240
Views
26
CrossRef citations to date
0
Altmetric
Original

Role of IDO in Organ Transplantation: Promises and Difficulties

&
Pages 185-206 | Published online: 13 Aug 2009

REFERENCES

  • Lopez M. M., Valenzuela J. E., Alvarez F. C., Lopez-Alvarez M. R., Cecilia G. S., Paricio P. P. Long-term problems related to immunosuppression. Transpl Immunol 2006; 17: 31–35
  • Munn D. H., Zhou M., Attwood J. T., Bondarev I., Conway S. J., Marshall B., Brown C., Mellor A. L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–1193
  • Thackray S. J., Mowat C. G., Chapman S. K. Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochem Soc Trans 2008; 36: 1120–1123
  • Taylor M. W., Feng G. S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. Faseb J 1991; 5: 2516–2522
  • Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Reibnegger G., Wachter H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim Biophys Acta 1989; 1012: 140–147
  • Mahanonda R., Sa-Ard-Iam N., Montreekachon P., Pimkhaokham A., Yongvanichit K., Fukuda M. M., Pichyangkul S. IL-8 and IDO expression by human gingival fibroblasts via TLRs. J Immunol 2007; 178: 1151–1157
  • Furset G., Floisand Y., Sioud M. Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 2008; 123: 263–271
  • Grohmann U., Volpi C., Fallarino F., Bozza S., Bianchi R., Vacca C., Orabona C., Belladonna M. L., Ayroldi E., Nocentini G., Boon L., Bistoni F., Fioretti M. C., Romani L., Riccardi C., Puccetti P. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 2007; 13: 579–586
  • Reddy P., Sun Y., Toubai T., Duran-Struuck R., Clouthier S. G., Weisiger E., Maeda Y., Tawara I., Krijanovski O., Gatza E., Liu C., Malter C., Mascagni P., Dinarello C. A., Ferrara J. L. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J Clin Invest 2008; 118: 2562–2573
  • Beutelspacher S. C., Tan P. H., McClure M. O., Larkin D. F., Lechler R. I., George A. J. Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: Implications for the control of alloresponses. Am J Transplant 2006; 6: 1320–1330
  • Pantoja L. G., Miller R. D., Ramirez J. A., Molestina R. E., Summersgill J. T. Inhibition of Chlamydia pneumoniae replication in human aortic smooth muscle cells by gamma interferon-induced indoleamine 2, 3-dioxygenase activity. Infect Immun 2000; 68: 6478–6481
  • Pfefferkorn E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci USA 1984; 81: 908–912
  • Oberdorfer C., Adams O., MacKenzie C. R., De Groot C. J., Daubener W. Role of IDO activation in anti-microbial defense in human native astrocytes. Adv Exp Med Biol 2003; 527: 15–26
  • Munn D. H., Shafizadeh E., Attwood J. T., Bondarev I., Pashine A., Mellor A. L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189: 1363–1372
  • Mellor A. L., Baban B., Chandler P., Marshall B., Jhaver K., Hansen A., Koni P. A., Iwashima M., Munn D. H. Cutting edge: Induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 2003; 171: 1652–1655
  • Mellor A. L., Chandler P., Baban B., Hansen A. M., Marshall B., Pihkala J., Waldmann H., Cobbold S., Adams E., Munn D. H. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 2004; 16: 1391–1401
  • Munn D. H., Sharma M. D., Lee J. R., Jhaver K. G., Johnson T. S., Keskin D. B., Marshall B., Chandler P., Antonia S. J., Burgess R., Slingluff C. L., Jr., Mellor A. L. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297: 1867–1870
  • Hirata F., Hayaishi O. Studies on indoleamine 2,3-dioxygenase. I. Superoxide anion as substrate. J Biol Chem 1975; 250: 5960–5966
  • Moffett J. R., Namboodiri M. A. Tryptophan and the immune response. Immunol Cell Biol 2003; 81: 247–265
  • Robinson C. M., Shirey K. A., Carlin J. M. Synergistic transcriptional activation of indoleamine dioxygenase by IFN-gamma and tumor necrosis factor-alpha. J Interferon Cytokine Res 2003; 23: 413–421
  • Puccetti P., Grohmann U. IDO and regulatory T cells: A role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 2007; 7: 817–823
  • Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 1993; 11: 571–611
  • Braun D., Longman R. S., Albert M. L. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 2005; 106: 2375–2381
  • Hayaishi O. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. Adv Exp Med Biol 1996; 398: 285–289
  • Thomas S. R., Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 1999; 4: 199–220
  • Ball H. J., Sanchez-Perez A., Weiser S., Austin C. J., Astelbauer F., Miu J., McQuillan J. A., Stocker R., Jermiin L. S., Hunt N. H. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 2007; 396: 203–213
  • Metz R., Duhadaway J. B., Kamasani U., Laury-Kleintop L., Muller A. J., Prendergast G. C. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 2007; 67: 7082–7087
  • Lob S., Konigsrainer A., Schafer R., Rammensee H. G., Opelz G., Terness P. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 2008; 111: 2152–2154
  • Lob S., Konigsrainer A., Zieker D., Brucher B. L., Rammensee H. G., Opelz G., Terness P. IDO1 and IDO2 are expressed in human tumors: Levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 2009; 58: 153–157
  • Lee G. K., Park H. J., Macleod M., Chandler P., Munn D. H., Mellor A. L. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 2002; 107: 452–460
  • Munn D. H., Sharma M. D., Baban B., Harding H. P., Zhang Y., Ron D., Mellor A. L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22: 633–642
  • Frumento G., Rotondo R., Tonetti M., Damonte G., Benatti U., Ferrara G. B. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002; 196: 459–468
  • Terness P., Bauer T. M., Rose L., Dufter C., Watzlik A., Simon H., Opelz G. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: Mediation of suppression by tryptophan metabolites. J Exp Med 2002; 196: 447–457
  • Fallarino F., Grohmann U., Vacca C., Orabona C., Spreca A., Fioretti M. C., Puccetti P. T cell apoptosis by kynurenines. Adv Exp Med Biol 2003; 527: 183–190
  • Chen W., Liang X., Peterson A. J., Munn D. H., Blazar B. R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 2008; 181: 5396–5404
  • Belladonna M. L., Grohmann U., Guidetti P., Volpi C., Bianchi R., Fioretti M. C., Schwarcz R., Fallarino F., Puccetti P. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 2006; 177: 130–137
  • Hayashi T., Mo J. H., Gong X., Rossetto C., Jang A., Beck L., Elliott G. I., Kufareva I., Abagyan R., Broide D. H., Lee J., Raz E. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 2007; 104: 18619–18624
  • Fallarino F., Grohmann U., You S., McGrath B. C., Cavener D. R., Vacca C., Orabona C., Bianchi R., Belladonna M. L., Volpi C., Santamaria P., Fioretti M. C., Puccetti P. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176: 6752–6761
  • Baban B., Chandler P., McCool D., Marshall B., Munn D. H., Mellor A. L. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol 2004; 61: 67–77
  • Sawitzki B., Kingsley C. I., Oliveira V., Karim M., Herber M., Wood K. J. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med 2005; 201: 1925–1935
  • Swanson K. A., Zheng Y., Heidler K. M., Mizobuchi T., Wilkes D. S. CDllc+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am J Respir Cell Mol Biol 2004; 30: 311–318
  • Grohmann U., Orabona C., Fallarino F., Vacca C., Calcinaro F., Falorni A., Candeloro P., Belladonna M. L., Bianchi R., Fioretti M. C., Puccetti P. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002; 3: 1097–1101
  • Blair P. J., Riley J. L., Levine B. L., Lee K. P., Craighead N., Francomano T., Perfetto S. J., Gray G. S., Carreno B. M., June C. H. CTLA-4 ligation delivers a unique signal to resting human CD4 T cells that inhibits interleukin-2 secretion but allows Bcl-X(L) induction. J Immunol 1998; 160: 12–15
  • Collins A. V., Brodie D. W., Gilbert R. J., Iaboni A., Manso-Sancho R., Walse B., Stuart D. I., van der Merwe P. A., Davis S. J. The interaction properties of costimulatory molecules revisited. Immunity 2002; 17: 201–210
  • Fallarino F., Grohmann U., Hwang K. W., Orabona C., Vacca C., Bianchi R., Belladonna M. L., Fioretti M. C., Alegre M. L., Puccetti P. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003; 4: 1206–1212
  • Pree I., Bigenzahn S., Fuchs D., Koporc Z., Nierlich P., Winkler C., Brandacher G., Sykes M., Muehlbacher F., Langer F., Wekerle T. CTLA4Ig promotes the induction of hematopoietic chimerism and tolerance independently of indoleamine-2,3-dioxygenase. Transplantation 2007; 83: 663–667
  • Tan P. H., Yates J. B., Xue S. A., Chan C., Jordan W. J., Harper J. E., Watson M. P., Dong R., Ritter M. A., Lechler R. I., Lombardi G., George A. J. Creation of tolerogenic human dendritic cells via intracellular CTLA4: a novel strategy with potential in clinical immunosuppression. Blood 2005; 106: 2936–2943
  • Moreland L., Bate G., Kirkpatrick P. Abatacept. Nat Rev Drug Discov 2006; 5: 185–186
  • Vincenti F., Larsen C., Durrbach A., Wekerle T., Nashan B., Blancho G., Lang P., Grinyo J., Halloran P. F., Solez K., Hagerty D., Levy E., Zhou W., Natarajan K., Charpentier B. Costimulation blockade with belatacept in renal transplantation. N Engl J Med 2005; 353: 770–781
  • Lee R. S., Rusche J. R., Maloney M. E., Sachs D. H., Sayegh M. H., Madsen J. C. CTLA4Ig-induced linked regulation of allogeneic T cell responses. J Immunol 2001; 166: 1572–1582
  • Roy-Chaudhury P., Nickerson P. W., Manfro R. C., Zheng X. X., Steiger J., Li Y. S., Strom T. B. CTLA4Ig attenuates accelerated rejection (presensitization) in the mouse islet allograft model. Transplantation 1997; 64: 172–175
  • Davis P. M., Abraham R., Xu L., Nadler S. G., Suchard S. J. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J Rheumatol 2007; 34: 2204–2210
  • Davis P. M., Nadler S. G., Stetsko D. K., Suchard S. J. Abatacept modulates human dendritic cell-stimulated T-cell proliferation and effector function independent of IDO induction. Clin Immunol 2008; 126: 38–47
  • Scheipers P., Reiser H. Fas-independent death of activated CD4(+) T lymphocytes induced by CTLA-4 crosslinking. Proc Natl Acad Sci USA 1998; 95: 10083–10088
  • Haspot F., Seveno C., Dugast A. S., Coulon F., Renaudin K., Usal C., Hill M., Anegon I., Heslan M., Josien R., Brouard S., Soulillou J. P., Vanhove B. Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR class II B7 regulatory cells. Am J Transplant 2005; 5: 2339–2348
  • Stoiber D., Kovarik P., Cohney S., Johnston J. A., Steinlein P., Decker T. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J Immunol 1999; 163: 2640–2647
  • Logue E. C., Sha W. C. CD28-B7 bidirectional signaling: A two-way street to activation. Nat Immunol 2004; 5: 1103–1105
  • Orabona C., Grohmann U., Belladonna M. L., Fallarino F., Vacca C., Bianchi R., Bozza S., Volpi C., Salomon B. L., Fioretti M. C., Romani L., Puccetti P. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 2004; 5: 1134–1142
  • Orabona C., Belladonna M. L., Vacca C., Bianchi R., Fallarino F., Volpi C., Gizzi S., Fioretti M. C., Grohmann U., Puccetti P. Cutting edge: Silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J Immunol 2005; 174: 6582–6586
  • Orabona C., Pallotta M. T., Volpi C., Fallarino F., Vacca C., Bianchi R., Belladonna M. L., Fioretti M. C., Grohmann U., Puccetti P. SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc Natl Acad Sci U S A 2008; 105: 20828–20833
  • Larsen C. P., Elwood E. T., Alexander D. Z., Ritchie S. C., Hendrix R., Tucker-Burden C., Cho H. R., Aruffo A., Hollenbaugh D., Linsley P. S., Winn K. J., Pearson T. C. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381: 434–438
  • Adams A. B., Shirasugi N., Jones T. R., Durham M. M., Strobert E. A., Cowan S., Rees P., Hendrix R., Price K., Kenyon N. S., Hagerty D., Townsend R., Hollenbaugh D., Pearson T. C., Larsen C. P. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol 2005; 174: 542–550
  • Guillot C., Guillonneau C., Mathieu P., Gerdes C. A., Menoret S., Braudeau C., Tesson L., Renaudin K., Castro M. G., Lowenstein P. R., Anegon I. Prolonged blockade of CD40-CD40 ligand interactions by gene transfer of CD40Ig results in long-term heart allograft survival and donor-specific hyporesponsiveness, but does not prevent chronic rejection. J Immunol 2002; 168: 1600–1609
  • Quezada S. A., Jarvinen L. Z., Lind E. F., Noelle R. J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 2004; 22: 307–328
  • Honey K., Cobbold S. P., Waldmann H. CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. J Immunol 1999; 163: 4805–4810
  • Monk N. J., Hargreaves R. E., Marsh J. E., Farrar C. A., Sacks S. H., Millrain M., Simpson E., Dyson J., Jurcevic S. Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 2003; 9: 1275–1280
  • Blair P. J., Riley J. L., Harlan D. M., Abe R., Tadaki D. K., Hoffmann S. C., White L., Francomano T., Perfetto S. J., Kirk A. D., June C. H. CD40 ligand (CD154) triggers a short-term CD4(+) T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med 2000; 191: 651–660
  • Albert M. L., Jegathesan M., Darnell R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol 2001; 2: 1010–1017
  • Grohmann U., Fallarino F., Silla S., Bianchi R., Belladonna M. L., Vacca C., Micheletti A., Fioretti M. C., Puccetti P. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol 2001; 166: 277–283
  • Martin E., O'Sullivan B., Low P., Thomas R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 2003; 18: 155–167
  • Hancock W. W., Sayegh M. H., Zheng X. G., Peach R., Linsley P. S., Turka L. A. Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc Natl Acad Sci U S A 1996; 93: 13967–13972
  • Jones N. D., Van Maurik A., Hara M., Spriewald B. M., Witzke O., Morris P. J., Wood K. J. CD40-CD40 ligand-independent activation of CD8+ T cells can trigger allograft rejection. J Immunol 2000; 165: 1111–1118
  • Kirk A. D., Burkly L. C., Batty D. S., Baumgartner R. E., Berning J. D., Buchanan K., Fechner J. H., Jr., Germond R. L., Kampen R. L., Patterson N. B., Swanson S. J., Tadaki D. K., TenHoor C. N., White L., Knechtle S. J., Harlan D. M. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5: 686–693
  • Guillonneau C., Hill M., Hubert F. X., Chiffoleau E., Herve C., Li X. L., Heslan M., Usal C., Tesson L., Menoret S., Saoudi A., Le Mauff B., Josien R., Cuturi M. C., Anegon I. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117: 1096–1106
  • von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol 2005; 6: 338–344
  • Sharma M. D., Baban B., Chandler P., Hou D. Y., Singh N., Yagita H., Azuma M., Blazar B. R., Mellor A. L., Munn D. H. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117: 2570–2582
  • Thebault P., Condamine T., Heslan M., Hill M., Bernard I., Saoudi A., Josien R., Anegon I., Cuturi M. C., Chiffoleau E. Role of IFNgamma in allograft tolerance mediated by CD4+CD25+ regulatory T cells by induction of IDO in endothelial cells. Am J Transplant 2007; 7: 2472–2482
  • Fallarino F., Asselin-Paturel C., Vacca C., Bianchi R., Gizzi S., Fioretti M. C., Trinchieri G., Grohmann U., Puccetti P. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 2004; 173: 3748–3754
  • Colvin B. L., Sumpter T. L., Tokita D., Salati J., Mellor A. L., Thomson A. W. Allostimulatory activity of bone marrow-derived plasmacytoid dendritic cells is independent of indoleamine dioxygenase but regulated by inducible costimulator ligand expression. Hum Immunol 2009; 70: 313–320
  • Colonna M., Trinchieri G., Liu Y. J. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226
  • Terness P., Chuang J. J., Bauer T., Jiga L., Opelz G. Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO?. Blood 2005; 105: 2480–2486
  • Terness P., Chuang J. J., Opelz G. The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol 2006; 27: 68–73
  • Lob S., Ebner S., Wagner S., Weinreich J., Schafer R., Konigsrainer A. Are indoleamine-2,3-dioxygenase producing human dendritic cells a tool for suppression of allogeneic t-cell responses?. Transplantation 2007; 83: 468–473
  • de Faudeur G., de Trez C., Muraille E., Leo O. Normal development and function of dendritic cells in mice lacking IDO-1 expression. Immunol Lett 2008; 118: 21–29
  • Munn D. H., Sharma M. D., Hou D., Baban B., Lee J. R., Antonia S. J., Messina J. L., Chandler P., Koni P. A., Mellor A. L. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004; 114: 280–290
  • Muller A. J., Malachowski W. P., Prendergast G. C. Indoleamine 2,3-dioxygenase in cancer: Targeting pathological immune tolerance with small-molecule inhibitors. Expert Opin Ther Targets 2005; 9: 831–849
  • Alexander A. M., Crawford M., Bertera S., Rudert W. A., Takikawa O., Robbins P. D., Trucco M. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 2002; 51: 356–365
  • Beutelspacher S. C., Pillai R., Watson M. P., Tan P. H., Tsang J., McClure M. O., George A. J., Larkin D. F. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur J Immunol 2006; 36: 690–700
  • Li J., Meinhardt A., Roehrich M. E., Golshayan D., Dudler J., Pagnotta M., Trucco M., Vassalli G. Indoleamine 2,3-dioxygenase gene transfer prolongs cardiac allograft survival. Am J Physiol Heart Circ Physiol 2007; 293: H3415–H3423
  • Li Y., Tredget E. E., Ghaffari A., Lin X., Kilani R. T., Ghahary A. Local expression of indoleamine 2,3-dioxygenase protects engraftment of xenogeneic skin substitute. J Invest Dermatol 2006; 126: 128–136
  • Liu H., Liu L., Fletcher B. S., Visner G. A. Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. Faseb J 2006; 20: 2384–2386
  • Liu H., Liu L., Fletcher B. S., Visner G. A. Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am J Respir Crit Care Med 2006; 173: 566–572
  • Liu H., Liu L., Visner G. A. Nonviral gene delivery with indoleamine 2,3-dioxygenase targeting pulmonary endothelium protects against ischemia-reperfusion injury. Am J Transplant 2007; 7: 2291–2300
  • Wee J. L., Christiansen D., Li Y. Q., Boyle W., Sandrin M. S. Suppression of cytotoxic and proliferative xenogeneic T-cell responses by transgenic expression of indoleamine 2,3-dioxygenase. Immunol Cell Biol 2008; 86: 460–465
  • Yu G., Dai H., Chen J., Duan L., Gong M., Liu L., Xiong P., Wang C. Y., Fang M., Gong F. Gene delivery of indoleamine 2,3-dioxygenase prolongs cardiac allograft survival by shaping the types of T-cell responses. J Gene Med 2008; 10: 754–761
  • Tan P. H., Tan P. L., George A. J., Chan C. L. Gene therapy for transplantation with viral vectors—how much of the promise has been realised?. Expert Opin Biol Ther 2006; 6: 759–772
  • Tan P. H., Chan C. L., George A. J. Strategies to improve non-viral vectors—potential applications in clinical transplantation. Expert Opin Biol Ther 2006; 6: 619–630
  • Laurence J. M., Wang C., Park E. T., Buchanan A., Clouston A., Allen R. D., McCaughan G. W., Bishop G. A., Sharland A. F. Blocking indoleamine dioxygenase activity early after rat liver transplantation prevents long-term survival but does not cause acute rejection. Transplantation 2008; 85: 1357–1361
  • Bauer T. M., Jiga L. P., Chuang J. J., Randazzo M., Opelz G., Terness P. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: Tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int 2005; 18: 95–100
  • Cook C. H., Bickerstaff A. A., Wang J. J., Nadasdy T., Della Pelle P., Colvin R. B., Orosz C. G. Spontaneous renal allograft acceptance associated with “regulatory” dendritic cells and IDO. J Immunol 2008; 180: 3103–3112
  • Lin Y. C., Chen C. L., Nakano T., Goto S., Kao Y. H., Hsu L. W., Lai C. Y., Jawan B., Cheng Y. F., Tateno C., Yoshizato K. Immunological role of indoleamine 2,3-dioxygenase in rat liver allograft rejection and tolerance. J Gastroenterol Hepatol 2008; 23: e243–e250
  • Lin Y. C., Goto S., Tateno C., Nakano T., Cheng Y. F., Jawan B., Kao Y. H., Hsu L. W., Lai C. Y., Yoshizato K., Chen C. L. Induction of indoleamine 2,3-dioxygenase in livers following hepatectomy prolongs survival of allogeneic hepatocytes after transplantation. Transplant Proc 2008; 40: 2706–2708
  • Barnes R. M., Alexander L. C. Beta-2-microglobulin. Quantitation by rocket immunoelectrophoresis and evaluation of serum levels in renal transplant patients. Transplantation 1983; 35: 552–555
  • Claesson K., Ronnblom L., Alm G., Tufveson G. Antiviral activity appearing in serum of renal transplant recipients. Its possible relation to immunological rejection. Transplantation 1984; 38: 32–34
  • Schafer A. J., Daniel V., Dreikorn K., Opelz G. Assessment of plasma neopterin in clinical kidney transplantation. Transplantation 1986; 41: 454–459
  • Backman L., Ringden O., Bjorkhem I. Monitoring of serum beta 2 microglobulin and neopterin levels in renal transplant recipients: increased values during impaired renal function and cytomegalovirus infection. Transplant Proc 1988; 20: 410–412
  • Didlake R. H., Kim E. K., Sheehan K., Schreiber R. D., Kahan B. D. Effect of combined anti-gamma interferon antibody and cyclosporine therapy on cardiac allograft survival in the rat. Transplantation 1988; 45: 222–223
  • Landolfo S., Cofano F., Giovarelli M., Prat M., Cavallo G., Forni G. Inhibition of interferon-gamma may suppress allograft reactivity by T lymphocytes in vitro and in vivo. Science 1985; 229: 176–179
  • Holmes E. W., Russell P. M., Kinzler G. J., Reckard C. R., Flanigan R. C., Thompson K. D., Bermes E. W. Jr., Oxidative tryptophan metabolism in renal allograft recipients: Increased kynurenine synthesis is associated with inflammation and OKT3 therapy. Cytokine 1992; 4: 205–213
  • Brandacher G., Cakar F., Winkler C., Schneeberger S., Obrist P., Bosmuller C., Werner-Felmayer G., Werner E. R., Bonatti H., Margreiter R., Fuchs D. Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int 2007; 71: 60–67
  • Hwang S. L., Chung N. P., Chan J. K., Lin C. L. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res 2005; 15: 167–175
  • Tan P. H., Beutelspacher S. C., Xue S. A., Wang Y. H., Mitchell P., McAlister J. C., Larkin D. F., McClure M. O., Stauss H. J., Ritter M. A., Lombardi G., George A. J. Modulation of human dendritic-cell function following transduction with viral vectors: Implications for gene therapy. Blood 2005; 105: 3824–3832
  • Hacein-Bey-Abina S., von Kalle C., Schmidt M., Le Deist F., Wulffraat N., McIntyre E., Radford I., Villeval J. L., Fraser C. C., Cavazzana-Calvo M., Fischer A. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256
  • Couzin J., Kaiser J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 2005; 307: 1028
  • Mailankot M., Smith D., Howell S., Wang B., Jacobberger J. W., Stefan T., Nagaraj R. H. Cell cycle arrest by kynurenine in lens epithelial cells. Invest Ophthalmol Vis Sci 2008; 49: 5466–5475

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.