968
Views
60
CrossRef citations to date
0
Altmetric
Reviews

Cytosolic nucleic acid sensors and innate immune regulation

, &
Pages 74-88 | Received 01 Feb 2017, Accepted 20 Feb 2017, Published online: 23 Mar 2017

References

  • Medzhitov R, Preston-Hurlburt P, Janeway Jr. CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388(6640):394–397. Epub 1997/07/24. doi:10.1038/41131. PubMed PMID: 9237759
  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999;162(7):3749–3752. Epub 1999/04/14. PubMed PMID: 10201887
  • Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2014;7(1):a016246. Epub 2014/10/11. doi:10.1101/cshperspect.a016246. PubMed PMID: 25301932; PubMed Central PMCID: PMCPMC4292165
  • Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, et al. Does Toll-like receptor 3 play a biological role in virus infections? Virology 2004;322(2):231–238. Epub 2004/04/28. doi:10.1016/j.virol.2004.01.033. PubMed PMID: 15110521
  • Hornung V, Schlender J, Guenthner-Biller M, Rothenfusser S, et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J Immunol 2004;173(10):5935–5943. Epub 2004/11/06. PubMed PMID: 15528327
  • Lopez CB, Moltedo B, Alexopoulou L, Bonifaz L, Flavell RA, et al.. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses. J Immunol 2004;173(11):6882–6889. Epub 2004/11/24. PubMed PMID: 15557183
  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol 2004;5(7):730–737. Epub 2004/06/23. doi:10.1038/ni1087. PubMed PMID: 15208624
  • Fernandes-Alnemri T, Yu JW, Datta P, Wu J, et al.. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009;458(7237):509–513. Epub 2009/01/23. doi:10.1038/nature07710. PubMed PMID: 19158676; PubMed Central PMCID: PMCPMC2862225
  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009;458(7237):514–518. Epub 2009/01/23. doi:10.1038/nature07725. PubMed PMID: 19158675; PubMed Central PMCID: PMCPMC2726264
  • Burckstummer T, Baumann C, Bluml S, Dixit E, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol 2009;10(3):266–272. Epub 2009/01/23. doi:10.1038/ni.1702. PubMed PMID: 19158679
  • Roberts TL, Idris A, Dunn JA, Kelly GM, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science (New York) 2009;323(5917):1057–1060. Epub 2009/01/10. doi:10.1126/science.1169841. PubMed PMID: 19131592
  • Ablasser A, Bauernfeind F, Hartmann G, Latz E, et al.. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunol 2009;10(10):1065–1072. Epub 2009/07/18. doi:10.1038/ni.1779. PubMed PMID: 19609254; PubMed Central PMCID: PMCPMC3878616
  • Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009;138(3):576–591. Epub 2009/07/28. doi:10.1016/j.cell.2009.06.015. PubMed PMID: 19631370; PubMed Central PMCID: PMCPMC2747301
  • Unterholzner L, Keating SE, Baran M, Horan KA, et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol 2010;11(11):997–1004. Epub 2010/10/05. doi:10.1038/ni.1932. PubMed PMID: 20890285; PubMed Central PMCID: PMCPMC3142795
  • Li T, Diner BA, Chen J, Cristea IM. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Nat Acad Sci USA 2012;109(26):10558–10563. Epub 2012/06/14. doi:10.1073/pnas.1203447109. PubMed PMID: 22691496; PubMed Central PMCID: PMCPMC3387042
  • Kerur N, Veettil MV, Sharma-Walia N, Bottero V, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 2011;9(5):363–375. Epub 2011/05/18. doi:10.1016/j.chom.2011.04.008. PubMed PMID: 21575908; PubMed Central PMCID: PMCPMC3113467
  • Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, et al. Listeria monocytogenes induces IFNbeta expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J 2014;33(15):1654–1666. Epub 2014/06/28. doi:10.15252/embj.201488029. PubMed PMID: 24970844; PubMed Central PMCID: PMCPMC4194099
  • Jakobsen MR, Bak RO, Andersen A, Berg RK, et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Nat Acad Sci USA 2013;110(48):E4571–E4580. Epub 2013/10/25. doi:10.1073/pnas.1311669110. PubMed PMID: 24154727; PubMed Central PMCID: PMCPMC3845190
  • Orzalli MH, DeLuca NA, Knipe DM. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Nat Acad Sci USA 2012;109(44):E3008–E3017. Epub 2012/10/03. doi:10.1073/pnas.1211302109. PubMed PMID: 23027953; PubMed Central PMCID: PMCPMC3497734
  • Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, et al. Mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Nat Acad Sci USA 2002;99(2):637–642. Epub 2002/01/24. doi:10.1073/pnas.022637199. PubMed PMID: 11805321; PubMed Central PMCID: PMCPMC117358
  • Loo YM, Gale Jr. M. Immune signaling by RIG-I-like receptors. Immunity 2011;34(5):680–692. Epub 2011/05/28. doi:10.1016/j.immuni.2011.05.003. PubMed PMID: 21616437; PubMed Central PMCID: PMCPMC3177755
  • Kato H, Sato S, Yoneyama M, Yamamoto M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005;23(1):19–28. Epub 2005/07/26. doi:10.1016/j.immuni.2005.04.010. PubMed PMID: 16039576
  • Yoneyama M, Onomoto K, Jogi M, Akaboshi T, et al.. Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol 2015;32:48–53. Epub 2015/01/17. doi:10.1016/j.coi.2014.12.012. PubMed PMID: 25594890
  • Saito T, Hirai R, Loo YM, Owen D, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Nat Acad Sci USA 2007;104(2):582–587. Epub 2006/12/28. doi:10.1073/pnas.0606699104. PubMed PMID: 17190814; PubMed Central PMCID: PMCPMC1766428
  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 2005;175(5):2851–2858. Epub 2005/08/24. PubMed PMID: 16116171
  • Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 2008;29(2):178–181. Epub 2008/08/15. doi:10.1016/j.immuni.2008.07.009. PubMed PMID: 18701081
  • Satoh T, Kato H, Kumagai Y, Yoneyama M, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Nat Acad Sci USA 2010;107(4):1512–1517. Epub 2010/01/19. doi:10.1073/pnas.0912986107. PubMed PMID: 20080593; PubMed Central PMCID: PMCPMC2824407
  • Zhang F, Romano PR, Nagamura-Inoue T, Tian B, et al. Binding of double-stranded RNA to protein kinase PKR is required for dimerization and promotes critical autophosphorylation events in the activation loop. J Biol Chem 2001;276(27):24946–24958. Epub 2001/05/05. doi:10.1074/jbc.M102108200. PubMed PMID: 11337501
  • Hornung V, Hartmann R, Ablasser A, Hopfner KP. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol 2014;14(8):521–528. Epub 2014/07/19. doi:10.1038/nri3719. PubMed PMID: 25033909
  • Perry AK, Chen G, Zheng D, Tang H, et al.. The host type I interferon response to viral and bacterial infections. Cell Res 2005;15(6):407–422. Epub 2005/07/01. doi:10.1038/sj.cr.7290309. PubMed PMID: 15987599
  • Hou F, Sun L, Zheng H, Skaug B, et al.. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011;146(3):448–461. Epub 2011/07/26. doi:10.1016/j.cell.2011.06.041. PubMed PMID: 21782231; PubMed Central PMCID: PMCPMC3179916
  • Dixit E, Boulant S, Zhang Y, Lee AS, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010;141(4):668–881. Epub 2010/05/11. doi:10.1016/j.cell.2010.04.018. PubMed PMID: 20451243; PubMed Central PMCID: PMCPMC3670185
  • Scott I. The role of mitochondria in the mammalian antiviral defense system. Mitochondrion 2010;10(4):316–320. Epub 2010/03/09. doi:10.1016/j.mito.2010.02.005. PubMed PMID: 20206303; PubMed Central PMCID: PMCPMC2874622
  • Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006;7(2):131–137. Epub 2006/01/21. doi:10.1038/ni1303. PubMed PMID: 16424890
  • Oganesyan G, Saha SK, Guo B, He JQ, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and independent antiviral response. Nature 2006;439(7073):208–211. Epub 2005/11/25. doi:10.1038/nature04374. PubMed PMID: 16306936
  • Saha SK, Pietras EM, He JQ, Kang JR, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 2006;25(14):3257–3263. Epub 2006/07/22. doi:10.1038/sj.emboj.7601220. PubMed PMID: 16858409; PubMed Central PMCID: PMCPMC1523175
  • Xu LG, Wang YY, Han KJ, Li LY, et al.. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular Cell 2005;19(6):727–740. Epub 2005/09/13. doi:10.1016/j.molcel.2005.08.014. PubMed PMID: 16153868
  • Balachandran S, Thomas E, Barber GN. A FADD-dependent innate immune mechanism in mammalian cells. Nature 2004;432(7015):401–405. Epub 2004/11/19. doi:10.1038/nature03124. PubMed PMID: 15549108
  • Kawai T, Takahashi K, Sato S, Coban C, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 2005;6(10):981–988. Epub 2005/08/30. doi:10.1038/ni1243. PubMed PMID: 16127453
  • Michallet MC, Meylan E, Ermolaeva MA, Vazquez J, et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 2008;28(5):651–661. Epub 2008/04/29. doi:10.1016/j.immuni.2008.03.013. PubMed PMID: 18439848
  • Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008;455(7213):674–678. Epub 2008/08/30. doi:10.1038/nature07317. PubMed PMID: 18724357; PubMed Central PMCID: PMCPMC2804933
  • Porubsky PR, Meneely KM, Scott EE. Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 2008;283(48):33698–33707. Epub 2008/09/27. doi:10.1074/jbc.M805999200. PubMed PMID: 18818195; PubMed Central PMCID: PMCPMC2586265
  • Pichlmair A, Schulz O, Tan CP, Naslund TI, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science (New York) 2006;314(5801):997–1001. Epub 2006/10/14. doi:10.1126/science.1132998. PubMed PMID: 17038589
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805–820. Epub 2010/03/23. doi:10.1016/j.cell.2010.01.022. PubMed PMID: 20303872
  • Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011;3(6):920–940. Epub 2011/10/14. doi:10.3390/v3060920. PubMed PMID: 21994762; PubMed Central PMCID: PMCPMC3186011
  • Takahasi K, Yoneyama M, Nishihori T, Hirai R, et al. Non-self-RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 2008;29(4):428–440. Epub 2008/02/05. doi:10.1016/j.molcel.2007.11.028. PubMed PMID: 18242112
  • Cui S, Eisenacher K, Kirchhofer A, Brzozka K, et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 2008;29(2):169–179. Epub 2008/02/05. doi:10.1016/j.molcel.2007.10.032. PubMed PMID: 18243112
  • Kowalinski E, Lunardi T, McCarthy AA, Louber J, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011;147(2):423–435. Epub 2011/10/18. doi:10.1016/j.cell.2011.09.039. PubMed PMID: 22000019
  • Luo D, Ding SC, Vela A, Kohlway A, et al.. Structural insights into RNA recognition by RIG-I. Cell 2011;147(2):409–422. Epub 2011/10/18. doi:10.1016/j.cell.2011.09.023. PubMed PMID: 22000018; PubMed Central PMCID: PMCPMC3222294
  • Jiang F, Ramanathan A, Miller MT, Tang GQ, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 2011;479(7373):423–427. Epub 2011/09/29. doi:10.1038/nature10537. PubMed PMID: 21947008; PubMed Central PMCID: PMCPMC3430514
  • Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, et al. The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure (London) 2010;18(8):1032–1043. Epub 2010/07/20. doi:10.1016/j.str.2010.05.007. PubMed PMID: 20637642; PubMed Central PMCID: PMCPMC2919622
  • Wang Y, Ludwig J, Schuberth C, Goldeck M, et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 2010;17(7):781–787. Epub 2010/06/29. doi:10.1038/nsmb.1863. PubMed PMID: 20581823; PubMed Central PMCID: PMCPMC3744876
  • Goubau D, Schlee M, Deddouche S, Pruijssers AJ, et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 2014;514(7522):372–375. Epub 2014/08/15. doi:10.1038/nature13590. PubMed PMID: 25119032; PubMed Central PMCID: PMCPMC4201573
  • Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med. 2008;205(7):1601–1610. Epub 2008/07/02. doi:10.1084/jem.20080091. PubMed PMID: 18591409; PubMed Central PMCID: PMCPMC2442638
  • Wu B, Peisley A, Richards C, Yao H, et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013;152(1–2):276–289. Epub 2013/01/01. doi:10.1016/j.cell.2012.11.048. PubMed PMID: 23273991
  • Pichlmair A, Schulz O, Tan CP, Rehwinkel J, et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 2009;83(20):10761–10769. Epub 2009/08/07. doi:10.1128/jvi.00770-09. PubMed PMID: 19656871; PubMed Central PMCID: PMCPMC2753146
  • Li X, Lu C, Stewart M, Xu H, et al. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch Biochem Biophys 2009;488(1):23–33. Epub 2009/06/18. doi:10.1016/j.abb.2009.06.008. PubMed PMID: 19531363
  • Kato H, Takeuchi O, Sato S, Yoneyama M, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006;441(7089):101–105. Epub 2006/04/21. doi:10.1038/nature04734. PubMed PMID: 16625202
  • Takahasi K, Kumeta H, Tsuduki N, Narita R, et al. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 2009;284(26):17465–17474. Epub 2009/04/22. doi:10.1074/jbc.M109.007179. PubMed PMID: 19380577; PubMed Central PMCID: PMCPMC2719387
  • Hruby DE, Roberts WK. Encephalomyocarditis virus RNA. III. Presence of a genome-associated protein. J Virol 1978;25(1):413–415. Epub 1978/01/01. PubMed PMID: 202751; PubMed Central PMCID: PMCPMC353939
  • Lee YF, Nomoto A, Detjen BM, Wimmer E. A protein covalently linked to poliovirus genome RNA. Proc Nat Acad Sci USA 1977;74(1):59–63. Epub 1977/01/01. PubMed PMID: 189316; PubMed Central PMCID: PMCPMC393196
  • Rohayem J, Robel I, Jager K, Scheffler U, et al.. Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J. Virol 2006;80(14):7060–7069. Epub 2006/07/01. doi:10.1128/jvi.02195-05. PubMed PMID: 16809311; PubMed Central PMCID: PMCPMC1489054
  • Cao X, Ding Q, Lu J, Tao W, et al. MDA5 plays a critical role in interferon response during hepatitis C virus infection. J Hepatol 2015;62(4):771–778. Epub 2014/12/03. doi:10.1016/j.jhep.2014.11.007. PubMed PMID: 25463548
  • Errett JS, Suthar MS, McMillan A, Diamond MS, et al.. The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J. Virol 2013;87(21):11416–11425. Epub 2013/08/24. doi:10.1128/jvi.01488-13. PubMed PMID: 23966395; PubMed Central PMCID: PMCPMC3807316
  • Loo YM, Fornek J, Crochet N, Bajwa G, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 2008;82(1):335–345. Epub 2007/10/19. doi:10.1128/jvi.01080-07. PubMed PMID: 17942531; PubMed Central PMCID: PMCPMC2224404
  • Feng Q, Hato SV, Langereis MA, Zoll J, et al. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep 2012;2(5):1187–1196. Epub 2012/11/13. doi:10.1016/j.celrep.2012.10.005. PubMed PMID: 23142662
  • Fredericksen BL, Keller BC, Fornek J, Katze MG, et al. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 2008;82(2):609–616. Epub 2007/11/06. doi:10.1128/jvi.01305-07. PubMed PMID: 17977974; PubMed Central PMCID: PMCPMC2224571
  • Bieger CD, Nierlich DP. Distribution of 5′-triphosphate termini on the mRNA of Escherichia coli. J Bacteriol 1989;171(1):141–147. Epub 1989/01/01. PubMed PMID: 2464575; PubMed Central PMCID: PMCPMC209566
  • Abdullah Z, Schlee M, Roth S, Mraheil MA, et al. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids. EMBO J 2012;31(21):4153–4164. Epub 2012/10/16. doi:10.1038/emboj.2012.274. PubMed PMID: 23064150; PubMed Central PMCID: PMCPMC3492734
  • Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, et al. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PloS One 2013;8(4):e62872. Epub 2013/05/09. doi:10.1371/journal.pone.0062872. PubMed PMID: 23653683; PubMed Central PMCID: PMCPMC3639904
  • Monroe KM, McWhirter SM, Vance RE. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathogens 2009;5(11):e1000665. Epub 2009/11/26. doi:10.1371/journal.ppat.1000665. PubMed PMID: 19936053; PubMed Central PMCID: PMCPMC2773930
  • Liehl P, Zuzarte-Luis V, Chan J, Zillinger T, et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat Med 2014;20(1):47–53. Epub 2013/12/24. doi:10.1038/nm.3424. PubMed PMID: 24362933; PubMed Central PMCID: PMCPMC4096771
  • Rad R, Ballhorn W, Voland P, Eisenacher K, et al. Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 2009;136(7):2247–2257. Epub 2009/03/11. doi:10.1053/j.gastro.2009.02.066. PubMed PMID: 19272387
  • Kanneganti TD, Body-Malapel M, Amer A, Park JH, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 2006;281(48):36560–36568. Epub 2006/09/30. doi:10.1074/jbc.M607594200. PubMed PMID: 17008311
  • Rajan JV, Warren SE, Miao EA, Aderem A. Activation of the NLRP3 inflammasome by intracellular poly I:C. FEBS Lett 2010;584(22):4627–4632. Epub 2010/10/26. doi:10.1016/j.febslet.2010.10.036. PubMed PMID: 20971108; PubMed Central PMCID: PMCPMC3005299
  • Mitoma H, Hanabuchi S, Kim T, Bao M, et al. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity 2013;39(1):123–135. Epub 2013/07/23. doi:10.1016/j.immuni.2013.07.001. PubMed PMID: 23871209; PubMed Central PMCID: PMCPMC3756931
  • Gack MU, Shin YC, Joo CH, Urano T, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007;446(7138):916–920. Epub 2007/03/30. doi:10.1038/nature05732. PubMed PMID: 17392790
  • Kuniyoshi K, Takeuchi O, Pandey S, Satoh T, et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc Nat Acad Sci USA 2014;111(15):5646–5651. Epub 2014/04/08. doi:10.1073/pnas.1401674111. PubMed PMID: 24706898; PubMed Central PMCID: PMCPMC3992669
  • Arimoto K, Takahashi H, Hishiki T, Konishi H, et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Nat Acad Sci USA 2007;104(18):7500–7505. Epub 2007/04/27. doi:10.1073/pnas.0611551104. PubMed PMID: 17460044; PubMed Central PMCID: PMCPMC1863485
  • Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 2008;9(9):930–936. Epub 2008/07/19. doi:10.1038/embor.2008.136. PubMed PMID: 18636086; PubMed Central PMCID: PMCPMC2529351
  • Wang L, Zhao W, Zhang M, Wang P, et al. USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J Virol 2013;87(8):4507–4515. Epub 2013/02/08. doi:10.1128/jvi.00031-13. PubMed PMID: 23388719; PubMed Central PMCID: PMCPMC3624380
  • Wies E, Wang MK, Maharaj NP, Chen K, et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 2013;38(3):437–449. Epub 2013/03/19. doi:10.1016/j.immuni.2012.11.018. PubMed PMID: 23499489; PubMed Central PMCID: PMCPMC3616631
  • Varzari A, Bruch K, Deyneko IV, Chan A, et al. Analysis of polymorphisms in RIG-I-like receptor genes in German multiple sclerosis patients. J Neuroimmunol 2014;277(1–2):140–144. Epub 2014/10/08. doi:10.1016/j.jneuroim.2014.09.015. PubMed PMID: 25288302
  • Dou Q, Peng Y, Zhou B, Lin J, et al. Association of innate immune IFIH1 gene polymorphisms with dilated cardiomyopathy in a Chinese population. Immunol Investigat 2014;43(7):627–637. Epub 2014/06/25. doi:10.3109/08820139.2014.909455. PubMed PMID: 24960033
  • Nejentsev S, Walker N, Riches D, Egholm M, et al.. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science (New York) 2009;324(5925):387–389. Epub 2009/03/07. doi:10.1126/science.1167728. PubMed PMID: 19264985; PubMed Central PMCID: PMCPMC2707798
  • Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet 2010;42(9):777–780. Epub 2010/08/10. doi:10.1038/ng.644. PubMed PMID: 20694011
  • Ferreira RC, Guo H, Coulson RM, Smyth DJ, et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 2014;63(7):2538–2550. Epub 2014/02/25. doi:10.2337/db13-1777. PubMed PMID: 24561305; PubMed Central PMCID: PMCPMC4066333
  • Zouk H, Marchand L, Li Q, Polychronakos C. Functional characterization of the Thr946Ala SNP at the type 1 diabetes IFIH1 locus. Autoimmunity 2014;47(1):40–45. Epub 2013/10/15. doi:10.3109/08916934.2013.832758. PubMed PMID: 24117221
  • Nakashima R, Imura Y, Kobayashi S, Yukawa N, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 2010;49(3):433–440. Epub 2009/12/18. doi:10.1093/rheumatology/kep375. PubMed PMID: 20015976
  • Sato S, Hoshino K, Satoh T, Fujita T, et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum 2009;60(7):2193–2200. Epub 2009/07/01. doi:10.1002/art.24621. PubMed PMID: 19565506
  • Funabiki M, Kato H, Miyachi Y, Toki H, et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 2014;40(2):199–212. Epub 2014/02/18. doi:10.1016/j.immuni.2013.12.014. PubMed PMID: 24530055
  • Oda H, Nakagawa K, Abe J, Awaya T, et al. Aicardi–Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet 2014;95(1):121–125. Epub 2014/07/06. doi:10.1016/j.ajhg.2014.06.007. PubMed PMID: 24995871; PubMed Central PMCID: PMCPMC4085581
  • Rice GI, del Toro Duany Y, Jenkinson EM, Forte GM, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 2014;46(5):503–509. Epub 2014/04/02. doi:10.1038/ng.2933. PubMed PMID: 24686847; PubMed Central PMCID: PMCPMC4004585
  • Van Eyck L, De Somer L, Pombal D, Bornschein S, et al. Brief report: IFIH1 mutation causes systemic lupus erythematosus with selective iga deficiency. Arthritis Rheum (Hoboken, NJ). 2015;67(6):1592–1597. Epub 2015/03/18. doi:10.1002/art.39110. PubMed PMID: 25777993
  • Rutsch F, MacDougall M, Lu C, Buers I, et al. A specific IFIH1 gain-of-function mutation causes Singleton–Merten syndrome. Am J Hum Genet 2015;96(2):275–282. Epub 2015/01/27. doi:10.1016/j.ajhg.2014.12.014. PubMed PMID: 25620204; PubMed Central PMCID: PMCPMC4320263
  • Jang MA, Kim EK, Now H, Nguyen NT, et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton–Merten syndrome. Am J Hum Genet 2015;96(2):266–274. Epub 2015/01/27. doi:10.1016/j.ajhg.2014.11.019. PubMed PMID: 25620203; PubMed Central PMCID: PMCPMC4320253
  • Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as non-self. Science (New York) 2015;349(6252):1115–1120. Epub 2015/08/15. doi:10.1126/science.aac7049. PubMed PMID: 26275108
  • Pestal K, Funk CC, Snyder JM, Price ND, et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 2015;43(5):933–944. Epub 2015/11/21. doi:10.1016/j.immuni.2015.11.001. PubMed PMID: 26588779; PubMed Central PMCID: PMCPMC4654992
  • Roth S, Rottach A, Lotz-Havla AS, Laux V, et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat Immunol 2014;15(6):538–545. Epub 2014/04/30. doi:10.1038/ni.2888. PubMed PMID: 24777530; PubMed Central PMCID: PMCPMC4309842
  • Poeck H, Bscheider M, Gross O, Finger K, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 2010;11(1):63–69. Epub 2009/11/17. doi:10.1038/ni.1824. PubMed PMID: 19915568
  • Ishii KJ, Coban C, Kato H, Takahashi K, et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006;7(1):40–48. Epub 2005/11/16. doi:10.1038/ni1282. PubMed PMID: 16286919
  • Wu J, Sun L, Chen X, Du F, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science (New York) 2013;339(6121):826–830. Epub 2012/12/22. doi:10.1126/science.1229963. PubMed PMID: 23258412; PubMed Central PMCID: PMCPMC3855410
  • Sun L, Wu J, Du F, Chen X, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (New York) 2013;339(6121):786–791. Epub 2012/12/22. doi:10.1126/science.1232458. PubMed PMID: 23258413; PubMed Central PMCID: PMCPMC3863629
  • Li XD, Wu J, Gao D, Wang H, et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science (New York) 2013;341(6152):1390–1394. Epub 2013/08/31. doi:10.1126/science.1244040. PubMed PMID: 23989956; PubMed Central PMCID: PMCPMC3863637
  • Luecke S, Paludan SR. Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine 2016. Epub 2016/10/19. doi:10.1016/j.cyto.2016.10.003. PubMed PMID: 27751656.
  • Gao P, Ascano M, Wu Y, Barchet W, et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013;153(5):1094–1107. Epub 2013/05/08. doi:10.1016/j.cell.2013.04.046. PubMed PMID: 23647843; PubMed Central PMCID: PMCPMC4382009
  • Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013;498(7454):332–337. Epub 2013/06/01. doi:10.1038/nature12305. PubMed PMID: 23722159; PubMed Central PMCID: PMCPMC3768140
  • Li X, Shu C, Yi G, Chaton CT, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 2013;39(6):1019–1031. Epub 2013/12/18. doi:10.1016/j.immuni.2013.10.019. PubMed PMID: 24332030; PubMed Central PMCID: PMCPMC3886715
  • Zhang X, Wu J, Du F, Xu H, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 2014;6(3):421–430. Epub 2014/01/28. doi:10.1016/j.celrep.2014.01.003. PubMed PMID: 24462292; PubMed Central PMCID: PMCPMC3969844
  • Kranzusch PJ, Lee AS, Berger JM, Doudna JA. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep 2013;3(5):1362–1368. Epub 2013/05/28. doi:10.1016/j.celrep.2013.05.008. PubMed PMID: 23707061; PubMed Central PMCID: PMCPMC3800681
  • Herzner AM, Hagmann CA, Goldeck M, Wolter S, et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol 2015;16(10):1025–1033. Epub 2015/09/08. doi:10.1038/ni.3267. PubMed PMID: 26343537; PubMed Central PMCID: PMCPMC4669199
  • Mankan AK, Schmidt T, Chauhan D, Goldeck M, et al. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis. EMBO J 2014;33(24):2937–2946. Epub 2014/11/27. doi:10.15252/embj.201488726. PubMed PMID: 25425575; PubMed Central PMCID: PMCPMC4282641
  • Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 2014;505(7485):691–695. Epub 2013/11/29. doi:10.1038/nature12862. PubMed PMID: 24284630; PubMed Central PMCID: PMCPMC4077721
  • Anghelina D, Lam E, Falck-Pedersen E. Diminished Innate antiviral response to adenovirus vectors in cgas/sting-deficient mice minimally impacts adaptive immunity. J Virol 2016;90(13):5915–5927. Epub 2016/04/15. doi:10.1128/jvi.00500-16. PubMed PMID: 27076643; PubMed Central PMCID: PMCPMC4907218
  • Wiens KE, Ernst JD. The Mechanism for Type I interferon induction by mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathogens 2016;12(8):e1005809. Epub 2016/08/09. doi:10.1371/journal.ppat.1005809. PubMed PMID: 27500737; PubMed Central PMCID: PMCPMC4976988
  • Andrade WA, Agarwal S, Mo S, Shaffer SA, et al. Type I interferon induction by Neisseria gonorrhoeae: dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. Cell Rep 2016;15(11):2438–2448. Epub 2016/06/07. doi:10.1016/j.celrep.2016.05.030. PubMed PMID: 27264171
  • Riteau N, Sher A. Chitosan: an adjuvant with an unanticipated STING. Immunity 2016;44(3):522–524. Epub 2016/03/18. doi:10.1016/j.immuni.2016.03.002. PubMed PMID: 26982361
  • Carroll EC, Jin L, Mori A, Munoz-Wolf N, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of Type I interferons. Immunity 2016;44(3):597–608. Epub 2016/03/06. doi:10.1016/j.immuni.2016.02.004. PubMed PMID: 26944200; PubMed Central PMCID: PMCPMC4852885
  • Gao D, Li T, Li XD, Chen X, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Nat Acad Sci USA 2015;112(42):E5699–E5705. Epub 2015/09/16. doi:10.1073/pnas.1516465112. PubMed PMID: 26371324; PubMed Central PMCID: PMCPMC4620884
  • Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 2016;44(4):739–754. Epub 2016/04/21. doi:10.1016/j.immuni.2016.04.002. PubMed PMID: 27096317
  • Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009;461(7265):788–792. Epub 2009/09/25. doi:10.1038/nature08476. PubMed PMID: 19776740; PubMed Central PMCID: PMCPMC4664154
  • Gall A, Treuting P, Elkon KB, Loo YM, et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 2012;36(1):120–131. Epub 2012/01/31. doi:10.1016/j.immuni.2011.11.018. PubMed PMID: 22284419; PubMed Central PMCID: PMCPMC3269499
  • Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 2013;14(1):19–26. Epub 2012/12/15. doi:10.1038/ni.2491. PubMed PMID: 23238760
  • Saitoh T, Fujita N, Hayashi T, Takahara K, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Nat Acad Sci USA 2009;106(49):20842–20846. Epub 2009/11/21. doi:10.1073/pnas.0911267106. PubMed PMID: 19926846; PubMed Central PMCID: PMCPMC2791563
  • Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 2013;155(3):688–698. Epub 2013/10/15. doi:10.1016/j.cell.2013.09.049. PubMed PMID: 24119841; PubMed Central PMCID: PMCPMC3881181
  • Zhang J, Hu MM, Wang YY, Shu HB. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem 2012;287(34):28646–286455. Epub 2012/06/30. doi:10.1074/jbc.M112.362608. PubMed PMID: 22745133; PubMed Central PMCID: PMCPMC3436586
  • Tsuchida T, Zou J, Saitoh T, Kumar H, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010;33(5):765–776. Epub 2010/11/16. doi:10.1016/j.immuni.2010.10.013. PubMed PMID: 21074459
  • Zhong B, Zhang L, Lei C, Li Y, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 2009;30(3):397–407. Epub 2009/03/17. doi:10.1016/j.immuni.2009.01.008. PubMed PMID: 19285439
  • Wang Y, Lian Q, Yang B, Yan S, et al. TRIM30alpha is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathogens 2015;11(6):e1005012. Epub 2015/06/27. doi:10.1371/journal.ppat.1005012. PubMed PMID: 26114947; PubMed Central PMCID: PMCPMC4482643
  • Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 2016;17(10):1142–1149. Epub 2016/09/21. doi:10.1038/ni.3558. PubMed PMID: 27648547
  • Seo GJ, Yang A, Tan B, Kim S, et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep 2015;13(2):440–449. Epub 2015/10/07. doi:10.1016/j.celrep.2015.09.007. PubMed PMID: 26440888; PubMed Central PMCID: PMCPMC4607670
  • Xia P, Ye B, Wang S, Zhu X, et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 2016;17(4):369–378. Epub 2016/02/02. doi:10.1038/ni.3356. PubMed PMID: 26829768
  • Takaoka A, Wang Z, Choi MK, Yanai H, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007;448(7152):501–505. Epub 2007/07/10. doi:10.1038/nature06013. PubMed PMID: 17618271
  • Ishii KJ, Kawagoe T, Koyama S, Matsui K, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 2008;451(7179):725–729. Epub 2008/02/08. doi:10.1038/nature06537. PubMed PMID: 18256672
  • Kim T, Pazhoor S, Bao M, Zhang Z, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Nat Acad Sci USA 2010;107(34):15181–1516. Epub 2010/08/11. doi:10.1073/pnas.1006539107. PubMed PMID: 20696886; PubMed Central PMCID: PMCPMC2930588
  • Kondo T, Kobayashi J, Saitoh T, Maruyama K, et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Nat Acad Sci USA 2013;110(8):2969–2974. Epub 2013/02/08. doi:10.1073/pnas.1222694110. PubMed PMID: 23388631; PubMed Central PMCID: PMCPMC3581880
  • Lu A, Magupalli VG, Ruan J, Yin Q, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014;156(6):1193–206. Epub 2014/03/19. doi:10.1016/j.cell.2014.02.008. PubMed PMID: 24630722; PubMed Central PMCID: PMCPMC4000066
  • Morrone SR, Matyszewski M, Yu X, Delannoy M, et al. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat. Commun 2015;6:7827. Epub 2015/07/23. doi:10.1038/ncomms8827. PubMed PMID: 26197926; PubMed Central PMCID: PMCPMC4525163
  • Jin T, Perry A, Jiang J, Smith P, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 2012;36(4):561–571. Epub 2012/04/10. doi:10.1016/j.immuni.2012.02.014. PubMed PMID: 22483801; PubMed Central PMCID: PMCPMC3334467
  • Morrone SR, Wang T, Constantoulakis LM, Hooy RM, et al. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Nat Acad Sci USA 2014;111(1):E62–E71. Epub 2013/12/25. doi:10.1073/pnas.1313577111. PubMed PMID: 24367117; PubMed Central PMCID: PMCPMC3890864
  • Horan KA, Hansen K, Jakobsen MR, Holm CK, et al. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol 2013;190(5):2311–2319. Epub 2013/01/25. doi:10.4049/jimmunol.1202749. PubMed PMID: 23345332; PubMed Central PMCID: PMCPMC3578088
  • Rathinam VA, Jiang Z, Waggoner SN, Sharma S, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010;11(5):395–402. Epub 2010/03/31. doi:10.1038/ni.1864. PubMed PMID: 20351692; PubMed Central PMCID: PMCPMC2887480
  • Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 2010;11(5):385–393. Epub 2010/03/31. doi:10.1038/ni.1859. PubMed PMID: 20351693; PubMed Central PMCID: PMCPMC3111085
  • Saiga H, Kitada S, Shimada Y, Kamiyama N, et al. Critical role of AIM2 in mycobacterium tuberculosis infection. Int Immunol 2012;24(10):637–644. Epub 2012/06/15. doi:10.1093/intimm/dxs062. PubMed PMID: 22695634
  • Gomes MT, Campos PC, Oliveira FS, Corsetti PP, et al. Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection. J Immunol 2013;190(7):3629–3638. Epub 2013/03/06. doi:10.4049/jimmunol.1202817. PubMed PMID: 23460746
  • Hanamsagar R, Aldrich A, Kielian T. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 2014;129(4):704–711. Epub 2014/02/04. doi:10.1111/jnc.12669. PubMed PMID: 24484406; PubMed Central PMCID: PMCPMC3999210
  • Storek KM, Gertsvolf NA, Ohlson MB, Monack DM. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J Immunol 2015;194(7):3236–3245. Epub 2015/02/25. doi:10.4049/jimmunol.1402764. PubMed PMID: 25710914; PubMed Central PMCID: PMCPMC4367159
  • Karki R, Man SM, Malireddi RK, Gurung P, et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 2015;17(3):357–368. Epub 2015/02/24. doi:10.1016/j.chom.2015.01.006. PubMed PMID: 25704009; PubMed Central PMCID: PMCPMC4359672
  • Kalantari P, DeOliveira RB, Chan J, Corbett Y, et al. Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep 2014;6(1):196–210. Epub 2014/01/07. doi:10.1016/j.celrep.2013.12.014. PubMed PMID: 24388751; PubMed Central PMCID: PMCPMC4105362
  • Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 2011;478(7370):515–518. Epub 2011/09/29. doi:10.1038/nature10429. PubMed PMID: 21947006; PubMed Central PMCID: PMCPMC3203314
  • West AP, Khoury-Hanold W, Staron M, Tal MC, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015;520(7548):553–557. Epub 2015/02/03. doi:10.1038/nature14156. PubMed PMID: 25642965; PubMed Central PMCID: PMCPMC4409480
  • Crow YJ. Type I interferonopathies: mendelian type I interferon up-regulation. Curr Opin Immunol 2015;32:7–12. Epub 2014/12/03. doi:10.1016/j.coi.2014.10.005. PubMed PMID: 25463593
  • Gray EE, Treuting PM, Woodward JJ, Stetson DB. Cutting edge: cGAS is required for lethal autoimmune disease in the trex1-deficient mouse model of aicardi-goutieres syndrome. J Immunol 2015;195(5):1939–1943. Epub 2015/08/01. doi:10.4049/jimmunol.1500969. PubMed PMID: 26223655; PubMed Central PMCID: PMCPMC4546858
  • Pokatayev V, Hasin N, Chon H, Cerritelli SM, et al. RNase H2 catalytic core Aicardi–Goutieres syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J Exp Med 2016;213(3):329–336. Epub 2016/02/18. doi:10.1084/jem.20151464. PubMed PMID: 26880576; PubMed Central PMCID: PMCPMC4813680
  • Mackenzie KJ, Carroll P, Lettice L, Tarnauskaite Z, et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 2016;35(8):831–844. Epub 2016/02/24. doi:10.15252/embj.201593339. PubMed PMID: 26903602; PubMed Central PMCID: PMCPMC4855687
  • Yang YG, Lindahl T, Barnes DE. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 2007;131(5):873–886. Epub 2007/11/30. doi:10.1016/j.cell.2007.10.017. PubMed PMID: 18045533
  • Crow YJ, Rehwinkel J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 2009;18(R2):R130–6. Epub 2009/10/08. doi:10.1093/hmg/ddp293. PubMed PMID: 19808788; PubMed Central PMCID: PMCPMC2758706
  • Bursztejn AC, Briggs TA, del Toro Duany Y, Anderson BH, et al. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: overlap between Aicardi–Goutieres and Singleton–Merten syndromes. Br J Dermatol 2015;173(6):1505–1513. Epub 2015/08/19. doi:10.1111/bjd.14073. PubMed PMID: 26284909; PubMed Central PMCID: PMCPMC4745891
  • Crow YJ, Massey RF, Innes JR, Pairaudeau PW, et al. Congenital glaucoma and brain stem atrophy as features of Aicardi-Goutieres syndrome. Am J Med Genet A 2004;129a(3):303–307. Epub 2004/08/25. doi:10.1002/ajmg.a.30250. PubMed PMID: 15326633
  • Dale RC, Tang SP, Heckmatt JZ, Tatnall FM. Familial systemic lupus erythematosus and congenital infection-like syndrome. Neuropediatrics 2000;31(3):155–158. Epub 2000/08/30. doi:10.1055/s-2000-7492. PubMed PMID: 10963105
  • Liu Y, Jesus AA, Marrero B, Yang D, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014;371(6):507–518. Epub 2014/07/17. doi:10.1056/NEJMoa1312625. PubMed PMID: 25029335; PubMed Central PMCID: PMCPMC4174543
  • Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair 2004;3(8–9):1219–1225. Epub 2004/07/29. doi:10.1016/j.dnarep.2004.04.009. PubMed PMID: 15279810
  • Woo SR, Fuertes MB, Corrales L, Spranger S, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014;41(5):830–842. Epub 2014/12/18. doi:10.1016/j.immuni.2014.10.017. PubMed PMID: 25517615; PubMed Central PMCID: PMCPMC4384884
  • Deng L, Liang H, Xu M, Yang X, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014;41(5):843–852. Epub 2014/12/18. doi:10.1016/j.immuni.2014.10.019. PubMed PMID: 25517616; PubMed Central PMCID: PMCPMC5155593
  • Demaria O, De Gassart A, Coso S, Gestermann N, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Nat Acad Sci USA 2015;112(50):15408–15413. Epub 2015/11/27. doi:10.1073/pnas.1512832112. PubMed PMID: 26607445; PubMed Central PMCID: PMCPMC4687570
  • Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J Immunol 2017. Epub 2017/01/11. doi:10.4049/jimmunol.1601694. PubMed PMID: 28069806

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.