522
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Role of MicroRNAs in the development and function of innate immune cells

&
Pages 154-175 | Received 15 Oct 2016, Accepted 16 Jan 2017, Published online: 04 May 2017

References

  • Bartel D. MicroRNAs. Cell 2004;116:281–297.
  • Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004;303:83–86.
  • Fiedler K, Brunner C. The role of transcription factors in the guidance of granulopoiesis. Am J Blood Res 2012;2:57–65.
  • Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica 2012;97:160–167.
  • Guo S, Lu J, Schlanger R, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 2010;107:14229–14234.
  • Wang Y, Baskerville S, Shenoy A, et al. Embryonic stem cell–specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics 2008;40:1478–1483.
  • Chen CZ, Schaffert S, Fragoso R, et al. Regulation of immune responses and tolerance: the microRNA perspective. Immunol. Rev 2013;253:112–128.
  • Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010;33:657–670.
  • Bjerregaard MD, Jurlander J, Klausen P, et al. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 2003;101:4322–4332.
  • Alemdehy MF, van Boxtel NG, de Looper HW, et al. Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice. Blood 2012;119:4723–4730.
  • Klausen P, Bjerregaard MD, Borregaard N, et al. End-stage differentiation of neutrophil granulocytes in vivo is accompanied by up-regulation of p27kip1 and down-regulation of CDK2, CDK4, and CDK6. J Leukoc Biol 2003;75:569–578.
  • Nowek K, Sun SM, Bullinger L, et al. Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG. Leukemia 2016;30:229–237.
  • Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998;12:2403–2412.
  • Dahl R, Walsh J, Lancki D, et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat Immunol 2003;4:1029–1036.
  • Larsen M, Hother C, Häger M, et al. MicroRNA profiling in human neutrophils during Bone Marrow Granulopoiesis and in vivo exudation. PLoS One 2013;8:e58454.
  • Martinez-Nunez RT, Louafi F, Friedmann PS, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J. Biol. Chem 2009;284:16334–16342.
  • Zhang P, Iwasaki-Arai J, Iwasaki H, et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 2004;21:853–863.
  • Zhang DE, Zhang P, Wang ND, et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 1997;94:569–574.
  • Reddy VA, Iwama A, Iotzova G, et al. Granulocyte inducer C/EBPalpha inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 2002;100:483–490.
  • Hegde VL, Tomar S, Jackson A, et al. Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Δ9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein α by microRNA-690. J Biol Chem 2013;288:36810–26.
  • Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005;123:819–831.
  • Wang Q, Stacy T, Binder M, et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U.S.A. 1996;93:3444–3449.
  • Feng J, Iwama A, Satake M, et al. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1. Br J Haematol 2009;145:412–423.
  • Milner LA, Bigas A, Kopan R, et al. Inhibition of granulocytic differentiation by mNotch1. Proc. Natl. Acad. Sci. U.S.A. 1996;93:13014–13019.
  • Katzerke C, Madan V, Gerloff D, et al. Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013;122:2433–2442.
  • Karsunky H, Zeng H, Schmidt T, et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 2002;30:295–300.
  • Hock H, Hamblen MJ, Rooke HM, et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003;18:109–120.
  • Laslo P, Spooner C, Warmflash A, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 2006;126:755–766.
  • Velu CS, Baktula AM, Grimes HL. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 2009;113:4720–4728.
  • Wong J, Ritchie W, Gao D, et al. Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol 2014;7:42.
  • Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007;109:4399–4405.
  • Häger M, Pedersen CC, Larsen MT, et al. MicroRNA-130a-mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF-β1 stimulation in granulocytic precursors. Blood 2011;118:6649–6659.
  • Zhong H, Wang H, Yang S, et al. Targeting Smad4 links microRNA-146a to the TGF-β pathway during retinoid acid induction in acute promyelocytic leukemia cell line. Int J Hematol 2010;92:129–135.
  • Louafi F, Martinez-Nunez RT, Sanchez-Elsner T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 2010;285:41328–41336.
  • Rai, Kim S, McKeller M, et al. Targeting of SMAD5 links microRNA-155 to the TGF- pathway and lymphomagenesis. Proc Natl Acad Sci U S A 2010;107:3111–3116.
  • Pulikkan JA, Dengler V, Peramangalam PS, et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010;115:1768–1778.
  • Xu D, Takeshita F, Hino Y, et al. miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 2011;193:409–24.
  • Zhu Y, Lu Y, Zhang Q, et al. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 2012;40:4615–4625.
  • Borriello A, Bencivenga D, Criscuolo M, et al. Targeting p27 Kip1 protein: its relevance in the therapy of human cancer. Expert Opin Ther Targets 2011;15:677–693.
  • Wang B, Li W, Guo K, et al. miR-181b Promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 2012;421:4–8.
  • Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008;451:1125–1129.
  • Strom DK, Cleveland JL, Chellappan S, et al. E2F-1 and E2F-3 are functionally distinct in their ability to promote myeloid cell cycle progression and block granulocyte differentiation. Cell Growth Differ 1998;9:59–69.
  • Pulikkan JA, Peramangalam PS, Dengler V, et al. C/EBP regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 2010;116:5638–5649.
  • Gonda TJ. The c-Myb oncoprotein. Int J Biochem Cell Biol 1998;30:547–551.
  • Sandberg M, Sutton S, Pletcher M, et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 2005;8:153–166.
  • Bernardin-Fried F, Kummalue T, Leijen S, et al. AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. J Biol Chem 2004;279:15678–15687.
  • Yamanaka R, Barlow C, Lekstrom-Himes J, et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 1997;94:13187–13192.
  • Larsen MT, Häger M, Glenthøj A, et al. miRNA-130a regulates C/EBP-ϵ expression during granulopoiesis. Blood 2014;123:1079–1089.
  • Pedersen C, Refsgaard J, Østergaard O, et al. Impact of microRNA-130a on the neutrophil proteome. BMC Immunol 2015;16:70.
  • Nuchprayoon I, Meyers S, Scott LM, et al. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol 1994;14:5558–5568.
  • Lokuta MA, Nuzzi PA, Huttenlocher A. Analysis of neutrophil polarization and chemotaxis. Methods Mol. Biol 2007;412:211–229.
  • Murata K, Yoshitomi H, Furu M, et al. MicroRNA-451 down-regulates neutrophil chemotaxis via p38 MAPK. Arthritis Rheumatol 2014;66:549–559.
  • Meisgen F, Xu Landén N, Wang A, et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J. Invest. Dermatol 2014;134:1931–1940.
  • Li Y, Dalli J, Chiang N, et al. Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators. Immunity 2013;39:885–898.
  • Chen Y, Junger WG. Measurement of oxidative burst in neutrophils. Methods Mol. Biol 2012;844:115–124.
  • Kruger P, Saffarzadeh M, Weber AN, et al. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog 2015;11:e1004651.
  • Zuo H, Yuan J, Chen Y, et al. A MicroRNA-Mediated positive feedback regulatory loop of the NF-κB pathway in litopenaeus vannamei. J Immunol 2016;196:3842–3853.
  • Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. U.S.A. 2009;106:5282–5287.
  • Fan HB, Liu YJ, Wang L, et al. miR-142-3p acts as an essential modulator of neutrophil development in zebrafish. Blood 2014;124:1320–1330.
  • Gordon S, Taylor P. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953–964.
  • Zhang P, Zhang X, Iwama A, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 2000;96:2641–2648.
  • Friedman AD. Transcriptional control of granulocyte and monocyte development. Oncogene 2007;26:6816–6828.
  • Dakic A, Metcalf D, Rago L, et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 2005;201:1487–1502.
  • Starnes LM, Sorrentino A, Pelosi E, et al. NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls -globin and G-CSF receptor expression. Blood 2009;114:1753–1763.
  • Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc. Natl. Acad. Sci. U.S.A. 2007;104:19849–19854.
  • Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007;9:775–787.
  • Kharbanda S, Nakamura T, Stone R, et al. Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J. Clin. Invest 1991;88:571–577.
  • Lagrange B, Martin R, Droin N, et al. A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochim Biophys Acta 2013;1833:1936–1946.
  • Salvatori B, Iosue I, Mangiavacchi A, et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 2012;3:e413.
  • Ayala JM, Goyal S, Liverton NJ, et al. Serum-induced monocyte differentiation and monocyte chemotaxis are regulated by the p38 MAP kinase signal transduction pathway. J. Leukoc. Biol 2000;67:869–875.
  • Yu X, Wang QL, Li YF, et al. A novel miR-200b-3p/p38IP pair regulates monocyte/macrophage differentiation. Cell Discov 2016;2:15043.
  • Pauley K, Satoh M, Pauley B, et al. Formation of GW/P bodies as marker for microRNA-mediated regulation of innate immune signaling in THP-1 cells. Immunol Cell Biol 2010;88:205–212.
  • Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989;74:2527–2534.
  • Fingerle G, Pforte A, Passlick B, et al. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 1993;82:3170–3176.
  • Dang TM, Wong WC, Ong SM, et al. MicroRNA expression profiling of human blood monocyte subsets highlights functional differences. Immunology 2015;145:404–416.
  • Song X, Wang CT, Geng XH. MicroRNA-29a promotes apoptosis of monocytes by targeting STAT3 during sepsis. Genet Mol Res 2015;14:13746–13753.
  • Huang J, Jiao J, Xu W, et al. miR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol Med Rep 2015;12:7102–7108.
  • Liu Y, Jiang J, Wang X, et al. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1. PLoS ONE 2013;8:e78381.
  • Li LM, Hou DX, Guo YL, et al. Role of MicroRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes. J Immunol 2011;186:2552–2560.
  • Auffray C, Fogg D, Garfa M et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007;317:666–670.
  • Nahrendorf M, Swirski F, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007;204:3037–3047.
  • Etzrodt M, Cortez-Retamozo V, Newton A, et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep 2012;1:317–324.
  • Squadrito M, Etzrodt M, Palma M, et al. MicroRNA-mediated control of macrophages and its implications for cancer. Trend Immunol 2013;34:350–359.
  • Zhang Y, Yang P, Sun T, et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 2013;15:284–294.
  • Tano N, Kim H, Ashraf M. microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS One 2011;6:e23114.
  • O'Connell R, Taganov K, Boldin M, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci 2007;104:1604–1609.
  • O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med 2008;205:585–594.
  • Zhou J, Chaudhry H, Zhong Y, et al. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine 2015;71:89–100.
  • Jun H, Ying H, Daiwen C, et al. miR-628, a microRNA that is induced by Toll-like receptor stimulation, regulates porcine innate immune responses. Sci Rep 2015;5:12226.
  • Nahid MA, Yao B, Dominguez-Gutierrez PR. Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 2013;190:1250–1263.
  • Wang Y, Li T, Wu B, et al. STAT1 regulates MD-2 expression in monocytes of sepsis via miR-30a. Inflammation 2014;37:1903–1911.
  • Xie W, Li M, Xu N, et al. miR-181a regulates inflammation responses in monocytes and macrophages. PLoS One 2013;8:e58639.
  • Bojic L, Huff M. Peroxisome proliferator-activated receptor δ: a multifaceted metabolic player. Curr Opin Lipidol 2013;24:171–177.
  • Thulin P, Wei T, Werngren O, et al. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response. Int J Mol Med 2013; 31: 1003–1010.
  • Rossato M, Curtale G, Tamassia N, et al. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc. Natl. Acad. Sci. U.S.A. 2012;109:E3101–10.
  • Hulsmans M, Dooren E, Mathieu C, et al. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS One 2012;7:e32794.
  • Wang X, Ye L, Hou W, et al. Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection. Blood 2009;113:671–674.
  • Sung TL, Rice A. miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 2009;5:e1000263.
  • Brudecki L, Ferguson DA, McCall CE, et al. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol. Cell Biol 2013;91:532–540.
  • Nahid MA, Pauley KM, Satoh M, et al. miR-146a Is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 2009;284:34590–34599.
  • Ghani S, Riemke P, Schönheit J, et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood 2011;118:2275–2284.
  • Schmeier S, MacPherson C, Essack M, et al. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation. BMC Genomics 2009;10:595.
  • Forrest AR, Kanamori-Katayama M, Tomaru Y, et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2010;24:460–466.
  • DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 2000;288:1439–1441.
  • Pospisil V, Vargova K, Kokavec J, et al. Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. EMBO J 2011;30:4450–4464.
  • Lin HS, Gong JN, Su R, et al. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression. J Leukoc Biol 2014;96:1023–1035.
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest 2012;122:787–795.
  • Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011;11:750–761.
  • Graff JW, Dickson AM, Clay G, et al. Identifying functional MicroRNAs in macrophages with polarized phenotypes. J Biol Chem 2012;287:21816–21825.
  • Morelli E, Leone E, Cantafio ME, et al. Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo. Leukemia 2015;29:2173–2183.
  • Tu K, Zheng X, Dou C, et al. MicroRNA-130b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. Int J Mol Sci 2014;15:20486–20499.
  • Wu W, Takanashi M, Borjigin N, et al. MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer 2013;108:653–661.
  • Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci. Rep 2016;36:pii. e00363.
  • Ponomarev E, Veremeyko T, Weiner H. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2013;61:91–103.
  • Liu G, Abraham E. MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 2013;33:170–177.
  • Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The Interleukin 13 (IL-13) pathway in human macrophages is modulated by MicroRNA-155 via direct targeting of Interleukin 13 Receptor alpha 1 (IL13Ralpha1). J Biol Chem 2011;286:1786–1794.
  • Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol 2013;33:1135–1144.
  • He M, Xu Z, Ding T, et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell. Mol. Immunol 2009;6:343–352.
  • Jablonski KA, Gaudet AD, Amici SA, et al. Control of the inflammatory macrophage transcriptional signature by miR-155. PLoS One 2016;11:e0159724.
  • Arranz A, Doxaki C, Vergadi E et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A 2012;109:9517–9522.
  • O'Connell RM, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. U.S.A. 2009;106:7113–7118.
  • Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009;31:220–231.
  • Rückerl D, Jenkins SJ, Laqtom NN, et al. Induction of IL-4Rα -dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 2012;120:2307–2316.
  • Ying H, Kang Y, Zhang H, et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J. Immunol 2015;194:1239–1251.
  • Kim SW, Ramasamy K, Bouamar H, et al. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A 2012;109:7865–7870.
  • Chaudhuri AA, So AY, Sinha N, et al. MicroRNA-125b potentiates macrophage activation. J Immunol 2011;187:5062–5068.
  • Graff JW, Dickson AM, Clay G, et al. Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 2012;287:21816–21825.
  • Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 2006;103:12481–12486.
  • Saccani A, Schioppa T, Porta C, et al. p50 Nuclear Factor- B overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 2006;66:11432–11440.
  • Jia X, Li X, Shen Y, et al. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation. J Cell Mol Med 2016;20:1898–1907.
  • Caescu CI, Guo X, Tesfa L, et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood 2015;125:e1–e13.
  • Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 2014;192:1120–1129.
  • Smallie T, Ricchetti G, Horwood N, et al. IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. J Exp Med 2010;207:2081–2088.
  • Lang R, Patel D, Morris JJ, et al. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol 2002;169:2253–2263.
  • Williams L, Bradley L, Smith A, et al. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J. Immunol 2004;172:567–576.
  • Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 2012;125:2892–2903.
  • Liu Y, Wang R, Jiang J, et al. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages. Mol Immunol 2015;67:475–481.
  • Wang J, Wu J, Cheng Y, et al. Over-expression of microRNA-223 inhibited the proinflammatory responses in Helicobacter pylori-infection macrophages by down-regulating IRAK-1. Am J Transl Res 2016;8:615–622.
  • Squadrito M, Pucci F, Magri L, et al. miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep 2012;1:141–154.
  • Veremeyko T, Siddiqui S, Sotnikov I, et al. IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLoS One 2013;8:e81774.
  • Fordham JB, Naqvi AR, Nares S. miR-24 regulates macrophage polarization and plasticity. J Clin Cell Immunol 2015;6:pii. 362.
  • Gordon S, Martinez F. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32:593–604.
  • Czimmerer Z, Varga T, Kiss M, et al. The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Med 2016;8:63.
  • Li M, Chen H, Chen L, et al. miR-709 modulates LPS-induced inflammatory response through targeting GSK-3β. Int. Immunopharmacol 2016;36:333–338.
  • Liu HY. Down-regulation of miR-144 after Mycobacterium tuberculosis infection promotes inflammatory factor secretion from macrophages through the Tpl2/ERK pathway. Cell. Mol. Biol. (Noisy-le-grand) 2016;62:87–93.
  • Karunakaran D, Thrush B, Nguyen MA, et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res 2015;117:266–278.
  • Ouimet M, Ediriweera H, Gundra M, et al. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015;125:4334–4348.
  • Liu G, Friggeri A, Yang Y, et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc. Natl. Acad. Sci. U.S.A. 2009;106:15819–15824.
  • Tay HL, Kaiko GE, Plank M, et al. Antagonism of miR-328 increases the antimicrobial function of macrophages and neutrophils and rapid clearance of non-typeable Haemophilus influenzae (NTHi) from infected lung. PLoS Pathog 2015;11:e1004549.
  • Moon HG, Yang J, Zheng Y, et al. miR-15a/16 regulates macrophage phagocytosis after bacterial infection. J. Immunol 2014;193:4558–4567.
  • Naqvi AR, Fordham JB, Nares S. MicroRNA target Fc receptors to regulate Ab-dependent Ag uptake in primary macrophages and dendritic cells. Innate Immun 2016;22:510–521.
  • Podsiad A, Standiford TJ, Ballinger MN, et al. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am J Physiol Lung Cell Mol Physiol 2016;310:L465–75.
  • Pizzolla A1, Hultqvist M, Nilson B, et al. Reactive oxygen species produced by the NADPH Oxidase 2 complex in monocytes protect mice from bacterial infections. J Immunol 2012;188:5003–5011.
  • Shilo S, Roy S, Khanna S, et al. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 2008;28:471–477.
  • Doxaki C, Kampranis SC, Eliopoulos AG, et al. Coordinated regulation of miR-155 and miR-146a genes during induction of endotoxin tolerance in macrophages. J. Immunol 2015;195:5750–5761.
  • Renzi TA, Rubino M, Gornati L, et al. MiR-146b mediates endotoxin tolerance in human phagocytes. Mediators Inflamm 2015;2015:145305.
  • Lind EF, Millar DG, Dissanayake D, et al. miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J. Immunol 2015;195:4632–4640.
  • Liu K, Nussenzweig MC. Origin and development of dendritic cells. Immunol. Rev 2010;234:45–54.
  • Liu K, Victora GD, Schwickert TA, et al. In vivo analysis of dendritic cell development and homeostasis. Science 2009;324:392–397.
  • Hashimi ST, Fulcher JA, Chang MH, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 2009;114:404–414.
  • Fordham JB, Naqvi AR, Nares S. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J. Leukoc. Biol 2015;98:195–207.
  • Zhou H, Xiao J, Wu N, et al. MicroRNA-223 regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPβ. Cell Rep 2015;13:1149–1160.
  • Bakri Y, Sarrazin S, Mayer UP, et al. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 2005;105:2707–2716.
  • Domínguez-Soto A, Puig-Kröger A, Vega MA, et al. PU.1 regulates the tissue-specific expression of dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin. J Biol Chem 2005;280:33123–33131.
  • Dunand-Sauthier I, Santiago-Raber ML, Capponi L, et al. Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 2011;117:4490–4500.
  • Zhou H, Huang X, Cui H, et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 2010;116:5885–5894.
  • Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007;316:608–611.
  • Kuipers H, Schnorfeil FM, Fehling HJ, et al. Dicer-dependent microRNAs control maturation, function, and maintenance of langerhans cells in vivo. J. Immunol 2010;185:400–409.
  • Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 2011;117:4293–4303.
  • Brandon C, Eisenberg LM, Eisenberg CA. WNT signaling modulates the diversification of hematopoietic cells. Blood 2000;96:4132–4141.
  • Duncan A, Rattis F, DiMascio L, et al. Integration of notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005;6:314–322.
  • Kirstetter P, Anderson K, Porse B, et al. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006;7:1048–1056.
  • Gu C, Zhou XD, Yuan Y, et al. MicroRNA-214 induces dendritic cell switching from tolerance to immunity by targeting β-Catenin signaling. Int J Clin Exp Pathol 2015;8:10050–10060.
  • Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007;7:454–465.
  • Zhang M, Liu F, Jia H, et al. Inhibition of microRNA let-7i depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. J. Immunol 2011;187:1674–1683.
  • Nefedova Y, Huang M, Kusmartsev S, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 2004;172:464–474.
  • Nefedova Y, Cheng P, Gilkes D, et al. Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J Immunol 2005;175:4338–4346.
  • Kershaw N, Murphy J, Lucet I, et al. Regulation of Janus kinases by SOCS proteins. Biochem Soc Trans 2013;41:1042–1047.
  • Akdis CA, Blesken T, Akdis M, et al. Role of interleukin 10 in specific immunotherapy. J Clin Invest 1998;102:98–106.
  • Sun Y, Jin X, Liu X, et al. MicroRNA let-7i regulates dendritic cells maturation targeting interleukin-10 via the Janus kinase 1-signal transducer and activator of transcription 3 signal pathway subsequently induces prolonged cardiac allograft survival in rats. J. Heart Lung Transplant 2016;35:378–388.
  • Liu X, Zhan Z, Xu L, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J Immunol 2010;185:7244–7251.
  • Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol 2009;10:1237–1244.
  • Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function. J. Immunol 2011;187:3911–3917.
  • Kuipers H, Schnorfeil FM, Brocker T. Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development. Mol Immunol 2010;48:333–340.
  • Onai N, Obata-Onai A, Schmid M, et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 2007;8:1207–1216.
  • Cisse B, Caton M, Lehner M, et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 2008;135:37–48.
  • Le Sage C, Nagel R, Egan D, et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007;26:3699–3708.
  • Tsujimura H, Tamura T, Ozato K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J. Immunol 2003;170:1131–1135.
  • Schotte R, Nagasawa M, Weijer K, et al. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med 2004;200:1503–1509.
  • Han SM, Na HY, Ham O, et al. TCF4-Targeting miR-124 is differentially expressed amongst dendritic cell subsets. Immune Netw 2016;16:61–74.
  • Mildner A, Chapnik E, Manor O, et al. Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood 2013;121:1016–1027.
  • Hong Y, Wu J, Zhao J, et al. miR-29b and miR-29c are involved in toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells. PLoS One 2013;8:e69926.
  • Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001;194:863–869.
  • Karrich JJ, Jachimowski LC, Libouban M, et al. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 2013;122:3001–3009.
  • Agudo J, Ruzo A, Tung N, et al. The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids. Nat Immunol 2014;15:54–62.
  • Cao W, Manicassamy S, Tang H, et al. Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 2008;9:1157–1164.
  • Liu Y, Li J, Xia W, et al. MiR-200b modulates the properties of human monocyte-derived dendritic cells by targeting WASF3. Life Sci 2015;122:26–36.
  • Mi QS, Xu YP, Wang H, et al. Deletion of microRNA miR-223 increases langerhans cell cross-presentation. Int J Biochem Cell Biol 2013;45:395–400.
  • Mao CP, He L, Tsai YC, et al. In vivo microRNA-155 expression influences antigen-specific T cell-mediated immune responses generated by DNA vaccination. Cell Biosci 2011;1:3.
  • Dunand-Sauthier I, Irla M, Carnesecchi S, et al. Repression of arginase-2 expression in dendritic cells by microRNA-155 is critical for promoting T cell proliferation. J Immunol 2014;193:1690–1700.
  • Mi QS, Xu YP, Qi RQ, et al. Lack of microRNA miR-150 reduces the capacity of epidermal langerhans cell cross-presentation. Exp Dermatol 2012;21:876–877.
  • Shen L, Evel-Kabler K, Strube R, et al. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol 2004;22:1546–1553.
  • Rao R, Rieder SA, Nagarkatti P, et al. Staphylococcal enterotoxin B-Induced MicroRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infect Immun 2014;82:2971–2979.
  • Huffaker TB, O'Connell RM. miR-155-SOCS1 as a functional axis: Satisfying the burden of proof. Immunity 2015;43:3–4.
  • Cooper M, Fehniger T, Caligiuri M. The biology of human natural killer-cell subsets. Trends Immunol 2001;22:633–640.
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol 2008;9:503–510.
  • Shibuya A. Development and functions of natural killer cells. Int. J. Hematol 2003;78:1–6.
  • Sullivan RP, Leong JW, Schneider SE, et al. MicroRNA-Deficient NK cells exhibit decreased survival but enhanced function. J Immunol 2012;188:3019–3030.
  • Fedeli M, Napolitano A, Wong MP, et al. Dicer-dependent microRNA pathway controls invariant NKT cell development. J. Immunol 2009;183:2506–2512.
  • Cichocki F, Felices M, McCullar V, et al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J. Immunol 2011;187:6171–6175.
  • Sullivan RP, Leong JW, Schneider SE, et al. MicroRNA-15/16 Antagonizes Myb To control NK cell maturation. J. Immunol 2015;195:2806–2817.
  • Bezman N, Chakraborty T, Bender T, et al. miR-150 regulates the development of NK and iNKT cells. J Exp Med 2011;208:2717–2731.
  • Trotta R, Chen L, Costinean S, et al. Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood 2013;121:3126–3134.
  • Zawislak CL, Beaulieu AM, Loeb GB, et al. Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc. Natl. Acad. Sci. U.S.A. 2013;110:6967–6972.
  • Qi Q, Kannan A, August A. Tec family kinases: Itk signaling and the development of NKT αβ and γδ T cells. FEBS J 2011;278:1970–1979.
  • Burocchi A, Pittoni P, Tili E, et al. Regulated expression of miR-155 is required for iNKT cell development. Front Immunol 2015;6:140.
  • Lanier LL. NK cell recognition. Annu Rev Immunol 2005;23:225–274.
  • El Sobky SA, El-Ekiaby NM, Mekky RY, et al. Contradicting roles of miR-182 in both NK cells and their host target hepatocytes in HCV. Immunol. Lett 2016;169:52–60.
  • Min D, Lv XB, Wang X, et al. Downregulation of miR-302c and miR-520c by 1,25(OH)2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br J Cancer 2013;109:723–730.
  • Tsukerman P, Stern-Ginossar N, Gur C, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res 2012;72:5463–5472.
  • Stern-Ginossar N, Gur C, Biton M, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 2008;9:1065–1073.
  • Nachmani D, Stern-Ginossar N, Sarid R, et al. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 2009;5:376–385.
  • Smyth M, Cretney E, Kelly J, et al. Activation of NK cell cytotoxicity. Mol Immunol 2005;42:501–510.
  • Fehniger T, Cai S, Cao X, et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007;26:798–811.
  • Abdelrahman MM, Fawzy IO, Bassiouni AA, et al. Enhancing NK cell cytotoxicity by miR-182 in hepatocellular carcinoma. Hum. Immunol 2016;77:667–673.
  • Ma Y, Gong J, Liu Y, et al. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci 2016;151:174–181.
  • Liu S, Chen L, Zeng Y, et al. Suppressed expression of miR-378 targeting gzmb in NK cells is required to control dengue virus infection. Cell Mol Immunol 2016; 13: 700–708.
  • Ni F, Guo C, Sun R, et al. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function. Sci Rep 2015;5:9993.
  • Thomas MF, Abdul-Wajid S, Panduro M, et al. Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood 2012;120:130–142.
  • Cheng YQ, Ren JP, Zhao J, et al. MicroRNA-155 regulates interferon-γ production in natural killer cells via Tim-3 signalling in chronic hepatitis C virus infection. Immunology 2015;145:485–497.
  • Gong J, Liu R, Zhuang R, et al. miR-30c-1* promotes natural killer cell cytotoxicity against human hepatoma cells by targeting the transcription factor HMBOX1. Cancer Sci 2012;103:645–652.
  • Kim TD, Lee SU, Yun S, et al. Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood 2011;118:5476–5486.
  • Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol 2011;12:861–869.
  • Kim N, Kim M, Yun S, et al. MicroRNA-150 regulates the cytotoxicity of natural killers by targeting perforin-1. J. Allergy Clin. Immunol 2014;134:195–203.
  • Wang P, Gu Y, Zhang Q, et al. Identification of resting and type I IFN-Activated human NK cell miRNomes reveals MicroRNA-378 and MicroRNA-30e as negative regulators of NK cell cytotoxicity. J Immunol 2012;189:211–221.
  • Espinoza JL, Takami A, Yoshioka K, et al. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions. Haematologica 2012;97:1295–1303.
  • Xu D, Han Q, Hou Z, et al. miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell. Mol. Immunol 2016;doi: 10.1038/cmi.2015.113.
  • Elemam NM, Mekky RY, El-Ekiaby NM, et al. Repressing PU.1 by miR-29a* in NK cells of HCV patients, diminishes its cytolytic effect on HCV infected cell models. Hum. Immunol 2015;76:687–694.
  • Zhang C, Xi X, Wang Q, et al. The association between serum miR-155 and natural killer cells from tuberculosis patients. Int J Clin Exp Med 2015;8:9168–9172.
  • Zhang Q, Di W, Dong Y, et al. High serum miR-183 level is associated with poor responsiveness of renal cancer to natural killer cells. Tumor Biol 2015;36:9245–9249.
  • Ghiringhelli F, Ménard C, Terme M, et al. CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. J Exp Med 2005;202:1075–1085.
  • Donatelli SS, Zhou JM, Gilvary DL, et al. TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells. Proc. Natl. Acad. Sci. U.S.A. 2014;111:4203–4208.
  • Huang Y, Chen D, He J, et al. Hcmv-miR-UL112 attenuates NK cell activity by inhibition type I interferon secretion. Immunol. Lett 2015;163:151–156.
  • Long EO. Ready for prime time: NK cell priming by dendritic cells. Immunity 2007;26:385–387.
  • Zhou L, Seo KH, He HZ, et al. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc. Natl. Acad. Sci. U.S.A. 2009;106:10266–10271.
  • Trinchieri G. Biology of natural killer cells. Adv. Immunol 1989;47:187–376.
  • Yun S, Lee SU, Kim JM, et al. Integrated mRNA-microRNA profiling of human NK cell differentiation identifies MiR-583 as a negative regulator of IL2Rγ expression. PLoS One 2014;9:e108913.
  • Walzer T, Dalod M, Robbins SH, et al. Natural-killer cells and dendritic cells: “l'union fait la force.” Blood 2005;106:2252–2258.
  • Liu X, Wang Y, Sun Q, et al. Identification of microRNA transcriptome involved in human natural killer cell activation. Immunol. Lett 2012;143:208–217.
  • Trotta R, Chen L, Ciarlariello D, et al. miR-155 regulates IFN- production in natural killer cells. Blood 2012;119:3478–3485.
  • Laouar Y, Sutterwala F, Gorelik L, et al. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat Immunol 2005;6:600–607.
  • Ardekani A, Naeini M. The role of MicroRNAs in human diseases. Avicenna J Med Biotechnol 2010;2:161–179.
  • Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. JCell Physiol 2016;231:25–30.
  • Ghelani HS, Rachchh MA, Gokani RH. MicroRNAs as newer therapeutic targets: A big hope from a tiny player. J Pharmacol Pharmacother 2012;3:217–227.
  • Lindsay MA. microRNAs and the immune response. Trends Immunol 2008;29:343–351.
  • Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with “antagomirs.” Nature 2005;438:685–689.
  • Merhautová J, Vychytilová-Faltejsková P, Demlová R, et al. Systemic administration of miRNA mimics by liposomal delivery system in animal model of colorectal carcinoma. Physiol Res 2016;65:S481–S488.
  • Li Z, Rana T. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 2014;13:622–638.
  • Zhao JL, Rao DS, O'Connell RM, et al. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. Elife 2013;2:e00537.
  • Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat. Med 2010;16:49–58.
  • Lu TX, Lim EJ, Itskovich S, et al. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth. PLoS One 2013;8:e59397.
  • Rusca N, Deho L, Montagner S, et al. miR-146a and NF- B1 regulate mast cell survival and T Lymphocyte differentiation. Mol Cell Biol 2012;32:4432–4444.
  • Saha B, Momen-Heravi F, Kodys K, et al. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J. Biol. Chem 2016;291:149–159.
  • Jurkin J, Schichl YM, Koeffel R, et al. miR-146a Is Differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 2010;184:4955–4965.
  • Mei S, Liu Y, Wu X, et al. TNF-α-mediated microRNA-136 induces differentiation of myeloid cells by targeting NFIA. J. Leukoc. Biol 2016;99:301–310.
  • Ma YL, Ma ZJ, Wang M, et al. MicroRNA-155 induces differentiation of RAW264.7 cells into dendritic-like cells. Int J Clin Exp Pathol 2015;8:14050–14062.
  • Liu QL, Zhang J, Liu X, et al. Role of growth hormone in maturation and activation of dendritic cells via miR-200a and the Keap1/Nrf2 pathway. Cell Prolif 2015;48:573–581.
  • Li H, Greeley N, Sugimoto N, et al. miR-22 controls Irf8 mRNA abundance and murine dendritic cell development. PLoS One 2012;7:e52341.
  • Tserel L, Runnel T, Kisand K, et al. MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as putative positive regulator of toll-like receptor 4. J Biol Chem 2011;286:26487–26495.
  • Aungier SR, Ohmori H, Clinton M, et al. MicroRNA-100-5p indirectly modulates the expression of Il6, Ptgs1/2 and Tlr4 mRNA in the mouse follicular dendritic cell-like cell line, FL-Y. Immunology 2015;144:34–44.
  • Henao-Mejia J, Williams A, Goff L, et al. The MicroRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 2013;38:984–997.
  • Presnell SR, Al-Attar A, Cichocki F, et al. Human natural killer cell microRNA: differential expression of MIR181A1B1 and MIR181A2B2 genes encoding identical mature microRNAs. Genes Immun 2015;16:89–98.
  • Zheng Q, Zhou L, Mi QS. MicroRNA miR-150 is involved in V 14 invariant NKT cell development and function. J Immunol 2012;188:2118–2126.
  • Mayoral RJ, Pipkin ME, Pachkov M, et al. MicroRNA-221-222 regulate the cell cycle in mast cells. J. Immunol 2009;182:433–445.
  • Ogawa T, Terao Y, Honda-Ogawa M, et al. MicroRNA fragments derived from Streptococcus pyogenes enable activation of neutrophil phagocytosis: in vitro study. Microbes Infect 2013;15:212–218.
  • Liu Z, Zhou G, Deng X, et al. Analysis of miRNA expression profiling in human macrophages responding to Mycobacterium infection: induction of the immune regulator miR-146a. J. Infect 2014;68:553–561.
  • McCubbrey AL, Nelson JD, Stolberg VR, et al. MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J. Immunol 2016;196:1366–1375.
  • Chafin CB, Regna NL, Caudell DL, et al. MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro. Cell. Mol. Immunol 2014;11:79–83.
  • De Santis R, Liepelt A, Mossanen JC, et al. miR-155 targets caspase-3 mRNA in activated macrophages. RNA Biol 2016;13:43–58.
  • Zhu D, Pan C, Li L, et al. MicroRNA-17/20a/106a modulate macrophage inflammatory responses through targeting signal-regulatory protein α. J Allergy Clin Immunol 2013;132:426–436. e8.
  • Zhang G, Liu X, Wang W, et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle 2016;15:2527–2538.
  • Xi X, Zhang C, Han W, et al. MicroRNA-223 is upregulated in active tuberculosis patients and inhibits apoptosis of macrophages by targeting FOXO3. Genet Test Mol Biomarkers 2015;19:650–656.
  • Li MC, Yu JH, Yu SS, et al. MicroRNA-873 inhibits morphine-induced macrophage apoptosis by elevating A20 expression. Pain Med 2015;16:1993–1999.
  • Kim JK, Yuk JM, Kim SY, et al. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J. Immunol 2015;194:5355–5365.
  • Wei Y, Zhu M, Corbalán-Campos J, et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler. Thromb. Vasc. Biol 2015;35:796–803.
  • Chen Z, Wang T, Liu Z, et al. Inhibition of autophagy by MiR-30A induced by mycobacteria tuberculosis as a possible mechanism of immune escape in human macrophages. Jpn. J. Infect. Dis 2015;68:420–424.
  • Xu R, Bi C, Song J, et al. Upregulation of miR-142-5p in atherosclerotic plaques and regulation of oxidized low-density lipoprotein-induced apoptosis in macrophages. Mol Med Rep 2015;11:3229–3234.
  • Vegh P, Magee DA, Nalpas NC, et al. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking. Tuberculosis (Edinb) 2015;95:60–67.
  • Xu S, Wei J, Wang F, et al. Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst 2014;106:pii. dju162.
  • Liu C, Wang J, Zhang X. The involvement of MiR-1-clathrin pathway in the regulation of phagocytosis. PLoS One 2014;9:e98747.
  • Zech A, Ayata CK, Pankratz F, et al. MicroRNA-155 modulates P2R signaling and Th2 priming of dendritic cells during allergic airway inflammation in mice. Allergy 2015;70:1121–1129.
  • Tang H, Jiang H, Zheng J, et al. MicroRNA-106b regulates pro-allergic properties of dendritic cells and Th2 polarisation by targeting early growth response-2 in vitro. Int. Immunopharmacol 2015;28:866–874.
  • Liang X, Liu Y, Mei S, et al. MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38. PLoS One 2015;10:e0121510.
  • Zheng, Jiang HY, Li J, et al. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy 2012;67:362–370.
  • Tsukerman P, Stern-Ginossar N, Gur C, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res 2012;72:5463–5472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.