995
Views
47
CrossRef citations to date
0
Altmetric
Original

Neutropenia and Primary Immunodeficiency Diseases

, , &
Pages 335-366 | Published online: 09 Sep 2009

REFERENCES

  • Rezaei N., Bonilla F. A., Sullivan K. E., de Vries E., Orange J. S. An introduction to primary immunodeficiency diseases. Primary Immunodeficiency Diseases: Definition, Diagnosis and Management, N. Rezaei, A. Aghamohammadi, L. D. Notarangelo. Springer-Verlag, Berlin Heidelberg 2008; 1–38
  • Geha R. S., Notarangelo L. D., Casanova J. L., Chapel H., Conley M. E., Fischer A., et al. Primary immunodeficiency diseases: An update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 2007; 120: 776–794
  • Aghamohammadi A., Moein M., Farhoudi A., Pourpak Z., Rezaei N., Abolmaali K., et al. Primary immunodeficiency in Iran: First report of the National Registry of PID in Children and Adults. J Clin Immunol 2002; 22: 375–380
  • Rezaei N., Moin M., Pourpak Z., Ramyar A., Izadyar M., Chavoshzadeh Z., et al. The clinical, immunohematological, and molecular study of Iranian patients with severe congenital neutropenia. J Clin Immunol 2007; 27: 525–533
  • Arkwright P. D., Abinun M., Cant A. J. Autoimmunity in human primary immunodeficiency diseases. Blood 2002; 99: 2694–2702
  • Cunningham-Rundles C. Hematologic complications of primary immune deficiencies. Blood Rev 2002; 16: 61–64
  • Constantinou C. L. Differential diagnosis of neutropenia. Primary Hematology, A. Tefferi. Humana Press, Totowa, NJ 2001; 93–105
  • Cham B., Bonilla M. A., Winkelstein J. Neutropenia associated with primary immunodeficiency syndromes. Semin Hematol 2002; 39: 107–112
  • Rezaei N., Farhoudi A., Pourpak Z., Aghamohammadi A., Moin M., Movahedi M., Gharagozlou M. Neutropenia in Iranian patients with primary immunodeficiency disorders. Haematologica 2005; 90: 554–556
  • Bohn G., Welte K., Klein C. Severe congenital neutropenia: New genes explain an old disease. Curr Opin Rheumatol 2007; 19: 644–650
  • Schaffer A. A., Klein C. Genetic heterogeneity in severe congenital neutropenia: How many aberrant pathways can kill a neutrophil?. Curr Opin Allergy Clin Immunol 2007; 7: 481–494
  • Boztug K., Welte K., Zeidler C., Klein C. Congenital neutropenia syndromes. Immunol Allergy Clin North Am 2008; 28: 259–275; vii–viii
  • Welte K., Zeidler C., Dale D. C. Severe congenital neutropenia. Semin Hematol 2006; 43: 189–195
  • Skokowa J., Germeshausen M., Zeidler C., Welte K. Severe congenital neutropenia: Inheritance and pathophysiology. Curr Opin Hematol 2007; 14: 22–28
  • Wintergerst U., Rosenzweig S. D., Abinun M., Malech H. L., Holland S. M., Rezaei N. Phagocytes defects. Primary Immunodeficiency Diseases: Definition, Diagnosis and Management, N. Rezaei, A. Aghamohammadi, L. D. Notarangelo. Springer-Verlag, Berlin Heidelberg 2008; 1–38
  • Dale D. C., Bolyard A. A., Schwinzer B. G., Pracht G., Bonilla M. A., Boxer L., et al. The Severe Chronic Neutropenia International Registry: 10-Year Follow-up Report. Support Cancer Ther 2006; 3: 220–231
  • Rezaei N., Farhoudi A., Ramyar A., Pourpak Z., Aghamohammadi A., Mohammadpour B., et al. Congenital neutropenia and primary immunodeficiency disorders: A survey of 26 Iranian patients. J Pediatr Hematol Oncol 2005; 27: 351–356
  • Fahimzad A., Chavoshzadeh Z., Abdollahpour H., Klein C., Rezaei N. Necrosis of nasal cartilage due to mucormycosis in a patient with severe congenital neutropenia due to HAX1 deficiency. J Investig Allergol Clin Immunol 2008; 18: 469–472
  • Germeshausen M., Grudzien M., Zeidler C., Abdollahpour H., Yetgin S., Rezaei N., et al. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 2008; 111: 4954–4957
  • Rezaei N., Chavoshzadeh Z., Sandrock R. A. O. I., Klein C. Association of HAX1 deficiency with neurological disorder. Neuropediatrics 2007; 38: 261–263
  • Ishikawa N., Okada S., Miki M., Shirao K., Kihara H., Tsumura M., et al. Neurodevelopmental abnormalities associated with severe congenital neutropenia due to the R86X mutation in the HAX1 gene. J Med Genet 2008; 45: 802–807
  • Boztug K., Appaswamy G., Ashikov A., Schäffer A. A., Salzer U., Diestelhorst J., et al. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 2009; 360: 32–43
  • Ward A. C., Dale D. C. Genetic and molecular diagnosis of severe congenital neutropenia. Curr Opin Hematol 2009; 16: 9–13
  • Dale D. C., Person R. E., Bolyard A. A., Aprikyan A. G., Bos C., Bonilla M. A., et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000; 96: 2317–2322
  • Xia J., Bolyard A. A., Rodger E., Stein S., Aprikyan A. A. G., Dale D. C., Link D. C. Incidence of SCN-associated gene mutations in severe congenital neutropenia patients in North America. 50th American Society of Hematology Annual Meeting. 2008
  • Bellanne-Chantelot C., Clauin S., Leblanc T., Cassinat B., Rodrigues-Lima F., Beaufils S., et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia: A study of 81 patients from the French Neutropenia Register. Blood 2004; 103: 4119–4125
  • Takahashi H., Nukiwa T., Basset P., Crystal R. G. Myelomonocytic cell lineage expression of the neutrophil elastase gene. J Biol Chem 1988; 263: 2543–2547
  • Salipante S. J., Benson K. F., Luty J., Hadavi V., Kariminejad R., Kariminejad M. H., et al. Double de novo mutations of ELA2 in cyclic and severe congenital neutropenia. Hum Mutat 2007; 28: 874–881
  • Kollner I., Sodeik B., Schreek S., Heyn H., von Neuhoff N., Germeshausen M., et al. Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 2006; 108: 493–500
  • Grenda D. S., Murakami M., Ghatak J., Xia J., Boxer L. A., Dale D., et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood 2007; 110: 4179–4187
  • Xia J., Link D. C. Severe congenital neutropenia and the unfolded protein response. Curr Opin Hematol 2008; 15: 1–7
  • Benson K. F., Li F. Q., Person R. E., Albani D., Duan Z., Wechsler J., et al. Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat Genet 2003; 35: 90–96
  • Horwitz M., Benson K. F., Duan Z., Li F. Q., Person R. E. Hereditary neutropenia: Dogs explain human neutrophil elastase mutations. Trends Mol Med 2004; 10: 163–170
  • Aprikyan A. A., Kutyavin T., Stein S., Aprikian P., Rodger E., Liles W. C., et al. Cellular and molecular abnormalities in severe congenital neutropenia predisposing to leukemia. Exp Hematol 2003; 31: 372–381
  • Klein C., Grudzien M., Appaswamy G., Germeshausen M., Sandrock I., Schaffer A. A., et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2007; 39: 86–92
  • Suzuki Y., Demoliere C., Kitamura D., Takeshita H., Deuschle U., Watanabe T. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 1997; 158: 2736–2744
  • Gallagher A. R., Cedzich A., Gretz N., Somlo S., Witzgall R. The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A 2000; 97: 4017–4022
  • Radhika V., Onesime D., Ha J. H., Dhanasekaran N. Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 2004; 279: 49406–49413
  • Chao J. R., Parganas E., Boyd K., Hong C. Y., Opferman J. T., Ihle J. N. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 2008; 452: 98–102
  • Devriendt K., Kim A. S., Mathijs G., Frints S. G., Schwartz M., Van Den Oord J. J., et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 2001; 27: 313–317
  • Burns S., Cory G. O., Vainchenker W., Thrasher A. J. Mechanisms of WASp-mediated hematologic and immunologic disease. Blood 2004; 104: 3454–3462
  • Ancliff P. J., Blundell M. P., Cory G. O., Calle Y., Worth A., Kempski H., et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood 2006; 108: 2182–2189
  • Moulding D. A., Blundell M. P., Spiller D. G., White M. R., Cory G. O., Calle Y., et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 2007; 204: 2213–2224
  • Ochs H. D., Thrasher A. J. The Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2006; 117: 725–738, quiz 739
  • Cohen P., Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol 2001; 2: 769–776
  • Person R. E., Li F. Q., Duan Z., Benson K. F., Wechsler J., Papadaki H. A., et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 2003; 34: 308–312
  • Moroy T., Zeng H., Jin J., Schmid K. W., Carpinteiro A., Gulbins E. The zinc finger protein and transcriptional repressor Gfi1 as a regulator of the innate immune response. Immunobiology 2008; 213: 341–352
  • Hock H., Hamblen M. J., Rooke H. M., Schindler J. W., Saleque S., Fujiwara Y., Orkin S. H. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431: 1002–1007
  • Rosenberg P. S., Alter B. P., Bolyard A. A., Bonilla M. A., Boxer L. A., Cham B., et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006; 107: 4628–4635
  • Dong F., Brynes R. K., Tidow N., Welte K., Lowenberg B., Touw I. P. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 1995; 333: 487–493
  • Germeshausen M., Ballmaier M., Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: Results of a long-term survey. Blood 2007; 109: 93–99
  • Salipante S. J., Benson K. F., Person R. E. Neutropenia-associated mutations of PFAAP5, a novel protein mediating transcriptional repressor interaction between Gfi1 and neutrophil elastase. ASH Annual Meeting Abstracts: Blood. 2006, Abstract 501
  • Duan Z., Huang S., Person R. E. Neutropenia-associated mutations in PRDM5, a novel epigenetic regulator of hematopoiesis. ASH Annual Meeting Abstracts: Blood. 2006, Abstract 503
  • Berliner N., Horwitz M., Loughran T. P., Jr. Congenital and acquired neutropenia. Hematology Am Soc Hematol Educ Program 2004; 63–79
  • Dale D. C., Hammond W. P. T. Cyclic neutropenia: a clinical review. Blood Rev 1988; 2: 178–185
  • Rezaei N., Farhoudi A., Pourpak Z., Aghamohammadi A., Ramyar A., Moin M., et al. Clinical and laboratory findings in Iranian children with cyclic neutropenia. Iran J Allergy Asthma Immunol 2004; 3: 37–40
  • Sera Y., Kawaguchi H., Nakamura K., Sato T., Habara M., Okada S., et al. A comparison of the defective granulopoiesis in childhood cyclic neutropenia and in severe congenital neutropenia. Haematologica 2005; 90: 1032–1041
  • Horwitz M. S., Duan Z., Korkmaz B., Lee H. H., Mealiffe M. E., Salipante S. J. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 2007; 109: 1817–1824
  • Horwitz M., Benson K. F., Person R. E., Aprikyan A. G., Dale D. C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 1999; 23: 433–436
  • Smith O. P., Hann I. M., Chessells J. M., Reeves B. R., Milla P. Haematological abnormalities in Shwachman-Diamond syndrome. Br J Haematol 1996; 94: 279–284
  • Dror Y., Durie P., Ginzberg H., Herman R., Banerjee A., Champagne M., et al. Clonal evolution in marrows of patients with Shwachman-Diamond syndrome: A prospective 5-year follow-up study. Exp Hematol 2002; 30: 659–669
  • Ginzberg H., Shin J., Ellis L., Morrison J., Ip W., Dror Y., et al. Shwachman syndrome: Phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr 1999; 135: 81–88
  • Dror Y. Shwachman-Diamond syndrome. Pediatr Blood Cancer 2005; 45: 892–901
  • Smith O. P. Shwachman-Diamond syndrome. Semin Hematol 2002; 39: 95–102
  • Shimamura A. Shwachman-Diamond syndrome. Semin Hematol 2006; 43: 178–188
  • Kent A., Murphy G. H., Milla P. Psychological characteristics of children with Shwachman syndrome. Arch Dis Child 1990; 65: 1349–1352
  • Aggett P. J., Cavanagh N. P., Matthew D. J., Pincott J. R., Sutcliffe J., Harries J. T. Shwachman's syndrome. A review of 21 cases. Arch Dis Child 1980; 55: 331–347
  • Boocock G. R., Morrison J. A., Popovic M., Richards N., Ellis L., Durie P. R., Rommens J. M. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 2003; 33: 97–101
  • Austin K. M., Gupta M. L., Coats S. A., Tulpule A., Mostoslavsky G., Balazs A. B., et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. J Clin Invest 2008; 118: 1511–1518
  • Ganapathi K. A., Shimamura A. Ribosomal dysfunction and inherited marrow failure. Br J Haematol 2008; 141: 376–387
  • Davis W. C., Douglas S. D. Defective granule formation and function in the Chediak-Higashi syndrome in man and animals. Semin Hematol 1972; 9: 431–450
  • Abo T., Roder J. C., Abo W., Cooper M. D., Balch C. M. Natural killer (HNK-1+) cells in Chediak-Higashi patients are present in normal numbers but are abnormal in function and morphology. J Clin Invest 1982; 70: 193–197
  • Ward D. M., Griffiths G. M., Stinchcombe J. C., Kaplan J. Analysis of the lysosomal storage disease Chediak-Higashi syndrome. Traffic 2000; 1: 816–822
  • Ward D. M., Shiflett S. L., Kaplan J. Chediak-Higashi syndrome: A clinical and molecular view of a rare lysosomal storage disorder. Curr Mol Med 2002; 2: 469–477
  • Certain S., Barrat F., Pastural E., Le Deist F., Goyo-Rivas J., Jabado N., et al. Protein truncation test of LYST reveals heterogenous mutations in patients with Chediak-Higashi syndrome. Blood 2000; 95: 979–983
  • Zhao H., Boissy Y. L., Abdel-Malek Z., King R. A., Nordlund J. J., Boissy R. E. On the analysis of the pathophysiology of Chediak-Higashi syndrome. Defects expressed by cultured melanocytes. Lab Invest 1994; 71: 25–34
  • Barbosa M. D., Barrat F. J., Tchernev V. T., Nguyen Q. A., Mishra V. S., Colman S. D., et al. Identification of mutations in two major mRNA isoforms of the Chediak-Higashi syndrome gene in human and mouse. Hum Mol Genet 1997; 6: 1091–1098
  • Clark R., Griffiths G. M. Lytic granules, secretory lysosomes and disease. Curr Opin Immunol 2003; 15: 516–521
  • Kaplan J., De Domenico I., Ward D. M. Chediak-Higashi syndrome. Curr Opin Hematol 2008; 15: 22–29
  • Tomita Y., Suzuki T. Genetics of pigmentary disorders. Am J Med Genet C Semin Med Genet 2004; 131C: 75–81
  • Griscelli C., Durandy A., Guy-Grand D., Daguillard F., Herzog C., Prunieras M. A syndrome associating partial albinism and immunodeficiency. Am J Med 1978; 65: 691–702
  • Wilson S. M., Yip R., Swing D. A., O'Sullivan T. N., Zhang Y., Novak E. K., et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci U S A 2000; 97: 7933–7938
  • Stinchcombe J. C., Barral D. C., Mules E. H., Booth S., Hume A. N., Machesky L. M., et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 2001; 152: 825–834
  • Munafo D. B., Johnson J. L., Ellis B. A., Rutschmann S., Beutler B., Catz S. D. Rab27a is a key component of the secretory machinery of azurophilic granules in granulocytes. Biochem J 2007; 402: 229–239
  • Shotelersuk V., Dell'Angelica E. C., Hartnell L., Bonifacino J. S., Gahl W. A. A new variant of Hermansky-Pudlak syndrome due to mutations in a gene responsible for vesicle formation. Am J Med 2000; 108: 423–427
  • Huizing M., Scher C. D., Strovel E., Fitzpatrick D. L., Hartnell L. M., Anikster Y., Gahl W. A. Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2. Pediatr Res 2002; 51: 150–158
  • Clark R. H., Stinchcombe J. C., Day A., Blott E., Booth S., Bossi G., et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 2003; 4: 1111–1120
  • Fontana S., Parolini S., Vermi W., Booth S., Gallo F., Donini M., et al. Innate immunity defects in Hermansky-Pudlak type 2 syndrome. Blood 2006; 107: 4857–4864
  • Jung J., Bohn G., Allroth A., Boztug K., Brandes G., Sandrock I., et al. Identification of a homozygous deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2. Blood 2006; 108: 362–369
  • Stinchcombe J., Bossi G., Griffiths G. M. Linking albinism and immunity: the secrets of secretory lysosomes. Science 2004; 305: 55–59
  • Huizing M., Gahl W. A. Disorders of vesicles of lysosomal lineage: The Hermansky-Pudlak syndromes. Curr Mol Med 2002; 2: 451–467
  • Badolato R., Parolini S. Novel insights from adaptor protein 3 complex deficiency. J Allergy Clin Immunol 2007; 120: 735–741, quiz 742–733
  • Bossi G., Griffiths G. M. CTL secretory lysosomes: Biogenesis and secretion of a harmful organelle. Semin Immunol 2005; 17: 87–94
  • Bohn G., Allroth A., Brandes G., Thiel J., Glocker E., Schaffer A. A., et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 2007; 13: 38–45
  • Speckmann C., Rohr J., Ehl S. Genetic disorders of immune regulation. Primary Immunodeficiency Diseases: Definition, Diagnosis and Management, N. Rezaei, A. Aghamohammadi, L. D. Notarangelo. Springer-Verlag, Berlin Heidelberg 2008; 167–194
  • Teis D., Taub N., Kurzbauer R., Hilber D., de Araujo M. E., Erlacher M., et al. p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol 2006; 175: 861–868
  • Gorlin R. J., Gelb B., Diaz G. A., Lofsness K. G., Pittelkow M. R., Fenyk J. R., Jr. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 2000; 91: 368–376
  • Aprikyan A. A., Liles W. C., Park J. R., Jonas M., Chi E. Y., Dale D. C. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood 2000; 95: 320–327
  • Diaz G. A., Gulino A. V. WHIM syndrome: A defect in CXCR4 signaling. Curr Allergy Asthma Rep 2005; 5: 350–355
  • Gulino A. V. WHIM syndrome: A genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol 2003; 3: 443–450
  • Latger-Cannard V., Bensoussan D., Bordigoni P. The WHIM syndrome shows a peculiar dysgranulopoiesis: Myelokathexis. Br J Haematol 2006; 132: 669
  • Wetzler M., Talpaz M., Kleinerman E. S., King A., Huh Y. O., Gutterman J. U., Kurzrock R. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med 1990; 89: 663–672
  • Balabanian K., Lagane B., Pablos J. L., Laurent L., Planchenault T., Verola O., et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005; 105: 2449–2457
  • Roland J., Murphy B. J., Ahr B., Robert-Hebmann V., Delauzun V., Nye K. E., et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood 2003; 101: 399–406
  • Martin C., Burdon P. C., Bridger G., Gutierrez-Ramos J. C., Williams T. J., Rankin S. M. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 2003; 19: 583–593
  • Suratt B. T., Petty J. M., Young S. K., Malcolm K. C., Lieber J. G., Nick J. A., et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 2004; 104: 565–571
  • Semerad C. L., Liu F., Gregory A. D., Stumpf K., Link D. C. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 2002; 17: 413–423
  • Valenzuela-Fernandez A., Planchenault T., Baleux F., Staropoli I., Le-Barillec K., Leduc D., et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1]/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277: 15677–15689
  • Notarangelo L. D., Duse M., Ugazio A. G. Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev 1992; 3: 101–121
  • Fuleihan R., Ramesh N., Loh R., Jabara H., Rosen R. S., Chatila T., et al. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A 1993; 90: 2170–2173
  • Levy J., Espanol-Boren T., Thomas C., Fischer A., Tovo P., Bordigoni P., et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997; 131: 47–54
  • Rezaei N., Aghamohammadi A., Ramyar A., Pan-Hammarstrom Q., Hammarstrom L. Severe congenital neutropenia or hyper-IgM syndrome? A novel mutation of CD40 ligand in a patient with severe neutropenia. Int Arch Allergy Immunol 2008; 147: 255–259
  • Hayward A. R., Levy J., Facchetti F., Notarangelo L., Ochs H. D., Etzioni A., et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol 1997; 158: 977–983
  • Nagaraj N., Egwim C., Adler D. G. X-linked hyper-IgM syndrome associated with poorly differentiated neuroendocrine tumor presenting as obstructive jaundice secondary to extensive adenopathy. Dig Dis Sci 2007; 52: 2312–2316
  • Aruffo A., Farrington M., Hollenbaugh D., Li X., Milatovich A., Nonoyama S., et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 1993; 72: 291–300
  • Kroczek R. A., Graf D., Brugnoni D., Giliani S., Korthuer U., Ugazio A., et al. Defective expression of CD40 ligand on T cells causes “X-linked immunodeficiency with hyper-IgM (HIGM1)”. Immunol Rev 1994; 138: 39–59
  • Atarod L., Aghamohammadi A., Moin M., Kanegane H., Rezaei N., Rezaei Kalantari K., et al. Successful management of neutropenia in a patient with CD40 ligand deficiency by immunoglobulin replacement therapy. Iran J Allergy Asthma Immunol 2007; 6: 37–40
  • Mori M., Nonoyama S., Neubauer M., Mitsuda T., Kosuge K., Yokota S. Mutation analysis and therapeutic response to granulocyte colony-stimulating factor in a case of hyperimmunoglobulin M syndrome with chronic neutropenia. J Pediatr Hematol Oncol 2000; 22: 288–289
  • Aghamohammadi A., Lougaris V., Plebani A., Miyawaki M., Durandy A., Hammarstorm L. Predominantly antibody deficiencies. Primary Immunodeficiency Diseases, N. Rezaei, A. Aghamohammadi, L. D. Notarangelo. Springer, Berlin Heidelburg 2008; 97–130
  • Aghamohammadi A., Fiorini M., Moin M., Parvaneh N., Teimourian S., Yeganeh M., et al. Clinical, immunological and molecular characteristics of 37 Iranian patients with X-linked agammaglobulinemia. Int Arch Allergy Immunol 2006; 141: 408–414
  • Moin M., Aghamohammadi A., Farhoudi A., Pourpak Z., Rezaei N., Movahedi M., et al. X-linked agammaglobulinemia: A survey of 33 Iranian patients. Immunol Invest 2004; 33: 81–93
  • Conley M. E., Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatr 2002; 141: 566–571
  • Kanegane H., Taneichi H., Nomura K., Futatani T., Miyawaki T. Severe neutropenia in Japanese patients with x-linked agammaglobulinemia. J Clin Immunol 2005; 25: 491–495
  • Aghamohammadi A., Cheraghi T., Rezaei N., Kanegane H., Abdollahzede S., Talaei-Khoei M., et al. Neutropenia associated with x-linked agammaglobulinemia in an Iranian referral center. Iran J Allergy Asthma Immunol 2009; 8: 43–47
  • Lederman H. M., Winkelstein J. A. X-linked agammaglobulinemia: An analysis of 96 patients. Medicine (Baltimore) 1985; 64: 145–156
  • Verbruggen G., De Backer S., Deforce D., Demetter P., Cuvelier C., Veys E., Elewaut D. X linked agammaglobulinaemia and rheumatoid arthritis. Ann Rheum Dis 2005; 64: 1075–1078
  • Ferrari S., Zuntini R., Lougaris V., Soresina A., Sourkova V., Fiorini M., et al. Molecular analysis of the pre-BCR complex in a large cohort of patients affected by autosomal-recessive agammaglobulinemia. Genes Immun 2007; 8: 325–333
  • Yel L., Minegishi Y., Coustan-Smith E., Buckley R. H., Trubel H., Pachman L. M., et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med 1996; 335: 1486–1493
  • Tsukada S., Saffran D. C., Rawlings D. J., Parolini O., Allen R. C., Klisak I., et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993; 72: 279–290
  • Valiaho J., Smith C. I., Vihinen M. BTKbase: The mutation database for X-linked agammaglobulinemia. Hum Mutat 2006; 27: 1209–1217
  • Minegishi Y., Coustan-Smith E., Wang Y. H., Cooper M. D., Campana D., Conley M. E. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 1998; 187: 71–77
  • Wang Y., Kanegane H., Sanal O., Tezcan I., Ersoy F., Futatani T., Miyawaki T. Novel Igalpha (CD79a) gene mutation in a Turkish patient with B cell-deficient agammaglobulinemia. Am J Med Genet 2002; 108: 333–336
  • Dobbs A. K., Yang T., Farmer D., Kager L., Parolini O., Conley M. E. Cutting edge: A hypomorphic mutation in Igbeta (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J Immunol 2007; 179: 2055–2059
  • Ferrari S., Lougaris V., Caraffi S., Zuntini R., Yang J., Soresina A., et al. Mutations of the Igbeta gene cause agammaglobulinemia in man. J Exp Med 2007; 204: 2047–2051
  • Minegishi Y., Rohrer J., Coustan-Smith E., Lederman H. M., Pappu R., Campana D., et al. An essential role for BLNK in human B cell development. Science 1999; 286: 1954–1957
  • Farrar J. E., Rohrer J., Conley M. E. Neutropenia in X-linked agammaglobulinemia. Clin Immunol Immunopathol 1996; 81: 271–276
  • Tavil B., Sipahi T. Is neutropenia a clue for early diagnosis of X-linked agammaglobulinemia?. Pediatr Hematol Oncol 2003; 20: 657–658
  • Le Deist F., Moshous D., Howe S. J., Nahum A., Kavadas F. D., Lavine E., . Combined T and B cell immunodeficiencies. Primary Immunodeficiency Diseases, N. Rezaei, A. Aghamohammadi, L. D. Notarangelo, et al. Springer, Heidelberg, Berlin 2008; 39–95
  • Cacciapuoti G., Porcelli M., Bertoldo C., Fusco S., De Rosa M., Zappia V. Extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon sulfolobus solfataricus. Gene cloning and amino acid sequence determination. Eur J Biochem 1996; 239: 632–637
  • Dalal I., Grunebaum E., Cohen A., Roifman C. M. Two novel mutations in a purine nucleoside phosphorylase (PNP)-deficient patient. Clin Genet 2001; 59: 430–437
  • Hallett R. J., Cronin S. M., Morgan G., Duley J. A., Fairbanks L. D., Simmonds H. A. Normal uric acid concentrations in a purine nucleoside phosphorylase (PNP) deficient child presenting with severe chicken pox, possible immunodeficiency and developmental delay. Adv Exp Med Biol 1994; 370: 387–389
  • Fleischman A., Hershfield M. S., Toutain S., Lederman H. M., Sullivan K. E., Fasano M. B., et al. Adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency in common variable immunodeficiency. Clin Diagn Lab Immunol 1998; 5: 399–400
  • Gudas L. J., Ullman B., Cohen A., Martin D. W., Jr. Deoxyguanosine toxicity in a mouse T lymphoma: Relationship to purine nucleoside phosphorylase-associated immune dysfunction. Cell 1978; 14: 531–538
  • Sidi Y., Gelvan I., Brosh S., Pinkhas J., Sperling O. Guanine nucleotide metabolism in red blood cells: The metabolic basis for GTP depletion in HGPRT and PNP deficiency. Adv Exp Med Biol 1989; 253A: 67–71
  • Simmonds H. A., Fairbanks L. D., Morris G. S., Morgan G., Watson A. R., Timms P., Singh B. Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency. Arch Dis Child 1987; 62: 385–391
  • Worth A., Thrasher A. J., Gaspar H. B. Autoimmune lymphoproliferative syndrome: Molecular basis of disease and clinical phenotype. Br J Haematol 2006; 133: 124–140
  • Bleesing J. J., Brown M. R., Novicio C., Guarraia D., Dale J. K., Straus S. E., Fleisher T. A. A composite picture of TcR alpha/beta(+) CD4(-)CD8(-) T cells (alpha/beta-DNTCs) in humans with autoimmune lymphoproliferative syndrome. Clin Immunol 2002; 104: 21–30
  • Lopatin U., Yao X., Williams R. K., Bleesing J. J., Dale J. K., Wong D., et al. Increases in circulating and lymphoid tissue interleukin-10 in autoimmune lymphoproliferative syndrome are associated with disease expression. Blood 2001; 97: 3161–3170
  • Kwon S. W., Procter J., Dale J. K., Straus S. E., Stroncek D. F. Neutrophil and platelet antibodies in autoimmune lymphoproliferative syndrome. Vox Sang 2003; 85: 307–312
  • Fuss I. J., Strober W., Dale J. K., Fritz S., Pearlstein G. R., Puck J. M., et al. Characteristic T helper 2 T cell cytokine abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked by defective apoptosis and humoral autoimmunity. J Immunol 1997; 158: 1912–1918
  • Wu J., Wilson J., He J., Xiang L., Schur P. H., Mountz J. D. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996; 98: 1107–1113
  • Chun H. J., Zheng L., Ahmad M., Wang J., Speirs C. K., Siegel R. M., et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002; 419: 395–399
  • Wang J., Zheng L., Lobito A., Chan F. K., Dale J., Sneller M., et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98: 47–58
  • Makitie O., Rajantie J., Kaitila I. Anaemia and macrocytosis—Unrecognized features in cartilage-hair hypoplasia. Acta Paediatr 1992; 81: 1026–1029
  • Lux S. E., Johnston R. B., Jr., August C. S., Say B., Penchaszadeh V. B., Rosen F. S., McKusick V. A. Chronic neutropenia and abnormal cellular immunity in cartilage-hair hypoplasia. N Engl J Med 1970; 282: 231–236
  • Virolainen M., Savilahti E., Kaitila I., Perheentupa J. Cellular and humoral immmunity in cartilage-hair hypoplasia. Pediatr Res 1978; 12: 961–966
  • Makitie O., Kaitila I., Savilahti E. Susceptibility to infections and in vitro immune functions in cartilage-hair hypoplasia. Eur J Pediatr 1998; 157: 816–820
  • Makitie O., Kaitila I., Savilahti E. Deficiency of humoral immunity in cartilage-hair hypoplasia. J Pediatr 2000; 137: 487–492
  • Makitie O., Marttinen E., Kaitila I. Skeletal growth in cartilage-hair hypoplasia. A radiological study of 82 patients. Pediatr Radiol 1992; 22: 434–439
  • Makitie O., Heikkinen M., Kaitila I., Rintala R. Hirschsprung's disease in cartilage-hair hypoplasia has poor prognosis. J Pediatr Surg 2002; 37: 1585–1588
  • Ridanpaa M., van Eenennaam H., Pelin K., Chadwick R., Johnson C., Yuan B., et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 2001; 104: 195–203
  • Gitzelmann R., Bosshard N. U. Defective neutrophil and monocyte functions in glycogen storage disease type Ib: A literature review. Eur J Pediatr 1993; 152(Suppl 1)S33–S38
  • Garty B. Z., Douglas S. D., Danon Y. L. Immune deficiency in glycogen storage disease type 1B. Isr J Med Sci 1996; 32: 1276–1281
  • Rake J. P., Visser G., Labrune P., Leonard J. V., Ullrich K., Smit G. P. Glycogen storage disease type I: Diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 2002; 161(Suppl 1)S20–S34
  • Chou J. Y., Matern D., Mansfield B. C., Chen Y. T. Type I glycogen storage diseases: Disorders of the glucose-6-phosphatase complex. Curr Mol Med 2002; 2: 121–143
  • Lei K. J., Chen H., Pan C. J., Ward J. M., Mosinger B., Jr., Lee E. J., et al. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat Genet 1996; 13: 203–209
  • Hiraiwa H., Pan C. J., Lin B., Moses S. W., Chou J. Y. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem 1999; 274: 5532–5536
  • Lee A. S. The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem Sci 2001; 26: 504–510
  • Kim S. Y., Jun H. S., Mead P. A., Mansfield B. C., Chou J. Y. Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 2008; 111: 5704–5711
  • Kelley R. I., Cheatham J. P., Clark B. J., Nigro M. A., Powell B. R., Sherwood G. W., et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 1991; 119: 738–747
  • Mazzocco M. M., Kelley R. I. Preliminary evidence for a cognitive phenotype in Barth syndrome. Am J Med Genet 2001; 102: 372–378
  • Barth P. G., Valianpour F., Bowen V. M., Lam J., Duran M., Vaz F. M., Wanders R. J. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): An update. Am J Med Genet A 2004; 126A: 349–354
  • Barth P. G., Van den Bogert C., Bolhuis P. A., Scholte H. R., van Gennip A. H., Schutgens R. B., Ketel A. G. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): Respiratory-chain abnormalities in cultured fibroblasts. J Inherit Metab Dis 1996; 19: 157–160
  • Bione S., D'Adamo P., Maestrini E., Gedeon A. K., Bolhuis P. A., Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996; 12: 385–389
  • Kuijpers T. W., Maianski N. A., Tool A. T., Becker K., Plecko B., Valianpour F., et al. Neutrophils in Barth syndrome (BTHS) avidly bind annexin-V in the absence of apoptosis. Blood 2004; 103: 3915–3923
  • Alter B. P. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program 2007; 2007: 29–39
  • Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000; 110: 768–779
  • Heiss N. S., Knight S. W., Vulliamy T. J., Klauck S. M., Wiemann S., Mason P. J., et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998; 19: 32–38
  • Vulliamy T. J., Marrone A., Knight S. W., Walne A., Mason P. J., Dokal I. Mutations in dyskeratosis congenita: Their impact on telomere length and the diversity of clinical presentation. Blood 2006; 107: 2680–2685
  • Vulliamy T. J., Walne A., Baskaradas A., Mason P. J., Marrone A., Dokal I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis 2005; 34: 257–263
  • Walne A. J., Vulliamy T., Marrone A., Beswick R., Kirwan M., Masunari Y., et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 2007; 16: 1619–1629
  • Vulliamy T., Dokal I. Dyskeratosis congenita. Semin Hematol 2006; 43: 157–166
  • Roper M., Parmley R. T., Crist W. M., Kelly D. R., Cooper M. D. Severe congenital leukopenia (reticular dysgenesis). Immunologic and morphologic characterizations of leukocytes. Am J Dis Child 1985; 139: 832–835
  • Haas R. J., Niethammer D., Goldmann S. F., Heit W., Bienzle U., Kleihauer E. Congenital immunodeficiency and agranulocytosis (reticular dysgenesia). Acta Paediatr Scand 1977; 66: 279–283
  • Pannicke U., Honig M., Hess I., Friesen C., Holzmann K., Rump E. M., et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 2009; 41: 101–105
  • Lagresle-Peyrou C., Six E. M., Picard C., Rieux-Laucat F., Michel V., Ditadi A., et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 2009; 41: 106–111
  • Kivitie-Kallio S., Norio R. Cohen syndrome: Essential features, natural history, and heterogeneity. Am J Med Genet 2001; 102: 125–135
  • Kivitie-Kallio S., Rajantie J., Juvonen E., Norio R. Granulocytopenia in Cohen syndrome. Br J Haematol 1997; 98: 308–311
  • Alaluusua S., Kivitie-Kallio S., Wolf J., Haavio M. L., Asikainen S., Pirinen S. Periodontal findings in Cohen syndrome with chronic neutropenia. J Periodontol 1997; 68: 473–478
  • Olivieri O., Lombardi S., Russo C., Corrocher R. Increased neutrophil adhesive capability in Cohen syndrome, an autosomal recessive disorder associated with granulocytopenia. Haematologica 1998; 83: 778–782
  • Kolehmainen J., Black G. C., Saarinen A., Chandler K., Clayton-Smith J., Traskelin A. L., et al. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 2003; 72: 1359–1369
  • Velayos-Baeza A., Vettori A., Copley R. R., Dobson-Stone C., Monaco A. P. Analysis of the human VPS13 gene family. Genomics 2004; 84: 536–549
  • Dale D. C., Cottle T. E., Fier C. J., Bolyard A. A., Bonilla M. A., Boxer L. A., et al. Severe chronic neutropenia: Treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 2003; 72: 82–93
  • Dale D. C., Bonilla M. A., Davis M. W., Nakanishi A. M., Hammond W. P., Kurtzberg J., et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 1993; 81: 2496–2502
  • Bonilla M. A., Gillio A. P., Ruggeiro M., Kernan N. A., Brochstein J. A., Abboud M., et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J Med 1989; 320: 1574–1580
  • Berliner N. Lessons from congenital neutropenia: 50 years of progress in understanding myelopoiesis. Blood 2008; 111: 5427–5432
  • Lord B. I., Bronchud M. H., Owens S., Chang J., Howell A., Souza L., Dexter T. M. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci U S A 1989; 86: 9499–9503
  • Anderlini P., Przepiorka D., Champlin R., Korbling M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 1996; 88: 2819–2825
  • Rex J. H., Bhalla S. C., Cohen D. M., Hester J. P., Vartivarian S. E., Anaissie E. J. Protection of human polymorphonuclear leukocyte function from the deleterious effects of isolation, irradiation, and storage by interferon-gamma and granulocyte-colony-stimulating factor. Transfusion 1995; 35: 605–611
  • Maianski N. A., Mul F. P., van Buul J. D., Roos D., Kuijpers T. W. Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood 2002; 99: 672–679
  • Freedman M. H., Bonilla M. A., Fier C., Bolyard A. A., Scarlata D., Boxer L. A., et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood 2000; 96: 429–436
  • Zeidler C., Welte K., Barak Y., Barriga F., Bolyard A. A., Boxer L., et al. Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood 2000; 95: 1195–1198

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.