501
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Natural killer cells as a promising tool to tackle cancer—A review of sources, methodologies, and potentials

, , , , , & show all
Pages 220-232 | Received 26 Apr 2016, Accepted 16 Jan 2017, Published online: 04 May 2017

References

  • Cudkowicz G, Stimpfling JH. Hybrid resistance to parental marrow grafts: association with the k region of H-2. Science 1964;144(3624):1339–1340.
  • Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112–117.
  • Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975;16(2):216–229.
  • Leung W. Use of NK cells activity in cure by transplant. Brit J Haematol 2011;155(1):14–29.
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol 2008;9(5):503–510.
  • Mamessier E, Pradel LC, Thibult ML, et al. Peripheral blood NK cells from breast cancer patients are tumor-induced composite subsets. J Immunol 2013;190(5):2424–2436.
  • Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001;22(11):633–640.
  • Poli A, Michel T, Thérésine M, et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009;126(4):458–465.
  • Karre K, Liunggren HG, Pointek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986;319(6055):675–678.
  • Kane KP, Lavender KJ, Ma BJ. Ly-49 receptors and their functions. Crit Rev Immunol 2004;24(5):321–348.
  • Kumar V, McNerney ME. A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 2005;5(5):363–374.
  • Terunuma H, Deng X, Dewan Z, et al. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol 2008;27(3):93–110.
  • Deng X, Terunuma H, Terunuma A, et al. Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo-expanded γδ T cells or αβ T cells. Int Immunopharmacol 2014;22(2):486–491.
  • Raulet DH. Missing self-recognition and self-tolerance of natural killer (NK) cells. Semin Immunol 2006;18(3):145–150.
  • Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2015 (Feb 13);47:e141. doi:10.1038/emm.2014.114. Review.
  • Topham NJ, Hewitt EW. Natural killer cell cytotoxicity: how do they pull the trigger? Immunology 2009 Sep;128(1):7–15. doi:10.1111/j.1365-2567.2009.03123.x. Review.
  • Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989;210(4):474–484.
  • Soiffer RJ, Murray C, Shapiro C, et al. Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2. Clin Cancer Res 1996;2(3):493–499.
  • Meropol NJ, Porter M, Blumenson LE, et al. Daily subcutaneous injection of low-dose interleukin 2 expands natural killer cells in vivo without significant toxicity. Clin Cancer Res 1996;2(4):669–677.
  • Miller JS, Tessmer-Tuck J, Pierson BA, et al. Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant 1997;3(1):34–44.
  • Takada M, Terunuma H, Deng X, et al. Refractory lung metastasis from breast cancer treated with multidisciplinary therapy, including an immunological approach. Breast Cancer 2011;18(1):64–67.
  • Bhamare S, Prabhakar P, Dharmadhikari A, et al. Autologous immune enhancement therapy in a case of gall bladder cancer stage IV after surgical resection and chemotherapy yielding a stable non-progressive disease. J Cancer Res Ther 2014;10(3):752–754.
  • Premkumar S, Dedeepiya VD, Terunuma H, et al. Cell based autologous immune enhancement therapy (AIET) after radiotherapy in a locally advanced carcinoma of the cervix. Case Rep Oncol Med 2013;2013:903094.
  • Manjunath SR, Ramanan G, Dedeepiya VD, et al. Autologous immune enhancement therapy in recurrent ovarian cancer with metastases: a case report. Case Rep Oncol 2012;5(1):114–118.
  • Ishikawa E, Tsuboi K, Saijo K, et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004(May–Jun);24(3b):1861–1871.
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105(8):3051–3057.
  • Jondal M, Targan S. In vitro induction of cytotoxic effector cells with spontaneous killer cell specificity. J Exp Med 1978;147(6):1621–1636.
  • Handgretinger R, Bruchelt G, Kimmig A, et al. In vitro induction of lymphokine-activated killer (LAK) activity in patients with neuroblastoma. Pediatr Hematol Oncol 1989;6(4):307–317.
  • Krause SW, Gastpar R, Andreesen R, et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 2004;10(11):3699–3707.
  • Rujkijyanont P, Chan WK, Eldridge PW, et al. Ex vivo activation of CD56(+) immune cells that eradicate neuroblastoma. Cancer Res 2013;73(8):2608–2618.
  • Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 2011;17(19):6287–6297.
  • Dewan MZ, Takada M, Terunuma H, et al. Natural killer activity of peripheral-blood mononuclear cells in breast cancer patients. Biomed Pharmacother 2009;63(9):703–706.
  • Deng X, Terunuma H, Nieda M, et al. Synergistic cytotoxicity of ex vivo expanded natural killer cells in combination with monoclonal antibody drugs against cancer cells. Int Immunopharmacol 2012;14:593–605.
  • Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy 2011;3(12):1445–1459.
  • Cheng M, Chen Y, Xiao W, et al. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013(May);10(3):230–252.
  • Baier C, Fino A, Sanchez C, et al. Natural killer cells modulation in hematological malignancies. Front Immunol 2013(Dec 19);4:459.
  • Dahlberg CI, Sarhan D, Chrobok M, et al. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol 2015(Nov 30);6:605.
  • Baessler T, Charton JE, Schmiedel BJ, et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 2010(Apr 15);115(15):3058–3069.
  • Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol 2007;178(7):4011–4016.
  • Igarashi T, Wynberg J, Srinivasan R, et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004;104(1):170–177.
  • Garg TK, Szmania SM, Khan JA, et al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 2012;97(9):1348–1356.
  • Lim O, Lee Y, Chung H, et al. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo. PLoS One 2013;8(1):e53611.
  • Yoon SR, Lee YS, Yang SH, et al. Generation of donor natural killer cells from CD34(+) progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study. Bone Marrow Transplant 2010;45(6):1038–1046.
  • Agrawal S, Tripathi P, Naik S. Roles and mechanism of natural killer cells in clinical and experimental transplantation. Expert Rev Clin Immunol 2008;4(1):79–91.
  • Choi I, Yoon SR, Park SY, et al. Donor-derived natural killer cells infused after human leukocyte antigen-haploidentical hematopoietic cell transplantation: a dose-escalation study. Biol Blood Marrow Transplant 2014;20(5):696–704.
  • Ni F, Sun R, Fu B, et al. Wei's Lab(USTC). An improved protocol for ex vivo expansion of highly lytic NK cells from human umbilical cord blood CD34+ cells. Protoc Exch 2013. [Internet] doi:10.1038/protex.2013.025 - [cited 2017 February 8]. Available from http://www.nature.com/protocolexchange/protocols/2609#/main/.
  • Shah N, Martin-Antonio B, Yang H, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 2013;8(10):e76781.
  • Tanaka J, Sugita J, Shiratori S, et al. Expansion of NK cells from cord blood with antileukemic activity using GMP-compliant substances without feeder cells. Leukemia 2012;26(5):1149–1152.
  • Boscia R, Chen K, Johnson JT, Whiteside TL. Evaluation of therapeutic potential of interleukin 2-expanded tumor-infiltrating lymphocytes in squamous cell carcinoma of the head and neck. Ann Otol Rhinol Laryngol 1988;97(4, Pt 1):414–421.
  • Azogui O, Avril MF, Margulis A, et al. Tumor-infiltrating CD3- NK cells are more effective than CD3+ T cells in killing autologous melanoma cells. J Invest Dermatol 1991;97(3):425–429.
  • Knorr DA, Ni Z, Hermanson D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2013;2(4):274–283.
  • Bock AM, Knorr D, Kaufman DS. Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and and induced pluripotent stem cells (iPSCs). J Vis Exp 2013;(74):e50337.
  • Eguizabal C, Zenarruzabeitia O, Monge J, et al. Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Front Immunol 2014;5:439.
  • Fehniger TA, Bluman EM, Porter MM, et al. Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy. J Clin Invest 2000;106(1):117–124.
  • Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol 2005;17(1):29–35.
  • Cooper MA, Fehniger TA, Fuchs A, et al. NK cell and DC interactions. Trends Immunol 2004;25(1):47–52.
  • Bachanova V, Burns LJ, McKenna DH, et al. Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol Immunother 2010;59(11):1739–1744.
  • Frei GM, Persi N, Lador C, et al. Nicotinamide, a form of vitamin B3, promotes expansion of natural killer cells that display increased in vivo survival and cytotoxic activity [abstract]. Blood (ASH Ann Meet Abstr) 2011;118(21):4035.
  • Jessop NW, Hay RJ. Preparation, preservation, recovery and use of irradiated feeder layers in cell culture research. TCA Manual 1979;5(3):1137–1139.
  • Harada H, Watanabe S, Saijo K, et al. A Wilms tumor cell line, HFWT, can greatly stimulate proliferation of CD56+ human natural killer cells and their novel precursors in blood mononuclear cells. Exp Hematol. 2004;32(7):614–621.
  • Berg M, Lundqvist A, Betters D, Childs RW. In vitro expanded NK cells have increased natural cytotoxity receptors, TRAIL and NKG2D expression, and superior tumor cytotoxicity compared to short-term IL-2-activated NK cells [abstract]. Blood (ASH Ann Meet Abstr) 2009;114(22):463.
  • Schwab IR, Johnson NT, Harkin DG. Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch Ophthalmol 2006;124(12):1734–1740.
  • Terunuma H, Deng X, Nishino N, Watanabe K. NK cell-based autologous immune enhancement therapy (AIET) for cancer. J Stem Cells Regen Med 2013;9(1):9–13.
  • Terunuma H. Autologous immune enhancement therapy for cancer - our experience since 2004. J Stem Cells Regen Med 2012;8(3):205–206.
  • Alici E, Sutlu T, Bjorkstrand B, et al. Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 2008;111(6):3155–3162.
  • Passweg JR, Tichelli A, Meyer-Monard S, et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004;18(11):1835–1838.
  • Iyengar R, Handgretinger R, Babarin-Dorner A, et al. Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy 2003;5(6):479–484.
  • Lang P, Handgretinger R, Niethammer D, et al. Transplantation of highly purified CD34+ progenitor cells from unrelated donors in pediatric leukemia. Blood 2003;101(4):1630–1636.
  • Spanholtz J, Preijers F, Tordoir M, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One 2011;6(6):e20740.
  • Sutlu T, Stellan B, Gilljam M, et al. Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy 2010(Dec);12(8):1044–1055.
  • Koehl U, Brehm C, Huenecke S, et al. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol. Front Oncol 2013;3:118.
  • Thatcher N, Palmer MK, Gasiunas N, Crowther D. Lymphocyte function and response to chemo-immunotherapy in patients with metastatic melanoma. Br J Cancer 1977;36(6):751–762.
  • Lukomska B, Olszewski WL, Engeset A, Kolstad P. The effect of surgery and chemotherapy on blood NK cell activity in patients with ovarian cancer. Cancer 1983;51(3):465–469.
  • Brenner BG, Friedman G, Margolese RG. The relationship of clinical status and therapeutic modality to natural killer cell activity in human breast cancer. Cancer 1985;56(7):1543–1548.
  • Forbes JT, Greco FA, Oldham RK. Natural cell-mediated cytotoxicity in human tumor patients. In: Herberman RB. ed. Natural cell-mediated immunity against tumors. New York, NY: Academic Press; 1980, pp 1031–1046.
  • Komada Y, Zhang SL, Zhou YW, et al. Cellular immunosuppression in children with acute lymphoblastic leukemia: effect of consolidation chemotherapy. Cancer Immunol Immunother 1992;35(4):271–276.
  • Sewell HF, Halbert CF, Robins RA, et al. Chemotherapy-induced differential changes in lymphocyte subsets and natural-killer-cell function in patients with advanced breast cancer. Int J Cancer 1993;55(5):735–738.
  • Mozaffari F, Lindemalm C, Choudhury A, et al. NK-cell and T-cell functions in patients with breast cancer: effects of surgery and adjuvant chemo- and radiotherapy. Br J Cancer 2007;97(1):105–111.
  • Markasz L, Stuber G, Vanherberghen B, et al. Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Mol Cancer Ther 2007;6(2):644–654.
  • Rosental B, Appel MY, Yossef R, et al. The effect of chemotherapy/radiotherapy on cancerous pattern recognition by NK cells. Curr Med Chem 2012;19(12):1780–1791.
  • Seth R, Tai LH, Falls T, et al. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann Surg 2013;258(1):158–168.
  • Chidambaram R, Balamurugan M, Senthilkumar R, et al. Combining AIET with chemotherapy – lessons learnt from our experience. J Stem Cells Regen Med 2013;9(2):42–43.
  • Lapteva N, Durett AG, Sun J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 2012;14(9):1131–1143.
  • Martí F, Miralles A, Peiró M, et al. Differential effect of cryopreservation on natural killer cell and lymphokine-activated killer cell activities. Transfusion 1993;33(8):651–655.
  • Zheng N, Ye SL, Sun RX, et al. Effects of cryopreservation and phenylacetate on biological characters of adherent LAK cells from patients with hepatocellular carcinoma. World J Gastroenterol 2002;8(2):233–236.
  • Mata MM, Mahmood F, Sowell RT, Baum LL. Effects of cryopreservation on effector cells for antibody dependent cell-mediated cytotoxicity (ADCC) and natural killer (NK) cell activity in (51)Cr-release and CD107a assays. J Immunol Methods 2014;406:1–9.
  • Voshol H, Dullens HF, Den Otter W, Vliegenthart JF. Human natural killer cells: a convenient purification procedure and the influence of cryopreservation on cytotoxic activity. J Immunol Methods 1993;165(1):21–30.
  • Fujiwara S, Akiyama M, Yamakido M, et al. Cryopreservation of human lymphocytes for assessment of lymphocyte subsets and natural killer cytotoxicity. J Immunol Methods 1986;90(2):265–273.
  • Ichino Y, Ishikawa T. Effects of cryopreservation on human lymphocyte functions: comparison of programmed freezing method by a direct control system with a mechanical freezing method. J Immunol Methods 1985;77(2):283–290.
  • Baskar S, Dedeepiya V, Terunuma H, et al. Prolonged survival of a patient with inoperable, locally advanced adenocarcinoma of pancreas after autologous immune enhancement therapy (AIET) with chemotherapy. Indian J Cancer 2015;52:395–396.
  • Takayama T, Sekine T, Makuuchi M, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000;356(9232):802–807.
  • Kimura H, Yamaguchi Y. A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer 1997;80(1):42–49.
  • Fujita K, Ikarashi H, Takakuwa K, et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin Cancer Res 1995;1(5):501–507.
  • Raj R, Deenadayalan M, Vimal Kumar G, et al. Autologous immune enhancement therapy in Philadelphia chromosome positive acute lymphoblastic leukemia. Indian J Hematol Blood Trans 2014;30(1):202–204.
  • Tseng HC, Arasteh A, Paranjpe A, et al. Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells. PLoS One 2010;5(7):e11590.
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5(4):275–284.
  • Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 2013;15(12):1563–1570.
  • Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002(May 15);99(10):3661–3667.
  • Cho FN, Chang TH, Shu CW, et al. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis. PLoS One 2014;9(10):e109352.
  • Yang F, Shao Y, Yang F, et al. Valproic acid upregulates NKG2D ligand expression and enhances susceptibility of human renal carcinoma cells to NK cell-mediated cytotoxicity. Arch Med Sci 2013;9(2):323–331.
  • Terunuma H, Deng X, Toki A, et al. Effects of hyperthermia on the host immune system: from NK cell-based science to clinical application. Thermal Med 2012;28:1–9.
  • Terunuma H, Wada A, Deng X, et al. Mild hyperthermia modulates the relative frequency of lymphocyte cell subpopulations: an increase in a cytolytic NK cell subset and a decrease in a regulatory T cell subset. Thermal Med 2007;23:41–47.
  • Tai LH, de Souza CT, Bélanger S, et al. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res 2013;73(1):97–107.
  • Hassold N, Seystahl K, Kempf K, et al. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. Int J Cancer 2012(Sep 15);131(6):E916–E927.
  • Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-source follow-up study of a general population. Lancet 2000;356(9244):1795–1799.
  • Morisaki T, Hirano T, Koya N, et al. NKG2D-directed cytokine-activated killer lymphocyte therapy combined with gemcitabine for patients with chemoresistant metastatic solid tumors. Anticancer Res 2014;34(8):4529–4538.
  • Long Y, Sun Q, Wu J, et al. Allogeneic cell-based immunotherapy combined with chemotherapy and targeted therapy in advanced pancreatic cancer with metastases: A case report. Oncol Lett 2014;7(5):1594–1598.
  • Siegler U, Meyer-Monard S, Jörger S, et al. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 2010;12(6):750–763.
  • Hayakawa K, Salmeron MA, Parkinson DR, et al. Study of tumor-infiltrating lymphocytes for adoptive therapy of renal cell carcinoma (RCC) and metastatic melanoma: sequential proliferation of cytotoxic natural killer and noncytotoxic T cells in RCC. J Immunother 1991;10(5):313–325.
  • Besser MJ, Shoham T, Harari-Steinberg O, et al. Development of allogeneic NK cell adoptive transfer therapy in metastatic melanoma patients: in vitro preclinical optimization studies. PLoS One 2013;8(3):e57922.
  • Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 2009;69(9):4010–4017.
  • Voskens CJ, Watanabe R, Rollins S, et al. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity. J Exp Clin Cancer Res 2010;29:134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.