highly produced in Helicobacter pylori-infected gastric mucosa and promotes gelatinases synthesis. J Immunol. 2007; 178: 5957–5965
  • Lagente V., Manoury B., Nenan S., Le Quement C., Martin-Chouly C., Boichot E. Role of matrix metalloproteinases in the development of airway inflammation and remodeling. Brazilian J. Med. Biol. Res. 2005; 38: 1521–1530
  • Chung K. F. Inflammatory mediators in chronic obstructive pulmonary disease. Curr. Drug. Targets Inflamm. Allergy 2005; 4: 619–625
  • Smit J. J., Lukacs N. W. The missing link: chemokine receptors and tissue matrix breakdown in COPD. Trends Pharmacol. 2006; 27: 555–557
  • Takahashi H., Ishidoh K., Muno D., Ohwada A., Nukiwa T., Kominami E., Kira S. Cathepsin L activity is increased in alveolar macrophages and bronchoalveolar lavage fluid of smokers. Am. Rev. Respir. Dis. 1993; 147: 1562–1568
  • Mautino G., Oliver N., Chanez P., Bousquet J., Capony F. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am. J. Respir. Cell Mol. Biol. 1997; 17: 583–591
  • Bosse M., Chakir J., Rouabhia M., Boulet L. P., Audette M., Laviolette M. Serum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio correlates with steroid responsiveness in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 1999; 159: 596–602
  • Dickinson D. P. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit. Rev. Oral. Biol. Med. 2002; 13: 238–275
  • Reynolds J. J., Hembry R. M., Meikle M. C. Connective tissue degradation in health and periodontal disease and the roles of matrix metalloproteinases and their natural inhibitors. Adv. Dent. Res. 1994; 8: 312–319
  • Salvi G. E., Lang N. P. Host response modulation in the management of periodontal diseases. J. Clin. Periodontol. 2005; 32(Suppl 6)108–129
  • Ashley R. A. Clinical trials of a matrix metalloproteinase inhibitor in human periodontal disease. SDD Clinical Research Team. Ann. N. Y. Acad. Sci. 1999; 878: 335–346
  • Hernández M., Martínez B., Tejerina J. M., Valenzuela M. A., Gamonal J. MMP-13 and TIMP-1 determinations in progressive chronic periodontitis. J. Clin. Periodontol. 2007; 34: 729–735
  • Mohammed F. F., Smookler D. S., Khokha R. Metalloproteinases, inflammation, and rheumatoid arthritis. Ann. Rheum. Dis. 2003; 62: 43–47
  • Holmbeck K., Szabova L. Aspect of extracellular matrix remodeling in development and disease. Birth Defects Res. (part C) 2006; 78: 11–23
  • Charrier-Hisamuddin L., Laboisse C. L., Merlin D. ADAM- 15: a metalloprotease that mediates inflammation. FASEB J. 2008; 22: 641–653
  • Mort J. S., Billington C. J. Articular cartilage and changes in arthritis: matrix degradation. Arthritis Res. 2001; 3: 337–341
  • Maciewicz R. A., Wotton S. F., Etherington D. J., Duance V. C. Susceptibility of the cartilage collagens type II, IX and XI to degradation by the cysteine proteinases, cathepsins B and L. FEBS 1990; 269: 189–193
  • Mooney E., Gammon W. R., Jennette J. C. Characterization of the changes in matrix molecules at the dermoepidermal junction in lupus erythematosus. J. Cutan. Pathol. 1991; 18: 417–422
  • Borza D. B., Neilson E. G., Hudson B. G. Pathogenesis of Goodpasture syndrome: a molecular perspective. Semin. Nephrol. 2003; 23: 522–531
  • Borza D. B. Autoepitopes and alloepitopes of type IV collagen: role in the molecular pathogenesis of anti-GBM antibody glomerulonephritis. Nephron Exp. Nephrol. 2007; 106: e37–e43
  • Bolton W. K., Chen L., Hellmark T., Fox J., Wieslander J. Molecular mapping of the Goodpasture's epitope for glomerulonephritis. Trans. Am. Clin. Climatol. Assoc. 2005; 116: 229–236
  • Woodley D. T., Chang C., Saadat P., Ram R., Liu Z., Chen M. Evidence that anti-type VII collagen antibodies are pathogenic and responsible for the clinical, histological, and immunological features of epidermolysis bullosa acquisita. J. Invest. Dermatol. 2005; 124: 958–964
  • KK Choi E., Gatenby P. A., McGill N. W., Bateman J. F., Cole W. G., York J. R. Autoantibodies to type II collagen: occurrence in rheumatoid arthritis, other arthritides, autoimmune connective tissue diseases and chronic inflammatory syndromes. Ann. Rheum. Dis. 1988; 47: 313–322
  • Clague R. B., Shaw M. J., Lennox Holt P. J. Incidence of serum antibodies to native type I and type II collagens in patients with inflammatory arthritis. Annals Rheum. Dis. 1980; 39: 201–206
  • Fujii K., Tsujii M., Kitamura A., Murota K. The diagnostic significance of anti-type II collagen antibody assay in rheumatoid arthritis. Int. Orthop. 1992; 16: 272–276
  • Cook A. D., Mackay I. R., Cicuttini F. M., Rowley M. J. IgG subclasses of antibodies to type II collagen in rheumatoid arthritis differ from those in systemic lupus erythematosus and other connective tissue diseases. J. Rheumatol. 1997; 24: 2090–2096
  • Yoshida M., Tsuji M., Kurosaka D., Kurosaka D., Yasuda J., Ito Y., Nishizawa T., Yamada A. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis. Mod. Rheumatol. 2006; 16: 276–281
  • Cook A. D., Gray R., Ramshaw J., Mackay I. R., Rowley M. J. Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Res. Ther. 2004; 6: R477–483
  • Morgan K., Clague R. B., Collins I., Ayad S., Phinn S. D., Holt P. J. L. Incidence of antibodies to native and denatured cartilage collagens (type II, IX and XI) and to type I collagen in rheumatoid arthritis. Annals Rheum. Dis. 1987; 46: 902–907
  • Atta M. S., Lim K. L., Ala'deen D. A., Powell R. J., Todd I. Investigation of the prevalence and clinical associations of antibodies to human fibronectin in systemic lupus erythematosus. Ann. Rheum. Dis. 1995; 54: 117–124
  • Vynios D. H., Tsagaraki I., Grigoreas G. H., Samiotaki M., Panayotou G., Kyriakopoulou D., Georgiou P., Korbakis D., Panayotou A., Nanouri K., Assouti M., Andonopoulos A. P. Autoantibodies against aggrecan in systemic rheumatic diseases. Biochimie 2006; 88: 767–773
  • Tani Y., Sato H., Hukuda S. Autoantibodies to collagens in Japanese patients with ankylosing spondylitis. Clin. Exp. Rheumatol 1997; 15: 295–297
  • Tiwana H., Natt R. S., Benitez-Brito R., Shah S., Wilson C., Bridger S., Harbord M., Sarner M., Ebringer A. Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn's disease and ankylosing spondylitis. Rheumatology (Oxford) 2001; 40: 15–23
  • Moreland L. W., Gay R. E., Gay S. Collagen autoantibodies in patients with vasculitis and systemic lupus erythematosus. Clin. Immunol. Immunopathol. 1991; 60: 412–418
  • Petty R. E., Hunt D. W., Rosenberg A. M. Antibodies to type IV collagen in rheumatic diseases. J. Rheumatol. 1986; 13: 246–253
  • Direskeneli H., D'Cruz D., Khamashta M. A., Hughes G. R. Autoantibodies against endothelial cells, extracellular matrix, and human collagen type IV in patients with systemic vasculitis. Clin. Immunol. Immunopathol. 1994; 70: 206–210
  • Gabrielli A., Montroni M., Rupoli S., Caniglia M. L., DeLustro F., Danieli G. A retrospective study of antibodies against basement membrane antigens (type IV collagen and laminin) in patients with primary and secondary Raynaud's phenomenon. Arthritis Rheum. 1988; 31: 1432–1436
  • Daskalova M., Taskov H., Dimitrova E., Baydanoff S. Humoral and cellular immune response to elastin in patients with systemic sclerosis. Autoimmunity 1997; 25: 233–241
  • Kobayashi S., Wada N., Kubo M. Antibodies to native type III collagen in the serum of patients with Kawasaki disease. Eur. J. Pediatr. 1992; 151: 183–187
  • Saxena R., Sturfelt G., Nived O., Wieslander J. Significance of anti-entactin antibodies in patients with systemic lupus erythematosus and related disorders. Ann. Rheum. Dis. 1994; 53: 659–665
  • Vecchi M. L., Radice A., Renda F., Mulé G., Sinico R. A. Anti-laminin auto antibodies in ANCA-associated vasculitis. Nephrol. Dial. Transplant. 2000; 15: 1600–1603
  • Nishijima C., Hayakawa I., Matsushita T., Komura K., Hasegawa M., Takehara K., Sato S. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin. Exp. Immunol. 2004; 138: 357–363
  • Sato S., Hayakawa I., Hasegawa M., Fujimoto M., Takehara K. Function blocking autoantibodies against matrix metalloproteinase-1 in patients with systemic sclerosis. J. Invest. Dermatol. 2003; 120: 542–547
  • Bei R., Mentuccia D., Trono P., Masuelli L., Cereda V., Palumbo C., Marzocchella L., Mrozek M. A., Pallotta P., Di Lella G., Modesti M., Cerilli M., Frajese G. V., Frajese G., Zambruno G., Modesti A. Immunity to extracellular matrix antigens is associated with ultrastructural alterations of the stroma and stratified epithelium basement membrane in the skin of Hashimoto's thyroiditis patients. Int. J. Immunopathol. Pharmacol. 2006; 19: 661–674
  • De Bellis A., Sansone D., Coronella C., Conte M., Iorio S., Perrino S., Battaglia M., Bellastella G., Wall J. R., Bellastella A., Bizzarro A. Serum antibodies to collagen XIII: a further good marker of active Graves' ophthalmopathy. Clin. Endocrinol. (Oxf) 2005; 62: 24–29
  • Gopinath B., Musselman R., Adams C. L., Tani J., Beard N., Wall J. R. Study of serum antibodies against three eye muscle antigens and the connective tissue antigen collagen XIII in patients with Graves' disease with and without ophthalmopathy: correlation with clinical features. Thyroid 2006; 16: 967–974
  • Bednarczuk T., Stolarski C., Pawlik E., Slon M., Rowinski M., Kubota S., Hiromatsu Y., Bartoszewicz Z., Wall J. R., Nauman J. Autoantibodies reactive with extracellular matrix proteins in patients with thyroid-associated ophthalmopathy. Thyroid 1999; 9: 289–295
  • Fattori B., Ghilardi P. L., Casani A., Miglirini P., Riente L. Menier's disease: role of antibodies against basement membrane antigens. Laryngoscope 1994; 104: 1290–1294
  • Nakos G., Adams A., Andriopoulos N. Antibodies to collagen in patients with idiopathic pulmonary fibrosis. Chest 1993; 103: 1051–1058
  • Tiwana H., Natt R. S., Benitez-Brito R., Shah S., Wilson C., Bridger S., Harbord M., Sarner M., Ebringer A. Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn's disease and ankylosing spondylitis. Rheumatology (Oxford) 2001; 40: 15–23
  • Chen M., O'Toole E. A., Sanghavi J., Mahmud N., Kelleher D., Weir D., Fairley J. A., Woodley D. T. The epidermolysis bullosa acquisita antigen (type VII collagen) is present in human colon and patients with crohn's disease have autoantibodies to type VII collagen. J. Invest. Dermatol. 2002; 118: 1059–1064
  • Oostingh G. J., Sitaru C., Zillikens D., Kromminga A., Luhrs H. Subclass distribution of type VII collagen-specific autoantibodies in patients with inflammatory bowel disease. J. Dermatol. Sci. 2005; 37: 182–184
  • Howard A., Dean D., Cooper S., Kirtshig G., Wojnarowska F. Circulating basement membrane zone antibodies are found in lichen sclerosus of the vulva. Australas. J. Dermatol. 2004; 45: 12–15
  • Cooper S. M., Dean D., Allen J., Kirtschig G., Wojnarowska F. Erosive lichen planus of the vulva: weak circulating basement membrane zone antibodies are present. Clin. Exp. Dermatol. 2005; 30: 551–556
  • Jonsson R., Pitts A., Lue C., Gay S., Mestecky J. Immunoglobulin isotype distribution of locally produced autoantibodies to collagen type I in adult periodontitis. Relationship to periodontal treatment. J. Clin. Periodontol. 1991; 18: 703–707
  • De-Gennaro L. A., Lopes J. D., Mariano M. Autoantibodies directed to extracellular matrix components in patients with different clinical forms of periodontitis. J. Periodontol. 2006; 77: 2025–2030
  • Kamphuis S., Hrafnkelsdottir K., Klein M. R., de Jager W., Haverkamp M. H., van Bilsen J. H., Albani S., Kuis W., Wauben M. H., Prakken B. J. Novel self-epitopes derived from aggrecan, fibrillin, and matrix metalloproteinase-3 drive distinct autoreactive T-cell responses in juvenile idiopathic arthritis and in health. Arthritis Res. Ther. 2006; 8: R178–187
  • Snowden N., Reynolds I., Morgan K., Holt L. T cell responses to human type II collagen in patients with rheumatoid arthritis and healthy controls. Arthritis Rheum. 1997; 40: 1210–1218
  • Kim W. U., Kim K. J. T cell proliferative response to type II collagen in the inflammatory process and joint damage in patients with rheumatoid arthritis. J. Rheumatol. 2005; 32: 225–230
  • Park S. H., Min D. J., Cho M. L., Kim W. U., Youn J., Park W., Cho C. S., Kim H. Y. Shift toward T helper 1 cytokines by type II collagen-reactive T cells in patients with rheumatoid arthritis. Arthritis Rheum. 2001; 44: 561–569
  • Ohnishi Y., Tsutsumi A., Sakamaki T., Sumida T. T cell epitopes of type II collagen in HLA-DRB1*0101 or DRB1*0405-positive Japanese patients with rheumatoid arthritis. Int. J. Mol. Med. 2003; 11: 331–335
  • Kim H. Y., Kim W. U., Cho M. L., Lee S. K., Youn J., Kim S. I., Yoo W. H., Park J. H., Min J. K., Lee S. H., Park S. H., Cho C. S. Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255–274) in patients with rheumatoid arthritis. Arthritis Rheum. 1999; 42: 2085–2093
  • ter Steege J., Vianen M., van Bilsen J., Bijlsma J., Lafeber F., Wauben M. Identification of self-epitopes recognized by T cells in rheumatoid arthritis demonstrates matrix metalloproteinases as a novel T cell target. J. Rheumatol. 2003; 30: 1147–1156
  • Zou J., Appel H., Rudwaleit M., Thiel A., Sieper J. Analysis of the CD8+ T cell response to the G1 domain of aggrecan in ankylosing spondylitis. Ann. Rheum. Dis. 2005; 64: 722–729
  • Zou J., Zhang Y., Thiel A., Rudwaleit M., Shi S. L., Radbruch A., Poole R., Braun J., Sieper J. Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis. Rheumatology (Oxford) 2003; 42: 846–855
  • Guerassimov A., Zhang Y., Cartman A., Rosenberg L. C., Esdaile J., Fitzcharles M. A., Robin Poole A. Immune responses to cartilage link protein and the G1 domain of proteoglycan aggregan in patients with osteoarthritis. Arthriis Rheum. 1999; 42: 527–533
  • Zillikens D., Giudice G. J. BP180/type XVII collagen: its role in acquired and inherited disorders or the dermal-epidermal junction. Arch. Dermatol. Res. 1999; 291: 187–194
  • Courtenay J. S., Dallman M. J., Dayan A. D., Martin A., Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature 1980; 283: 666–668
  • Hansson A. S., Lu S., Holmdahl R. Extra-articular cartilage affected in collagen-induced, but not pristane-induced, arthritis models. Clin. Exp. Immunol. 2002; 127: 37–42
  • Holmdahl R., Jansson L., Larsson A., Jonsson R. Arthritis in DBA/1 mice induced with passively transferred type II collagen immune serum. Immunohistopathology and serum levels of anti-type II collagen auto-antibodies. Scand. J. Immunol. 1990; 31: 147–157
  • Kuhn K. A., Kulik L., Tomooka B., Braschler K. J., Arend W. P., Robinson W. H., Holers V. M. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 200; 116: 961–973
  • Adarichev V. A., Glant T. T. Experimental spondyloarthropathies: animal models of ankylosing spondylitis. Curr. Rheumatol. Rep. 2006; 8: 267–274
  • Murad Y. M., Szabó Z., Ludányi K., Glant T. T. Molecular manipulation with the arthritogenic epitopes of the G1 domain of human cartilage proteoglycan aggrecan. Clin. Exp. Immunol. 2005; 142: 303–311
  • Glant T. T., Mikecz K. Proteoglycan aggrecan-induced arthritis: a murine autoimmune model of rheumatoid arthritis. Methods Mol. Med. 2004; 102: 313–338
  • Teodoro W. R., Velosa A. P., Witzel S. S., Garippo A. L., Farhat C., Parra E. R., Sonohara S., Capelozzi V. L., Yoshinari N. H. Architectural remodeling in lungs of rabbits induced by type V collagen immunization: a preliminary morphologic model to study diffuse connective tissue diseases. Pathol. Res. Pract. 2004; 200: 681–691
  • Murphy-Ullrich J. E., Oberley T. D. and D.F Mosher, Detection of autoantibodies and glomerular injury in rabbits immunized with denatured human fibronectin monomer. Am. J. Pathol. 1984; 117: 1–11
  • van Bruggen M. C., Kramers C., Hylkema M. N., Smeenk R. J., Berden J. H. Significance of anti-nuclear and anti-extracellular matrix autoantibodies for albuminuria in murine lupus nephritis; a longitudinal study on plasma and glomerular eluates in MRL/l mice. Clin. Exp. Immunol. 1996; 105: 132–139
  • Zhou X., Tan F. K., Milewicz D. M., Guo X., Bona C. A., Arnett F. C. Autoantibodies to fibrillin-1 activate normal human fibroblasts in culture through the TGF-beta pathway to recapitulate the “scleroderma phenotype.”. J. Immunol. 2005; 175: 4555–4560
  • Ai J., Leonhardt J. M., Heymann W. R. Autoimmune thyroid diseases: etiology, pathogenesis, and dermatologic manifestations. J. Am. Acad. Dermatol. 2003; 48: 641–659
  • Kim W. U., Cho M. L., Jung Y. O., Min S. Y., Park S. W., Min D. J., Yoon J. H., Kim H. Y. Type II collagen autoimmunity in rheumatoid arthritis. Am. J. Med. Sci. 2004; 327: 202–211

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.