124
Views
3
CrossRef citations to date
0
Altmetric
Original

Innate Immune Signaling Pathways in Animals: Beyond Reductionism

, &
Pages 207-238 | Published online: 13 Aug 2009

REFERENCES

  • Litman G., Cannon J., Dishaw L. Reconstructing immune phylogeny: New perspectives. Nat Rev Immunol 2005; 5: 866–879
  • Akira S., Takeda K., Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680
  • Pearlman E., Johnson A., Adhikary G., Sun Y., Chinnery H. R., Fox T., Kester M., McMenamin P. G. Toll-like receptors at the ocular surface. Ocul Surf 2008; 6: 108–116
  • Takeuchi O., Kawai T., Sanjo H., Copeland N. G., Gilbert D. J., Jenkins N. A., Takeda K., Akira S. TLR6: A novel member of an expanding toll-like receptor family. Gene 1999; 231: 59–65
  • Kopp E. B., Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol 1999; 11: 13–18
  • Medzhitov R., Preston-Hurlburt P., Kopp E., Stadlen A., Chen C., Ghosh S., Janeway C. A. Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2: 253–258
  • Burns K., Clatworthy J., Martin L., Martinon F., Plumpton C., Maschera B., Lewis A., Ray K., Tschopp J., Volpe F. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2000; 2: 346–351
  • Cao Z., Xiong J., Takeuchi M., Kurama T., Goeddel D. V. TRAF6 is a signal transducer for Interleukin-1. Nature 1996; 383: 443–446
  • Medzhitov R., Laneway C. Jr., Advance in immunology. New Engl J Med 2000; 343: 338–344
  • An G. C., Faeder J. R. Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 2008; 217: 53–63
  • Kagan J. C., Su T., Horng T., Chow A., Akira S., Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunol 2008; 9: 361–368
  • Wenekamp J., Henneke P. Induction and termination of inflammatory signaling in group B streptococcal sepsis. Immunol Rev 2008; 225: 114–127
  • Tenoever B. R., Maniatis T. Parallel pathways of virus recognition. Immunity 2006; 24: 633–642
  • Edwards A. D., Manickasingham S. P., Spörri R., Diebold S. S., Schulz O., Sher A., Kaisho T., Akira S., Reis e Sousa C. Microbial recognition via Toll-like receptor-dependent and independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J Immunol 2002; 169: 3652–3660
  • Takeuchi O., Sato S., Horiuchi T., Hoshino K., Takeda K., Dong Z., Modlin R. L., Akira S. Cutting edge: Role of Toll-like receptor l in mediating immune response to microbial lipoproteins. J Immunol 2002; 169: 10
  • Medzhitov R., Janeway C., Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; l73: 89–97
  • Bowie A., O'Neill L. A. The interleukin-1 receptor Toll-like receptor superfamily: Signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000; 67: 508–514
  • Hatada E. N., Krappmann D., Scheidereit C. NF-κ B and the innate immune response. Curr Opin Immunol 2000; 12: 52–58
  • Lai Y., Gallo R. L. Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets 2008; 8: 144–155
  • Hritz I., Mandrekar P., Velayudham A., Catalano D., Dolganiuc A., Kodys K., Kurt-Jones E., Szabo G. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 2008; 48: 1224–1231
  • Cattaneo E., Conti L., De-Frajia C. Signaling through the JAK/STAT pathway in the developing brain. Trends Neurosci 1999; 22: 365–369
  • Benekli M., Baer M. R., Baumann H., Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood 2003; l0l: 2940–2954
  • Sternberg D. W., Gilliland D. G. The role of signal transducer and activator of transcription factors in leukemogenesis. J Clin Oncol 2004; 22: 361–337
  • Leonard W. J., O'Shea J. J. Jaks and STATs: Biological implications. Annu Rev Immnol 1998; 16: 293–322
  • Smirnova O. V., Ostroukhova T. Y., Bogorad R. L. JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression?. World J Gastroenterol 2007; 13: 6478–6491
  • Bolli R., Dawn B., Xuan Y. T. Role of the JAK—STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 2003; 13: 72–79
  • Booz G. W., Day J. N., Baker K. M. Interplay between the cardiac rennin angiotensin system and JAK/STAT signaling: Role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol 2002; 34: 1443–1453
  • Sagawa M., Nakazato T., Uchida H., Ikeda Y., Kizaki M. Cantharidin induces apoptosis of human multiple myeloma cells via inhibition of the JAK/STAT pathway. Cancer Sci 2008; 99: 1820–1826
  • Kim B. H., Yin C. H., Guo Q., Bach E. A., Lee H., Sandoval C., Jayabose S., Ulaczyk-Lesanko A., Hall D. G., Baeg G. H. A small-molecule compound identified through a cell-based screening inhibits JAK/STAT pathway signaling in human cancer cells. Mol Cancer Ther 2008; 7: 2672–2680
  • Levine R. L., Gilliland D. G. Myeloproliferative disorders. Blood 2008; 112: 2190–2198
  • Maher S. G., Sheikh F., Scarzello A. J., Romero-Weaver A. L., Baker D. P., Donnelly R. P., Gamero A. M. IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther 2008; 7: 1109–1115
  • Baltayiannis G., Baltayiannis N., Tsianos E. V. Suppressors of cytokine signaling as tumor repressors. Silencing of SOCS3 facilitates tumor formation and growth in lung and liver. J BUON 2008; 13: 263–265
  • Cardoso B. A., Gírio A., Henriques C., Martins L. R., Santos C., Silva A., Barata J. T. Aberrant signaling in T-cell acute lymphoblastic leukemia: Biological and therapeutic implications. Braz J Med Biol Res 2008; 41: 344–350
  • Yamamoto K., Kobayashi H., Arai A., Miura O., Hirosawa S., Miyasaka N. cDNA cloning, expression and chromosome mapping of the human STAT4 gene: Both STAT4 and STAT1 genes are mapped to 2q32.2-q32.3. Cytogenet Cell Genet 1997; 77: 207–210
  • Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). J Immunol 1995; 155: 1151–1164
  • Frank D. A., Mabajan S., Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription STAT1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 1997; 100: 3140–3148
  • Li W. X. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 2008; 18: 545–551
  • Pfeifer A. C., Timmer J., Klingmüller U. Systems biology of JAK/STAT signaling. Essays Biochem 2008; 45: 109–120
  • Dostert C., Jouanguy E., Irving P., Troxler L., Galiana-Arnoux D., Hetru C., Hoffmann J. A., Imler J. L. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol 2005; 6: 946–953
  • Murray P. J. The JAK-STAT signaling pathway: Input and output integration. J Immunol 2007; 178: 2623–2629
  • Mao X., Ren Z., Parker G. N., Sondermann H., Pastorello M. A., Wang W., McMurray J. S., Demeler B., Darnell J. E., Jr., Chen X. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 2005; 17: 761–771
  • Ndubuisi M. I., Guo G. G., Fried V. A., Etlinger J. D., Sehgal P. B. Cellular physiology of STAT3: Where's the cytoplasmic monomer?. J Biol Chem 1999; 274: 25499–25509
  • Bonifacino J. S. Quality control of receptor-kinase signaling complexes. Dev Cell 2002; 2: 1–2
  • Hofmann S. R., Lam A. Q., Frank S., Zhou Y. J., Ramos H. L., Kanno Y., Agnello D., Youle R. J., O'Shea J. J. JAK3-independent trafficking of the common chain receptor subunit: chaperone function of JAKs revisited. Mol Cell Biol 2004; 24: 5039–5049
  • Pelletier S., Gingras S., Funakoshi-Tago M., Howell S., Ihle J. N. Two domains of the erythropoietin receptor are sufficient for JKA2 binding/activation and function. Mol Cell Biol 2006; 26: 8527–8538
  • Liang S., Wei H., Sun R., Tian Z. IFN-a regulates NK cell cytotoxicity through STAT1 pathway. Cytokine 2003; 2: 190–199
  • Tassi I., Cella M., Presti R., Colucci A., Gilfillan S., Littman D. R., Colonna M. NK cell activating receptors require PKC {theta} for sustained signaling, transcriptional activation and IFN-{gamma} secretion. Blood 2008; 112: 4109–4116
  • Kijima M., Yamaguchi T., Ishifune C., Maekawa Y., Koyanagi A., Yagita H., Chiba S., Kishihara K., Shimada M., Yasutomo K. Dendritic cell-mediated NK cell activation is controlled by Jagged2-Notch interaction. Proc Natl Acad Sci U S A 2008; 105: 7010–7015
  • Sun P. D. Structure and function of natural-killer-cell receptors. Immunol Res 2003; 27: 539–548
  • Gewurz B. E., Wang E. W., Tortorella D., Schust D. J., Ploegh H. L. Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol 2001; 75: 5197–5204
  • Snyder M. R., Weyand C. M., Goronzy J. J. The double life of NK receptors: Stimulation or co-stimulation?. Trends Immunol 2004; 25: 25–32
  • Strong R. K., McFarland B. J. NKG2D and related immunoreceptors. Adv Protein Chem 2004; 68: 281–312
  • Vyas Y. M., Maniar H., Dupont B. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol Rev 2002; 189: 161–178
  • Veillette A. Specialised adaptors in immune cells. Current Opin Cel1 Bio1 2004; 16: 146–155
  • Rudd C. E., Wang H. Hematopoietic adaptors in T-cell signaling: Potential applications to transplantation. Am J Transplant 2003; 3: 1204–1210
  • Kim D. H., Ausubel F. M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr Opin Immunol 2005; 17: 4–10
  • Lanier L. L. Natural killer cell receptor signaling. Curr Opin Immunol 2003; 15: 308–314
  • Rivera G. M., Briceño C. A., Takeshima F., Snapper S. B., Mayer B. J. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein nck triggers localized actin polymerization. Current Biol 2004; 14: 11–22
  • Guo H., Samarakoon A., Vanhaesebroeck B., Malarkannan S. The p110 delta of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation. J Exp Med 2008; 205: 2419–2435
  • Bouchon A., Cella M., Grierson H. L., Cohen J. I., Colonna M. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol 2001; 167: 5517–5521
  • Yu M. C., Su L. L., Zou L., Liu Y., Wu N., Kong L., Zhuang Z. H., Sun L., Liu H. P., Hu J. H., Li D., Strominger J. L., Zang J. W., Pei G., Ge B. X. An essential function for beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat Immunol 2008; 9: 898–907
  • Vasta G. R., Lambris J. D. Innate immunity in the Aegean: Ancient pathways for today's survival. Dev Comp Immunol 2002; 26: 217–225
  • Hanna J., Goldman-Wohl D., Hamani Y., Avraham I., Greenfield C., Natanson-Yaron S., Prus D., Cohen-Daniel L., Arnon T. I., Manaster I., Gazit R., Yutkin V., Benharroch D., Porgador A., Keshet E., Yagel S., Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065–1074
  • Sargent I. L., Borzyehowski A. M., Redman C. W. NK cells and human pregnancy—an inflammatory view. Trends Immunol 2006; 27: 399–404
  • Tacke F., Luedde T., Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 2009; 36: 4–12
  • Lettau M., Paulsen M., Kabelitz D., Janssen O. Storage, expression and function of Fas ligand, the key death factor of immune cells. Curr Med Chem 2008; 15: 1684–1696
  • Hu X., Chung A. Y., Wu I., Foldi J., Chen J., Ji J. D., Tateya T., Kang Y. J., Han J., Gessler M., Kageyama R., Ivashkiv L. B. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 2008; 29: 691–703
  • Kang T. J., Basu S., Zhang L., Thomas K. E., Vogel S. N., Baillie L., Cross A. S. Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 2008; 38: 1574–1584
  • Macedo C., Magalhães D. A., Tonani M., Marques M. C., Junta C. M., Passos G. A. Genes that code for T cell signaling proteins establish transcriptional regulatory networks during thymus ontogeny. Mol Cell Biochem 2008; 318: 63–71
  • Loza M. J., McCall C. E., Li L., Isaacs W. B., Xu J., Chang B. L. Assembly of inflammation-related genes for pathway-focused genetic analysis. Plos One 2007; 2: e1035
  • Taniguchi C. M., Emanuelli B., Kahn C. R. Critical nodes in signalling pathways: Insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85–96
  • Cui X., Lee A. V. Regulatory nodes that integrate and coordinate signaling as potential targets for breast cancer therapy. Clin Cancer Res 2004; 10: 396S–401S
  • Ouyang X., Negishi H., Takeda R., Fujita Y., Taniguchi T., Honda K. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation. Biochem Biophys Res Commun 2007; 354: 1045–1051
  • Zhu Q., Egelston C., Vivekanandhan A., Uematsu S., Akira S., Klinman D. M., Belyakov I. M., Berzofsky J. A. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines. Proc Natl Acad Sci U S A 2008; 105: 16260–16265
  • Minguet S., Dopfer E. P., Pollmer C., Freudenberg M. A., Galanos C., Reth M., Huber M., Schamel W. W. Enhanced B-cell activation mediated by TLR4 and BCR crosstalk. Eur J Immunol 2008; 38: 2475–2487
  • Bafica A., Santiago H. C., Goldszmid R., Ropert C., Gazzinelli R. T., Sher A. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 2006; 177: 3515–3519
  • Tan A. H., Wong S. C., Lam K. P. Regulation of mouse inducible costimulator (ICOS) expression by Fyn-NFATc2 and ERK signaling in T cells. J Biol Chem 2006; 281: 28666–28678
  • Mikami F., Lim J. H., Ishinaga H., Ha U. H., Gu H., Koga T., Jono H., Kai H., Li J. D. The transforming growth factor-beta-Smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacteria via a dual mechanism involving functional cooperation with NF-kappaB and MAPK phosphatase 1-dependent negative cross-talk with p38 MAPK. J Biol Chem 2006; 281: 22397–22408
  • Dadgostar H., Zarnegar B., Hoffmann A., Qin X. F., Truong U., Rao G., Baltimore D., Cheng G. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci U S A 2002; 99: 1497–1502
  • Bendelac A., Fearon D. T. Innate immunity—innate pathways that control acquired immunity. Curr Opin Immunol 1997; 9: 1–3
  • Romani L., Kaufmann S. H. Immunity to fungi. Res Immunol 1998; 149: 277
  • Kabelitz D., Medzhitov R. Innate immunity—cross-talks with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 2007; 19: 1–3
  • Barrionuevo P., Beigier-B M., Ilarregui J. M., Toscano M. A., Bianco G. A., Isturiz M. A., Rabinovich G. A. A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J Immunol 2007; 178: 436–445
  • Rius J., Guma M., Schachtrup C., Akassoglou K., Zinkernagel A. S., Nizet V., Johnson R. S., Haddad G. G., Karin M. NF-kB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 2008; 453: 807–811
  • Maxwell J. R., Yadav R., Rossi R. J., Ruby C. E., Weinberg A. D., Aguila H. L., Vella A. T. IL-18 bridges innate and adaptive immunity through IFN-gamma and the CD134 pathway. J Immunol 2006; 177: 234–245
  • Wills-Karp M. Complement activation pathways: A bridge between innate and adaptive immune responses in asthma. Proc Am Thorac Soc 2007; 4: 247–251
  • Pasare C., Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature 2005; 438: 364–368
  • Ruprecht C. R., Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 2006; 36: 810–816
  • Getz G. S. Bridging the innate and adaptive immune systems. J Lipid Res 2005; 46: 619–622
  • Dawicki W., Marshall J. S. New and emerging roles for mast cells in host defense. Curr Opin Immunol 2007; 19: 31–38
  • Kirwan S. E., Burshtyn D. N. Regulation of natural killer cell activity. Curr Opin Immunol 2007; 19: 46–54
  • Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296
  • Banchereau J., Steinman R. M. Dendritic cells and the control of immunity. Nature 1998; 392: 245–252
  • Katz S. I., Tamaki K., Sachs D. H. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979; 282: 324–326
  • Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down regulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118
  • Romani N., Gruner S., Brang D., Kämpgen E., Lenz A., Trockenbacher B., Konwalinka G., Fritsch P. O., Steinman R. M., Schuler G. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83–93
  • Szabolcs P., Avigan D., Gezelter S., Ciocon D. H., Moore M. A., Steinman R. M., Young J. W. Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-CFU intermediate. Blood 1996; 87: 4520–4530
  • Caux C., Vanbervliet B., Massacrier C., Dezutter-Dambuyant C., de Saint-Vis B., Jacquet C., Yoneda K., Imamura S., Schmitt D., Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF α. J Exp Med 1996; 184: 695–706
  • Caux C., Massacrier C., Vanbervliet B., Dubois B., de Saint-Vis B., Dezutter-Dambuyant C., Jacquet C., Schmitt D., Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor a: II. Functional analysis. Blood 1997; 90: 1458–1470
  • Grouard G., Rissoan M. C., Filgueira L., Durand I., Banchereau J., Liu Y. J. The enigmatic plasmacytoid T cells develop into dendritic cells with IL-3 and CD40-ligand. J Exp Med 1997; 185: 1101–1111
  • Rossi M., Young J. W. Human dendritic cells: Potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 2005; 175: 1373–1381
  • Steinman R. M., Hemmi H. Dendritic cells: Translating innate to adaptive immunity. Curr Top Microbiol Immunol 2006; 311: 17–58
  • Akira S. Mammalian Toll-like receptors. Curr Opin Immunol 2003; 15: 5
  • Schnare M., Barton G. M., Holt A. C., Takeda K., Akira S., Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2: 947
  • O'Neill L. A. Toll-like receptor signal transduction and the tailoring of innate immunity: A role for Mal?. Trends Immunol 2002; 23: 296–300
  • Pasare C., Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity. Adv Exp Med Biol 2005; 560: 11–18
  • Kimbrell D. A., Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet 2001; 2: 256–267
  • Schulenburg H., Léopold K. C., Ewbank J. J. Evolution of the innate immune system: the worm perspective. Immunol Rev 2004; 198: 36–58
  • Vorbach C., Capecchi M. R., Penninger J. M. Evolution of the mammary gland from the innate immune system?. BioEssays 2006; 28: 606–616
  • Medzhitov R., Janeway C. A., Jr. An ancient system of host defense. Curr Opin Immunol 1998; 10: 12–15
  • Sackton T. B., Lazzaro B. P., Schlenke T. A., Evans J. D., Hultmark D., Clark A. G. Dynamic evolution of the innate immune system in Drosophila. Nat Genet 2007; 39: 1461–1468
  • Friedman R., Hughes A. L. Molecular evolution of the NF-kappaB signaling system. Immunogenetics 2002; 53: 964–974
  • Beutler B., Rehli M. Evolution of the TIR, Tolls, and TLRs: Functional inferences from computational biology. Curr Top Microbiol Immunol 2002; 270: 1–21
  • Brennan C. A., Anderson K. V. Drosophila: The genetics of innate immune recognition and response. Annu Rev Immunol 2004; 22: 457–483
  • Royet J. Infectious non-self recognition in invertebrates: Lessons from Drosophila and other insect models. Mol Immunol 2004; 41: 1063–1075
  • Aderem A., Ulevitch R. J. Toll-like receptors in the induction of the innate immune response. Nature 2000; 406: 782–787
  • Anderson K. V. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000; 12: 13–19
  • Christophides G. K., Zdobnov E., Barillas-Mury C., Birney E., Blandin S., Blass C., Brey P. T., Collins F. H., Danielli A., Dimopoulos G., Hetru C., Hoa N. T., Hoffmann J. A., Kanzok S. M., Letunic I., Levashina E. A., Loukeris T. G., Lycett G., Meister S., Michel K., Moita L. F., Müller H. M., Osta M. A., Paskewitz S. M., Reichhart J. M., Rzhetsky A., Troxler L., Vernick K. D., Vlachou D., Volz J., von Mering C., Xu J., Zheng L., Bork P., Kafatos F. C. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298: 159–165
  • Evans J. D., Aronstein K., Chen Y. P., Hetru C., Imler J. L., Jiang H., Kanost M., Thompson G. J., Zou Z., Hultmark D. Immune pathways and defense mechanisms in honey bees Apis mellifera. Insect Mol Biol 2006; 15: 645–656
  • Waterhouse R. M., Kriventseva E. V., Meister S., Xi Z., Alvarez K. S., Bartholomay L. C., Barillas-Mury C., Bian G., Blandin S., Christensen B. M., Dong Y., Jiang H., Kanost M. R., Koutsos A. C., Levashina E. A., Li J., Ligoxygakis P., Maccallum R. M., Mayhew G. F., Mendes A., Michel K., Osta M. A., Paskewitz S., Shin S. W., Vlachou D., Wang L., Wei W., Zheng L., Zou Z., Severson D. W., Raikhel A. S., Kafatos F. C., Dimopoulos G., Zdobnov E. M., Christophides G. K. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 2007; 316: 1738–1743
  • Hughes A. L. Rapid evolution of immunoglobulin superfamily C2 domains expressed in immune system cells. Mol Biol Evol 1997; 14: 1–5
  • Trowsdale J., Parham P. Mini-review: Defense strategies and immunity-related genes. Eur J Immunol 2004; 34: 7–17
  • Hoffmann J. A., Reichhart J. M. Drosophila innate immunity: An evolutionary perspective. Nat Immunol 2002; 3: 121–126
  • Ausubel F. M. Are innate immune signaling pathways in plants and animals conserved?. Nat Immunol 2005; 6: 973–979
  • Medzhitov R., Janeway C. Jr., Innate immunity. N Engl J Med 2000; 343: 338–344
  • Gravato-Nobre M. J., Hodgkin J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 2005; 7: 741–751
  • Kurz C. L., Ewbank J. J. Caenorhabditis elegans: An emerging genetic model for the study of innate immunity. Nat Rev Genet 2003; 4: 380–390
  • Millet A. C., Ewbank J. J. Immunity in Caenorhabditis elegans. Curr Opin Immunol 2004; 16: 4–9
  • Mushegian A., Medzhitov R. Evolutionary perspective on innate immune recognition. J Cell Biol 2001; 155: 705–710
  • Lucanic M., Cheng H. J. A RAC/CDC-42-independent GIT/PIX/PAK signaling pathway mediates cell migration in C. elegans. PLoS Genet 2008; 4: e1000269
  • Guntermann S., Primrose D. A., Foley E. Dnr1-dependent regulation of the Drosophila immune deficiency signaling pathway. Dev Comp Immunol 2009; 33: 127–134
  • Kleino A., Myllymäki H., Kallio J., Vanha-aho L. M., Oksanen K., Ulvila J., Hultmark D., Valanne S., Rämet M. Pirk is a negative regulator of the Drosophila Imd pathway. J Immunol 2008; 180: 5413–5422
  • Shivers R. P., Youngman M. J., Kim D. H. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol 2008; 11: 251–256
  • Sanjuan M. A., Green D. R. Eating for good health: Linking autophagy and phagocytosis in host defense. Autophagy 2008; 4: 607–611
  • Sekiya M., Ueda K., Okazaki K., Kikuchi H., Kurata S., Oshima Y. A cyclopentanediol analogue selectively suppresses the conserved innate immunity pathways, Drosophila IMD and TNF-alpha pathways. Biochem Pharmacol 2008; 75: 2165–2174
  • Kanehisa M., Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28: 27–30
  • Berenson L. S., Gavrieli M., Farrar J. D., Murphy T. L., Murphy K. M. Distinct characteristics of murine STAT4 activation in response to IL-12 and IFN-alpha. J Immunol 2006; 177: 5195–5203
  • Ramos H. J., Davis A. M., George T. C., Farrar J. D. IFN-alpha is not sufficient to drive Th1 development due to lack of stable T-bet expression. J Immunol 2007; 179: 3792–3803
  • Filip L. C., Mundy N. I. Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates. Mol Biol Evol 2004; 21: 1504–1511
  • Jiggins F. M., Kim K. W. A screen for immunity genes evolving under positive selection in Drosophila. J Evol Biol 2007; 20: 965–970
  • Williams E. J., Hurst L. D. The proteins of linked genes evolve at similar rates. Nature 2000; 407: 900–903
  • Kikuchi H., Itoh J., Fukuda S. Chronic nicotine stimulation modulates the immune response of mucosal T cells to Th1-dominant pattern via nAChR by upregulation of Th1-specific transcriptional factor. Neurosci Lett 2008; 432: 217–221
  • Wang X., Wang B. R., Zhang X. J., Xu Z., Ding Y. Q., Ju G. Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol 2002; 8: 540–545
  • Kerschensteiner M., Meinl E., Hohlfeld R. Neuro-immune crosstalk in CNS diseases. Neuroscience 2008; 158: 1122–1132
  • Barnard A., Layton D., Hince M., Sakkal S., Bernard C., Chidgey A., Boyd R. Impact of the neuroendocrine system on thymus and bone marrow function. Neuroimmunomodulation 2008; 15: 7–18
  • Aggarwal K., Silverman N. Positive and negative regulation of the Drosophila immune response. BMB Rep 2008; 41: 267–277
  • Prigogine I., Wiame J. M. Biologie et thermodynamique des phénomènes irré versible [Biology and Thermodynamics of Irreversible Phenomena]. Experientia 1946; 2: 451–453
  • Prigogine I. Introduction of Thermodynamics of Irreversible Processes. Interscience Publishers, New York 1967
  • Schmidt A. Active patterns for self-optimization—Schemes for the design of intelligent mechatronic systems. IFIP International Federation for Information Processing, Biologically Inspired Cooperative Computing, Y. Pan, F. Rammig, H. Schmeck, M. Solar. Springer, Boston 2006; 147–156
  • Young J. A., Dillin A. MAPping innate immunity. Proc Natl Acad Sci U S A 2004; 101: 12781–12782
  • Boutros M., Agaisse H., Perrimon N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 2002; 3: 711–722
  • Vély F., Vivier E. Natural killer cell receptor signaling pathway in mammals. Sci STKE 2005; 292: cm7
  • Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303: 1526–1529

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.