495
Views
41
CrossRef citations to date
0
Altmetric
Special Topic: NF-κB, Immunity and Cancer (Invited Review)

The Two-Faced NF-κB in the Skin

, &
Pages 205-223 | Published online: 03 Aug 2009

REFERENCES

  • Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–6
  • Bonizzi G., Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends. Immunol. 2004; 25: 280–8
  • Koster M. I., Roop D. R. Mechanisms regulating epithelial stratification. Annu. Rev. Cell. Dev. Biol. 2007; 23: 93–113
  • Hu Y., Baud V., Oga T., Kim K. I., Yoshida K., Karin M. IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 2001; 410: 710–4
  • Kere J., Srivastava A. K., Montonen O., Zonana J., Thomas N., Ferguson B., Munoz F., Morgan D., Clarke A., Baybayan P., Chen E. Y., Ezer S., Saarialho-Kere U., de la Chapelle A., Schlessinger D. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 1996; 13: 409–16
  • Monreal A. W., Ferguson B. M., Headon D. J., Street S. L., Overbeek P. A., Zonana J. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat. Genet. 1999; 22: 366–9
  • Headon D. J., Emmal S. A., Ferguson B. M., Tucker A. S., Justice M. J., Sharpe P. T., Zonana J., Overbeek P. A. Gene defects in ectodermal dysplasia implicates a death domain adapter in development. Nature, 414: 913–6
  • Yan M., Zhang Z., Brady J. R., Schilbach S., Fairbrother W. J., Dixit V. M. Identification of a novel death domain-containing adaptor molecule for ectodysplasin-A receptor that is mutated in crinkled mice. Curr. Biol. 2002; 12: 409–13
  • Headon D. J., Overbeek P. A. Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat. Genet. 1999; 22: 370–4
  • Srivastava A. K., Pispa J., Hartung A. J., Du Y., Ezer S., Jenks T., Shimada T., Pekkanen M., Mikkola M. L., Ko M. S., Thesleff I., Kere J., Schlessinger D. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc. Natl. Acad. Sci. USA 1997; 94: 13069–74
  • Gugasyan R., Voss A., Varigos G., Thomas T., Grumont R. J., Kaur P., Grigoriadis G., Gerondakis S. The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol. Cell. Biol. 2004; 24: 5733–45
  • Doffinger R., Smahi A., Bessia C., Geissmann F., Feinberg J., Durandy A., Bodemer C., Kenwrick S., Dupuis-Girod S., Blanche S., Wood P., Rabia S. H., Headon D. J., Overbeek P. A., Le Deist F., Holland S. M., Belani K., Kumararatne D. S., Fischer A., Shapiro R., Conley M. E., Reimund E., Kalhoff H., Abinun M., Munnich A., Israel A., Courtois G., Casanova J. L. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat. Genet. 2001; 27: 277–85
  • Jain A., Ma C. A., Liu S., Brown M., Cohen J., Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat. Immunol. 2001; 2: 223–8
  • Zonana J., Elder M. E., Schneider L. C., Orlow S. J., Moss C., Golabi M., Shapira S. K., Farndon P. A., Wara D. W., Emmal S. A., Ferguson B. M. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am. J. Hum. Genet. 2000; 67: 1555–62
  • Courtois G., Smahi A., Reichenbach J., Doffinger R., Cancrini C., Bonnet M., Puel A., Chable-Bessia C., Yamaoka S., Feinberg J., Dupuis-Girod S., Bodemer C., Livadiotti S., Novelli F., Rossi P., Fischer A., Israel A., Munnich A., Le Deist F., Casanova J. L. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 2003; 112: 1108–15
  • Janssen R., van Wengen A., Hoeve M. A., ten Dam M., van der Burg M., van Dongen J., van de Vosse E., van Tol M., Bredius R., Ottenhoff T. H., Weemaes C., van Dissel J. T., Lankester A. The same IkappaBalpha mutation in two related individuals leads to completely different clinical syndromes. J. Exp. Med. 2004; 200: 559–68
  • Kumar A., Eby M. T., Sinha S., Jasmin A., Chaudhary P. M. The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A. J. Biol. Chem. 2001; 276: 2668–77
  • Schmidt-Ullrich R., Aebischer T., Hulsken J., Birchmeier W., Klemm U., Scheidereit C. Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices. Development 2001; 128: 3843–53
  • Schmidt-Ullrich R., Tobin D. J., Lenhard D., Schneider P., Paus R., Scheidereit C. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 2006; 133: 1045–57
  • Eby M. T., Jasmin A., Kumar A., Sharma K., Chaudhary P. M. TAJ, a novel member of the tumor necrosis factor receptor family, activates the c-Jun N-terminal kinase pathway and mediates caspase-independent cell death. J. Biol. Chem. 2000; 275: 15336–42
  • Yan M., Wang L. C., Hymowitz S. G., Schilbach S., Lee J., Goddard A., de Vos A. M., Gao W. Q., Dixit V. M. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000; 290: 523–7
  • Naito A., Yoshida H., Nishioka E., Satoh M., Azuma S., Yamamoto T., Nishikawa S., Inoue J. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc. Natl. Acad. Sci. USA 2002; 99: 8766–71
  • Morlon A., Munnich A., Smahi A. TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd. Hum. Mol. Genet. 2005; 14: 3751–7
  • St-Jacques B., Dassule H. R., Karavanova I., Botchkarev V. A., Li J., Danielian P. S., McMahon J. A., Lewis P. M., Paus R., McMahon A. P. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 1998; 8: 1058–68
  • Klement J. F., Rice N. R., Car B. D., Abbondanzo S. J., Powers G. D., Bhatt P. H., Chen C. H., Rosen C. A., Stewart C. L. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol. Cell. Biol. 1996; 16: 2341–9
  • Rebholz B., Haase I., Eckelt B., Paxian S., Flaig M. J., Ghoreschi K., Nedospasov S. A., Mailhammer R., Debey-Pascher S., Schultze J. L., Weindl G., Forster I., Huss R., Stratis A., Ruzicka T., Rocken M., Pfeffer K., Schmid R. M., Rupec R. A. Crosstalk between keratinocytes and adaptive immune cells in an IkappaBalpha protein-mediated inflammatory disease of the skin. Immunity 2007; 27: 296–307
  • Beg A. A., Sha W. C., Bronson R. T., Baltimore D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes. Dev. 1995; 9: 2736–46
  • Ghoreschi K., Weigert C., Rocken M. Immunopathogenesis and role of T cells in psoriasis. Clin. Dermatol. 2007; 25: 574–80
  • Smahi A., Courtois G., Vabres P., Yamaoka S., Heuertz S., Munnich A., Israel A., Heiss N. S., Klauck S. M., Kioschis P., Wiemann S., Poustka A., Esposito T., Bardaro T., Gianfrancesco F., Ciccodicola A., D'Urso M., Woffendin H., Jakins T., Donnai D., Stewart H., Kenwrick S. J., Aradhya S., Yamagata T., Levy M., Lewis R. A., Nelson D. L. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000; 405: 466–72
  • Berlin A. L., Paller A. S., Chan L. S. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J. Am. Acad. Dermatol 2002; 47: 169–87, quiz 88–90
  • Makris C., Godfrey V. L., Krahn-Senftleben G., Takahashi T., Roberts J. L., Schwarz T., Feng L., Johnson R. S., Karin M. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell. 2000; 5: 969–79
  • Schmidt-Supprian M., Bloch W., Courtois G., Addicks K., Israel A., Rajewsky K., Pasparakis M. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell. 2000; 5: 981–92
  • Rudolph D., Yeh W. C., Wakeham A., Rudolph B., Nallainathan D., Potter J., Elia A. J., Mak T. W. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes. Dev. 2000; 14: 854–62
  • Beg A. A., Sha W. C., Bronson R. T., Ghosh S., Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376: 167–70
  • Li Z. W., Chu W., Hu Y., Delhase M., Deerinck T., Ellisman M., Johnson R., Karin M. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 1999; 189: 1839–45
  • Tanaka M., Fuentes M. E., Yamaguchi K., Durnin M. H., Dalrymple S. A., Hardy K. L., Goeddel D. V. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 1999; 10: 421–9
  • Lind M. H., Rozell B., Wallin R. P., van Hogerlinden M., Ljunggren H. G., Toftgard R., Sur I. Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. Proc. Natl. Acad. Sci. USA 2004; 101: 4972–7
  • Pasparakis M., Courtois G., Hafner M., Schmidt-Supprian M., Nenci A., Toksoy A., Krampert M., Goebeler M., Gillitzer R., Israel A., Krieg T., Rajewsky K., Haase I. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 2002; 417: 861–6
  • van Hogerlinden M., Rozell B. L., Ahrlund-Richter L., Toftgard R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res. 1999; 59: 3299–303
  • Nenci A., Huth M., Funteh A., Schmidt-Supprian M., Bloch W., Metzger D., Chambon P., Rajewsky K., Krieg T., Haase I., Pasparakis M. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 2006; 15: 531–42
  • Stratis A., Pasparakis M., Rupec R. A., Markur D., Hartmann K., Scharffetter-Kochanek K., Peters T., van Rooijen N., Krieg T., Haase I. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J. Clin. Invest. 2006; 116: 2094–104
  • van Rooijen N., Bakker J., Sanders A. Transient suppression of macrophage functions by liposome-encapsulated drugs. Trends Biotechnol. 1997; 15: 178–85
  • Barton D., HogenEsch H., Weih F. Mice lacking the transcription factor RelB develop T cell-dependent skin lesions similar to human atopic dermatitis. Eur. J. Immunol. 2000; 30: 2323–32
  • Weih F., Carrasco D., Durham S. K., Barton D. S., Rizzo C. A., Ryseck R. P., Lira S. A., Bravo R. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 1995; 80: 331–40
  • Weih F., Durham S. K., Barton D. S., Sha W. C., Baltimore D., Bravo R. Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J. Immunol. 1996; 157: 3974–9
  • Weih F., Durham S. K., Barton D. S., Sha W. C., Baltimore D., Bravo R. p50-NF-kappaB complexes partially compensate for the absence of RelB: severely increased pathology in p50(−/−)relB(−/−) double-knockout mice. J. Exp. Med. 1997; 185: 1359–70
  • Kontgen F., Grumont R. J., Strasser A., Metcalf D., Li R., Tarlinton D., Gerondakis S. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes. Dev. 1995; 9: 1965–77
  • Sha W. C., Liou H. C., Tuomanen E. I., Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995; 80: 321–30
  • Delaney J. R., Mlodzik M. TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development and immunity. Cell. Cycle. 2006; 5: 2852–5
  • Sato S., Sanjo H., Takeda K., Ninomiya-Tsuji J., Yamamoto M., Kawai T., Matsumoto K., Takeuchi O., Akira S. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 2005; 6: 1087–95
  • Shim J. H., Xiao C., Paschal A. E., Bailey S. T., Rao P., Hayden M. S., Lee K. Y., Bussey C., Steckel M., Tanaka N., Yamada G., Akira S., Matsumoto K., Ghosh S. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes. Dev. 2005; 19: 2668–81
  • Omori E., Matsumoto K., Sanjo H., Sato S., Akira S., Smart R. C., Ninomiya-Tsuji J. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J. Biol. Chem. 2006; 281: 19610–7
  • Kim J. Y., Omori E., Matsumoto K., Nunez G., Ninomiya-Tsuji J. TAK1 is a central mediator of NOD2 signaling in epidermal cells. J. Biol. Chem. 2008; 283: 137–44
  • Zhang J. Y., Green C. L., Tao S., Khavari P. A. NF-kappaB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes. Dev. 2004; 18: 17–22
  • Seitz C. S., Lin Q., Deng H., Khavari P. A. Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc. Natl. Acad. Sci. USA 1998; 95: 2307–12
  • Stratis A., Pasparakis M., Markur D., Knaup R., Pofahl R., Metzger D., Chambon P., Krieg T., Haase I. Localized inflammatory skin disease following inducible ablation of I kappa B kinase 2 in murine epidermis. J. Invest. Dermatol. 2006; 126: 614–20
  • Dajee M., Lazarov M., Zhang J. Y., Cai T., Green C. L., Russell A. J., Marinkovich M. P., Tao S., Lin Q., Kubo Y., Khavari P. A. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–43
  • Zhang J. Y., Tao S., Kimmel R., Khavari P. A. CDK4 regulation by TNFR1 and JNK is required for NF-kappaB-mediated epidermal growth control. J. Cell. Biol. 2005; 168: 561–6
  • Zhang J. Y., Adams A. E., Ridky T. W., Tao S., Khavari P. A. Tumor necrosis factor receptor 1/c-Jun-NH2-kinase signaling promotes human neoplasia. Cancer. Res. 2007; 67: 3827–34
  • van Hogerlinden M., Auer G., Toftgard R. Inhibition of Rel/Nuclear Factor-kappaB signaling in skin results in defective DNA damage-induced cell cycle arrest and Ha-ras- and p53-independent tumor development. Oncogene. 2002; 21: 4969–77
  • Campbell C., Quinn A. G., Rees J. L. Codon 12 Harvey-ras mutations are rare events in non-melanoma human skin cancer. Br. J. Dermatol. 1993; 128: 111–4
  • Rumsby G., Carter R. L., Gusterson B. A. Low incidence of ras oncogene activation in human squamous cell carcinomas. Br. J. Cancer. 1990; 61: 365–8
  • Abimelec P., Rybojad M., Cambiaghi S., Moraillon I., Cavelier-Balloy B., Marx C., Morel P. Late, painful, subungual hyperkeratosis in incontinentia pigmenti. Pediatr. Dermatol. 1995; 12: 340–2
  • Adeniran A., Townsend P. L., Peachey R. D. Incontinentia pigmenti (Bloch-Sulzberger syndrome) manifesting as painful periungual and subungual tumours. J. Hand. Surg. [Br]. 1993; 18: 667–9
  • Mascaro J. M., Palou J., Vives P. Painful subungual keratotic tumors in incontinentia pigmenti. J. Am. Acad. Dermatol. 1985; 13: 913–8
  • Montes C. M., Maize J. C., Guerry-Force M. L. Incontinentia pigmenti with painful subungual tumors: a two-generation study. J. Am. Acad. Dermatol. 2004; 50: S45–52
  • Sakai H., Minami M., Satoh E., Matsuo S., Iizuka H. Keratoacanthoma developing on a pigmented patch in incontinentia pigmenti. Dermatology. 2000; 200: 258–61
  • Simmons D. A., Kegel M. F., Scher R. K., Hines Y. C. Subungual tumors in incontinentia pigmenti. Arch. Dermatol. 1986; 122: 1431–4
  • Korstanje M. J., Bessems P. J. Incontinentia pigmenti with hyperkeratotic lesions in adulthood and possible squamous cell carcinoma. Dermatologica 1991; 183: 234–6
  • Hartman D. L. Incontinentia pigmenti associated with subungual tumors. Arch. Dermatol. 1966; 94: 632–5
  • Berg D., Otley C. C. Skin cancer in organ transplant recipients: Epidemiology, pathogenesis, and management. J. Am. Acad. Dermatol. 2002; 47: 1–17, quiz 8–20
  • Gangappa S., Kokko K. E., Carlson L. M., Gourley T., Newell K. A., Pearson T. C., Ahmed R., Larsen C. P. Immune responsiveness and protective immunity after transplantation. Transpl. Int. 2008; 21: 293–303
  • Brummelkamp T. R., Nijman S. M., Dirac A. M., Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797–801
  • Kovalenko A., Chable-Bessia C., Cantarella G., Israel A., Wallach D., Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801–5
  • Trompouki E., Hatzivassiliou E., Tsichritzis T., Farmer H., Ashworth A., Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793–6
  • Reiley W., Zhang M., Sun S. C. Negative regulation of JNK signaling by the tumor suppressor CYLD. J. Biol. Chem. 2004; 279: 55161–7
  • Massoumi R., Chmielarska K., Hennecke K., Pfeifer A., Fassler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 2006; 125: 665–77
  • Liu B., Park E., Zhu F., Bustos T., Liu J., Shen J., Fischer S. M., Hu Y. A critical role for I kappaB kinase alpha in the development of human and mouse squamous cell carcinomas. Proc. Natl. Acad. Sci. USA. 2006; 103: 17202–7
  • Park E., Zhu F., Liu B., Xia X., Shen J., Bustos T., Fischer S. M., Hu Y. Reduction in IkappaB kinase alpha expression promotes the development of skin papillomas and carcinomas. Cancer. Res. 2007; 67: 9158–68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.