1,795
Views
81
CrossRef citations to date
0
Altmetric
Reviews

Immunotoxins in cancer therapy: Review and update

, , , , , & show all
Pages 207-219 | Received 23 Sep 2016, Accepted 16 Jan 2017, Published online: 01 Mar 2017

References

  • Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci 2009;100:1359–1365.
  • Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins 2010;2:2645–2662.
  • Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs, Landes Bioscience 2011;3:76.
  • Reichert JM. Monoclonal antibodies as innovative therapeutics. Curr Biotechnol 2008;9:423–430.
  • Di Martino S, et al. Overview of FDA-approved anti cancer drugs used for targeted therapy. WCRJ 2015;2:553.
  • Dosio F, Brusa P, Cattel L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins 2011;3: 848–883.
  • Pastan I, Hassan R, FitzGerald DJ, et al. Immunotoxin therapy of cancer. Nat Rev Cancer 2006;6:559–565.
  • Lambert JM, Goldmacher VS, Collinson AR, et al. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res 1991;51:6236–6242.
  • Kreitman RJ. Immunotoxins for targeted cancer therapy. AAPS J 2006;8:532–551.
  • Lambert JM, McIntyre G, Gauthier MN, et al. The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides. Biochem 1991;30:3234–3247.
  • Pastan I, Hassan R, FitzGerald DJ, et al. Immunotoxin treatment of cancer. Annu Rev Med 2007;58:221–237.
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126–1136.
  • Chaudhary VK, Queen G, Junghans RP, et al. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 1989;339:394–397.
  • Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science 1988;242:423–426.
  • Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. U S A 1988;85:5879–5883.
  • Di Paolo C, Willuda J, Kubetzko S, et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin. Cancer Res. 2003;9:2837–2848.
  • Shan L, Liu Y, Wang P. Recombinant immunotoxin therapy of solid tumors: challenges and strategies. J. Basic Clin. Med 2013;2:1.
  • Ahmadzadeh V, Tofigh R, Farajnia S, et al. The central role for microenvironment in B-cell malignancies: Recent Insights into Synergistic Effects of its Therapeutic Targeting and Anti-CD20 Antibodies. Int. Rev. Immunol. 2016;136–155.
  • Akbari B, Farajnia S, Zarghami N, et al. Construction, expression, and activity of a novel immunotoxin comprising a humanized antiepidermal growth factor receptor scFv and modified Pseudomonas aeruginosa exotoxin A. Anti-Cancer Drugs 2016; doi:10.1097/CAD.0000000000000452.
  • Potala S, Sahoo SK, Verma RS. Targeted therapy of cancer using diphtheria toxin-derived immunotoxins. Drug discov Today 2008;13:807–815.
  • Piascik P. FDA approves fusion protein for treatment of lymphoma. J. Am. Pharm. Assoc. (Wash) 1999;39:571.
  • Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J. Infect. Dis 2000;181:S156–S167.
  • Collier RJ. Diphtheria toxin: mode of action and structure. Bacteriol Rev 1975;39:54.
  • Neville Jr DM, Hudson TH. Transmembrane transport of diphtheria toxin, related toxins, and colicins. Annu. Rev. Biochem 1986;55:195–224.
  • Greenfield L, Bjorn MJ, Horn G, et al. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc. Natl. Acad. Sci. U S A 1983;80:6853–6857.
  • Dosio F, Stella B, Cerioni S, et al. Advances in anticancer antibody-drug conjugates and immunotoxins. Recent Pat Anticancer Drug Discov 2014;9:35–65.
  • Allured VS, Collier RJ, Carroll SF, et al. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc. Natl. Acad. Sci 1986;83:1320–1324.
  • Seetharam S, Chaudhary VK, FitzGerald D, et al. Increased cytotoxic activity of Pseudomonas exotoxin and two chimeric toxins ending in KDEL. J.Biol. Chem 1991;266:17376–17381.
  • Ogata M, Chaudhary V, Pastan I, et al. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. J. Biol. Chem 1990;265:20678–20685.
  • Weldon JE, Xiang L, Chertov O, et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009;113:3792–3800.
  • Słomińska-Wojewódzka M, Sandvig K. Ricin and ricin-containing immunotoxins: insights into intracellular transport and mechanism of action in vitro. Antibodies 2013;2:236–269.
  • Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem 1987;262:8128–8130.
  • Endo Y, Mitsui K, Motizuki M, et al. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem 1987;262:5908–5912.
  • Olsnes S, Refsnes K, Pihl A. Mechanism of action of the toxic lectins abrin and ricin. Nature 1974;249:627–631.
  • Polito L, Bortolotti M, Pedrazzi M, et al. Immunotoxins and other conjugates containing saporin-s6 for cancer therapy. Toxins 2011;3:697–720.
  • Weidle UH, Tiefenthaler G, Schiller C, et al. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics-Proteomics 2014;11:25–38.
  • ROSENBLUMM G, KOHR WA, BEATTIE KL, et al. Amino acid sequence analysis, gene construction, cloning, and expression of gelonin, a toxin derived from Geloniummultiflorum. J. Interferon Cytokine Res 1995;15:547–555.
  • Concanavalin A. Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. 1980.
  • Montanaro L, Sperti S, Mattioli A, et al. Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem. J 1975;146:127–131.
  • Hossann M, Li Z, Shi Y, et al. Novel immunotoxin: a fusion protein consisting of gelonin and an acetylcholine receptor fragment as a potential immunotherapeutic agent for the treatment of Myasthenia gravis. Protein Expr. Purif 2006;46:73–84.
  • Li Z, Qu Y, Li H, et al. Truncations of gelonin lead to a reduction in its cytotoxicity. Toxicology 2007;231:129–136.
  • Kurschus FC, Jenne DE. Delivery and therapeutic potential of human granzyme B. Immunol Rev 2010;235:149–175.
  • Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B Functional relationships established for key mediators of apoptosis. J. Biol. Chem 1997;272:17907–17911.
  • Smyth MJ, McGuire M, Thia K. Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. J.Immunol 1995;154:6299–6305.
  • Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. U S A 1999;96:8627–8632.
  • Shi L, Kam C-M, Powers J, et al. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med 1992;176:1521–1529.
  • Heusel JW, Wesselschmidt RL, Shresta S, et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 1994;76:977–987.
  • Talanian RV, Yang X, Turbov J, et al. Granule-mediated killing: pathways for granzyme B–initiated apoptosis. J. Exp. Med 1997;186:1323–1331.
  • Dälken B, Giesübel U, Knauer S, et al. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ 2006;13:576–585.
  • Liu Y, Cheung LH, Thorpe P, et al. Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF) 121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther 2003;2:949–959.
  • Liu Y, Zhang W, Niu T, et al. Targeted apoptosis activation with GrB/scFvMEL modulates melanoma growth, metastatic spread, chemosensitivity, and radiosensitivity. Neoplasia 2006;8:125–135.
  • Weidle UH, Georges G, Brinkmann U. Fully human targeted cytotoxic fusion proteins: new anticancer agents on the horizon. Cancer Genomics-Proteomics 2012;9:119–133.
  • Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 1986;25:3527–3532.
  • Saxena S, Rybak S, Davey R, et al. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J. Biol. Chem 1992;267:21982–21986.
  • Li D, Bell J, Brown A, et al. The observation of angiogenin and basic fibroblast growth factor gene expression in human colonic adenocarcinomas, gastric adenocarcinomas, and hepatocellular carcinomas. J Pathol 1994;172:171–175.
  • Shimoyama S, Gansauge F, Gansauge S, et al. Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer res 1996;56:2703–2706.
  • Chopra V, Ding TV, Hanningan EV. Serum levels of interleukins, growth factors and anglogenin in patients with endometrial cancer. J. Cancer Res. Clin. Oncol 1997;123:167–172.
  • Makarov AA, Ilinskaya ON. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS lett 2003;540:15–20.
  • Zewe M, Rybak SM, Dübel S, et al. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology 1997;3:127–136.
  • Psarras K, Ueda M, Yamamura T, et al. Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human' immunotoxin analog' with cytotoxic properties against squamous cell carcinomas. Protein Eng 1998;11:1285–1292.
  • Futami J, Seno M, Ueda M, et al. Inhibition of cell growth by a fused protein of human ribonuclease 1 and human basic fibroblast growth factor. Protein Eng 1999;12:1013–1019.
  • Psarras K, Ueda M, Tanabe M, et al. Targeting activated lymphocytes with an entirely human immunotoxin analogue: human pancreatic RNase1-human IL-2 fusion. Cytokine 2000;12:786–790.
  • De Lorenzo C, Nigro A, Piccoli R, et al. A new RNase‐based immunoconjugate selectively cytotoxic for ErbB2‐overexpressing cells. FEBS Lett 2002;516:208–212.
  • Rosenberg H. The eosinophil ribonucleases. Cell. Mol. Life Sci 1998;54:795–803.
  • Newton DL, Nicholls PJ, Rybak SM, et al. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J. Biol. Chem 1994;269:26739–26745.
  • Manoukian G, Hagemeister F. Denileukindiftitox: a novel immunotoxin. Expert Opin Biol Ther 2009;9:1445–1451.
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J. Neuro Oncol 2003;65:3–14.
  • Yagura H, Tamaki T, Furitsu T, et al. Demonstration of high-affinity interleukin-2 receptors on B-chronic lymphocytic leukemia cells: functional and structural characterization. Blut 1990;60:181–186.
  • Re GG, Waters C, Poisson L, et al. Interleukin 2 (IL-2) receptor expression and sensitivity to diphtheria fusion toxin DAB389IL-2 in cultured hematopoietic cells. Cancer Res 1996;56:2590–2595.
  • Dang NH, Hagemeister FB, Pro B, et al. Phase II study of denileukindiftitox for relapsed/refractory B-Cell non-Hodgkin's lymphoma. J. Clin. Oncol 2004;22:4095–4102.
  • McGinnis KS, Shapiro M, Junkins-Hopkins JM, et al. Denileukindiftitox for the treatment of panniculitic lymphoma. Arch Dermatol 2002;138:740–742.
  • Frankel AE, Fleming DR, Hall PD, et al. A phase II study of DT fusion protein denileukindiftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin Cancer Res 2003;9:3555–3561.
  • Shaughnessy PJ, Bachier C, Grimley M, et al. Denileukindiftitox for the treatment of steroid-resistant acute graft-versus-host disease. Biol. Blood Marrow Transplant 2005;11:188–193.
  • Bagel J, Garland WT, Breneman D, et al. Administration of DAB389 IL-2 to patients with recalcitrant psoriasis: A double-blind, phase II multicenter trial. J. Am. Acad. Dermatol 1998;38:938–944.
  • Martin A, Gutierrez E, Muglia J, et al. A multicenter dose-escalation trial with denileukindiftitox (ONTAK, DAB389 IL-2) in patients with severe psoriasis. J. Am. Acad. Dermatol 2001;45:871–881.
  • Yang X, Kessler E, Su L-J, et al. Diphtheria Toxin–Epidermal Growth Factor Fusion Protein DAB389EGF for the Treatment of Bladder Cancer. Clin Cancer Res 2013;19:148–157.
  • Cohen KA, Liu T, Bissonette R, et al. DAB389EGF fusion protein therapy of refractory glioblastoma multiforme. Curr. Pharm. Biotechnol 2003;4:39–49.
  • Liu TF, Cohen KA, Ramage JG, et al. A diphtheria toxin-epidermal growth factor fusion protein is cytotoxic to human glioblastoma multiforme cells. Cancer Res 2003;63:1834–1837.
  • Urieto JO, Liu T, Black JH, et al. Expression and purification of the recombinant diphtheria fusion toxin DT 388 IL3 for phase I clinical trials. Protein Expr Purif 2004;33:123–133.
  • Cohen KA, Liu TF, Cline JM, et al. Safety evaluation of DT388IL3, a diphtheria toxin/interleukin 3 fusion protein, in the cynomolgus monkey. Cancer Immunol Immunother 2005;54:799–806.
  • Misra D, Frankel A, Hall P, et al. The Use of DT388-IL3 Fusion Protein in Patients with Refractory Acute Myeloid Leukemia (AML). ASH Annual Meeting Abstracts 2004;104:4513.
  • Ahmadzadeh V, Farajnia S, HosseinpourFeizi MA, et al. Design, expression and characterization of a single chain anti-CD20 antibody;a germline humanized antibody derived from Rituximab. Protein Expr Purif 2014;102:45–51.
  • Safdari Y, Farajnia S, Asgharzadeh M, et al. humMR1, a highly specific humanized single chain antibody for targeting EGFRvIII. Int Immunopharmacol 2014;18:304–310.
  • Veisi K, Farajnia S, Zarghami N, et al. Development and evaluation of a Cetuximab-based humanized single chain antibody against EGFR-overexpressing tumors. Drug Res 2015;65:624–628.
  • Kreitman RJ, Tallman MS, Robak T, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomabpasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J. Clin Oncol 2012;30:1822–1828.
  • Wayne AS, Bhojwani D, Silverman LB, et al. A novel anti-CD22 immunotoxin, moxetumomabpasudotox: phase I study in pediatric acute lymphoblastic leukemia (ALL). Blood 2011;118:248–248.
  • Minami Y, Kono T, Miyazaki T, et al. The IL-2 receptor complex: its structure, function, and target genes. Annu. Rev. Immunol 1993;11:245–268.
  • Kreitman RJ. Immunoconjugates and new molecular targets in hairy cell leukemia. ASH Education Program Book 2012;2012:660–666.
  • Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac (Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J. Clin Oncol 2000;18:1622–1636.
  • Kreitman RJ, Wilson WH, Robbins D, et al. Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 1999;94:3340–3348.
  • Kreitman RJ, Stetler-Stevenson M, Jaffe ES, et al. Complete remissions of adult T-cell leukemia with anti-CD25 recombinant immunotoxin LMB-2 and chemotherapy to block immunogenicity. Clin Cancer Res 2016;22:310–318.
  • Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005;23:1257–1268.
  • Nord K, Gunneriusson E, Ringdahl J, et al. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat Biotechnol 1997;15:772–777.
  • Nicolaides NC, Sass PM, Grasso L. Advances in targeted therapeutic agents. Expert Opin Drug Discov 2010;5:1123–1140.
  • Nygren PÅ. Alternative binding proteins: Affibody binding proteins developed from a small three‐helix bundle scaffold. Febs J 2008;275:2668–2676.
  • Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol 2015;55:489–511.
  • Zielinski R, Lyakhov I, Jacobs A, et al. Affitoxin–a novel recombinant, HER2-specific, anti-cancer agent for targeted therapy of HER2-positive tumors. J. Immunother 2009;32:817.
  • Zielinski R, Lyakhov I, Hassan M, et al. HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin Cancer Res 2011;17:5071–5081.
  • Weigel KJ, Shen L, Thomas CL, et al. Design and evaluation of a peptide‐based immunotoxin for breast cancer therapeutics. FEBS Open Bio 2015;5:202–208.
  • Martin-Killias P, Stefan N, Rothschild S, et al. A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity. Clin Cancer Res 2011;17:100–110.
  • Oratz R, Speyer J, Wernz J, et al. Antimelanoma monoclonal antibody-ricin A chain immunoconjugate (XMMME-001-RTA) plus cyclophosphamide in the treatment of metastatic malignant melanoma: results of a phase II trial. J. Immunother 1990;9:345.
  • Selvaggi K, Saria E, Schwartz R, et al. Phase I/II study of murine monoclonal antibody-ricin A chain (Xomazyme-Mel) immunoconjugate plus cyclosporine A in patients with metastatic melanoma. J. Immunother 1993;13:201–207.
  • Pai LH, FitzGerald DJ, Tepper M, et al. Inhibition of antibody response to Pseudomonas exotoxin and an immunotoxin containing Pseudomonas exotoxin by 15-deoxyspergualin in mice. Cancer Res 1990;50:7750–7753.
  • Onda M, Beers R, Xiang L, et al. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc. Natl. Acad. Sci. U S A 2011;108:5742–5747.
  • Zhang Q, Chen G, Liu X, et al. Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res 2007;17:89–99.
  • da Silva FA, Corte-Real S, Goncalves J. Recombinant antibodies as therapeutic agents. BioDrugs 2008;22:301–314.
  • Akbari B, Farajnia S, Zarghami N, et al. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR). Protein Expr Purif 2016;127:8–15.
  • Dang NH, Pro B, Hagemeister FB, et al. Phase II trial of denileukindiftitox for relapsed/refractory T‐cell non‐Hodgkin lymphoma. Br. J. Haematol 2007;136:439–447.
  • Talpur R, Duvic M. Pilot study of denileukindiftitox alternate dosing regimen in patients with cutaneous peripheral T-cell lymphomas. Clin. Lymphoma Myeloma Leuk 2012;12:180–185.
  • Telang S, Rasku MA, Clem AL, et al. Phase II trial of the regulatory T cell-depleting agent, denileukindiftitox, in patients with unresectable stage IV melanoma. BMC Cancer 2011;11:1.
  • Yamada Y, Aoyama A, Tocco G, et al. Differential effects of denileukindiftitox IL-2 immunotoxin on NK and regulatory T cells in nonhuman primates. J. Immunol 2012;188:6063–6070.
  • LeMaistre C, Meneghetti C, Rosenblum M, et al. Phase I trial of an interleukin-2 (IL-2) fusion toxin (DAB486IL-2) in hematologic malignancies expressing the IL-2 receptor. Blood 1992;79:2547–2554.
  • Kuzel TM, Rosen ST, Gordon LI, et al. Phase I trial of the diphtheria toxin/interleukin-2 fusion protein DAB486IL-2: efficacy in mycosis fungoides and other non-Hodgkin's lymphomas. Leukemia Lymphoma 1993;11:369–377.
  • LeMaistre C, Craig FE, Meneghetti C, et al. Phase I trial of a 90-minute infusion of the fusion toxin DAB486IL-2 in hematological cancers. Cancer Res 1993;53:3930–3934.
  • Platanias LC, Ratain MJ, O'brien S, et al. Phase I trial of a genetically engineered interleukin-2 fusion toxin (DAB486IL-2) as a 6 hour intravenous infusion in patients with hematologic malignancies. Leukemia Lymphoma 1994;14:257–262.
  • Tepler I, Schwartz G, Parker K, et al. Phase I trial of an interleukin‐2 fusion toxin (DAB486IL‐2) in hematologic malignancies: Complete response in a patient with Hodgkin's disease refractory to chemotherapy. Cancer 1994;73:1276–1285.
  • Goldberg MR, Heimbrook DC, Russo P, et al. Phase I clinical study of the recombinant oncotoxin TP40 in superficial bladder cancer. Clin Cancer Res 1995;1:57–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.