357
Views
10
CrossRef citations to date
0
Altmetric
Reviews

MicroRNA mediated regulation of immunity against gram-negative bacteria

, , &
Pages 287-299 | Received 06 Mar 2017, Accepted 23 Jun 2017, Published online: 11 Aug 2017

References

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843–854.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75(5):855–862.
  • Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science 2001;294(5543):853–858.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215–233.
  • Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 2007;104(23):9667–9672.
  • Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA 2010;16(12):2493–2502.
  • Lee I, Ajay SS, Yook JI, et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 2009;19(7):1175–1183.
  • Tsai NP, Lin YL, Wei LN. MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 2009;424(3):411–418.
  • Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2012;3(3): 311–330.
  • Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 2016;16(5):279–294.
  • Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006;108(12):3646–3653.
  • Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006;125(5):887–901.
  • Faller M, Toso D, Matsunaga M, et al. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA 2010;16(8):1570–1583.
  • Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432(7014):231235.
  • Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432(7014):235–240.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014;15(8):509–524.
  • Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23(20):4051–4060.
  • Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002;16(6):720–728.
  • Brennecke J, Stark A, Russell RB, et al. Principles of microRNA-target recognition. PLoS Biol 2005;3(3):e85.
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15–20.
  • Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005;19(4):489–501.
  • Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet 2003;35(3):215–217.
  • Muljo SA, Ansel KM, Kanellopoulou C, et al. Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005;202(2):261–269.
  • Sonkoly E, Pivarcsi A. microRNAs in inflammation. Int Rev Immunol 2009;28(6):535–561.
  • Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 2009;13(1):24–38.
  • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32(5):593–604.
  • Netea MG, Latz E, Mills KH, et al. Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol 2015;16(7):675–679.
  • Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe 2011;9(5):355–361.
  • Saeed S, Quintin J, Kerstens HH, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014;345(6204):1251086.
  • Blok BA, Arts RJ, van Crevel R, et al. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 2015;98(3):347–356.
  • Rivera A, Siracusa MC, Yap GS, et al. Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol 2016;17(4):356–363.
  • Maldonado RF, Sa-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016;40(4):480–493.
  • Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 2014;83:99–128.
  • Rhee SH. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest Res 2014;12(2):90–95.
  • Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013;11(7):467–481.
  • Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol 2004;4(12):953–964.
  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1(2):135–145.
  • Molteni M, Gemma S, Rossetti C. The Role of Toll-like receptor 4 in infectious and noninfectious inflammation. Mediators Inflamm 2016;2016:6978936.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22(2):240–273.
  • Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 2016;4(6):MCHD-0040.
  • Shi L, Xin Q, Chai R, et al. Ectopic expressed miR-203 contributes to chronic obstructive pulmonary disease via targeting TAK1 and PIK3CA. Int J Clin Exp Pathol 2015;8(9):10662–10670.
  • Xu Z, Dong D, Chen X, et al. MicroRNA-381 Negatively Regulates TLR4 signaling in A549 Cells in response to LPS stimulation. Biomed Res Int 2015;2015:849475.
  • Zhang K, Song F, Lu X, et al. MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-kappaB1 (p50). Biosci Rep 2017;37(1):BSR20160239.
  • Tang R, Pei L, Bai T, et al. Down-regulation of microRNA-126-5p contributes to overexpression of VEGFA in lipopolysaccharide-induced acute lung injury. Biotechnol Lett 2016;38(8):1277–1284.
  • Li W, Qiu X, Jiang H, et al. Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed Pharmacother 2016;84:1375–1382.
  • Ye F, Tang C, Shi W, et al. A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide. Int J Cancer 2015;136(9):21202131.
  • Miao L, Liu K, Xie M, et al. miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother 2014;63(7):699–711.
  • Zhao GJ, Mo ZC, Tang SL, et al. Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis 2014;235(2):519–525.
  • Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006;103(33):12481–12486.
  • Liu M, John CM, Jarvis GA. Induction of endotoxin tolerance by pathogenic Neisseria is correlated with the inflammatory potential of lipooligosaccharides and regulated by microRNA-146a. J Immunol 2014;192(4):1768–1777.
  • Kalantari P, Harandi OF, Agarwal S, et al. miR-718 represses Pro-inflammatory cytokine production through targeting PTEN. J Biol Chem 2017;292(14):5634--5644.
  • Tili E, Croce CM, Michaille JJ. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 2009;28(5):264–284.
  • Lu LF, Gasteiger G, Yu IS, et al. A single miRNA-mRNA interaction affects the immune response in a context- and Cell-type-specific manner. Immunity 2015;43(1):52–64.
  • O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011;11(3):163–175.
  • Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 2013;41(1):542553.
  • Zhao XD, Lu YY, Guo H, et al. MicroRNA-7/NF-kappaB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol 2015;210(4):613–627.
  • Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 2011;8(5):388–403.
  • Bai Y, Qian C, Qian L, et al. Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J Immunol 2012;188(11):52935302.
  • Koch M, Mollenkopf HJ, Klemm U, et al. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci U S A 2012;109(19):E1153–E1162.
  • Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 2011;117(16):4293–4303.
  • Blander JM, Sander LE. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 2012;12(3):215–225.
  • Bosio CM, Bielefeldt-Ohmann H, Belisle JT. Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol 2007;178(7):45384547.
  • Jones BD, Faron M, Rasmussen JA, et al. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014;4:32.
  • Bandyopadhyay S, Long ME, Allen LA. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 2014;9(10):e109525.
  • Cremer TJ, Ravneberg DH, Clay CD, et al. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 2009;4(12):e8508.
  • O'Connell RM, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 2009;106(17):7113–7118.
  • Arkatkar T, Gupta R, Li W, et al. Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection. Immunology 2015;145(4):534–542.
  • Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002;17(3):375–387.
  • Andrew DW, Cochrane M, Schripsema JH, et al. The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization. PLoS One 2013;8(9):e76664.
  • Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine 2013;64(2):477–485.
  • Barnett RE, Keskey RC, Rao JM, et al. Poor outcome in bacterial peritonitis is associated with dysregulated microRNAs and an increased inflammatory response. Surgery 2013;154(3):521–527.
  • Kanaan Z, Barnett R, Gardner S, et al. Differential microRNA (miRNA) expression could explain microbial tolerance in a novel chronic peritonitis model. Innate Immun 2013;19(2):203–212.
  • Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009;30(10):475–487.
  • Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007;447(7147):972–978.
  • Gao C, Zhang Z, Liu W, et al. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 2010;116(1):41–9.
  • Schulte LN, Eulalio A, Mollenkopf HJ, et al. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 2011;30(10):1977–1989.
  • Teng GG, Wang WH, Dai Y, et al. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS One 2013;8(2):e56709.
  • Lochhead RB, Ma Y, Zachary JF, et al. MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog 2014;10(6):e1004212.
  • Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol 2017;139(2):519--532.
  • Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 2014;192(3):1120–1129.
  • Roy S, Elgharably H, Sinha M, et al. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol 2014;233(4):331–343.
  • Mantegazza AR, Magalhaes JG, Amigorena S, et al. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2013;14(2):135–152.
  • Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002;2(5):309–322.
  • Jeker LT, Bluestone JA. MicroRNA regulation of T-cell differentiation and function. Immunol Rev 2013;253(1):65–81.
  • Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev 2013;252(1):104–115.
  • Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol 2014;35(2):61–68.
  • Schwartz RH. T cell anergy. Annu Rev Immunol 2003;21:305–334.
  • Marcais A, Blevins R, Graumann J, et al. microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. J Exp Med 2014;211(11):2281–2295.
  • Merkenschlager M, Marcais A. microRNAs calibrate T cell responses by regulating mTOR. Oncotarget 2015;6(33):34059–34060.
  • Zhou X, Li L, Su J, et al. Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. PLoS One 2014;9(7):e101457.
  • Kuwahara M, Yamashita M, Shinoda K, et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 2012;13(8):778–786.
  • Li N, Xie C, Lu NH. Transforming growth factor-beta: an important mediator in Helicobacter pylori-associated pathogenesis. Front Cell Infect Microbiol 2015;5:77.
  • Kivrak Salim D, Sahin M, Koksoy S, et al. Local Immune Response in Helicobacter pylori Infection. Medicine (Baltimore) 2016;95(20):e3713.
  • Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007;316(5824):608–611.
  • Oertli M, Engler DB, Kohler E, et al. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. J Immunol 2011;187(7):3578–3586.
  • Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007;27(6):847859.
  • Tang T, Wong HK, Gu W, et al. MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol 2013;129(1):199–208.
  • Gupta R, Arkatkar T, Keck J, et al. Antigen specific immune response in Chlamydia muridarum genital infection is dependent on murine microRNAs-155 and −182. Oncotarget 2016;7(40):64726–64742.
  • Kanellopoulou C, Muljo SA. Fine-tuning Th17 cells: To Be or not to Be pathogenic? Immunity 2016;44(6):1241–1243.
  • Ichiyama K, Gonzalez-Martin A, Kim BS, et al. The MicroRNA-183-96-182 cluster promotes T Helper 17 cell pathogenicity by negatively regulating transcription factor foxo1 expression. Immunity 2016;44(6):1284–1298.
  • Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 2011;12(9):861–869.
  • Aalaei-Andabili SH, Rezaei N. MicroRNAs (MiRs) precisely regulate immune system development and function in immunosenescence process. Int Rev Immunol 2016;35(1):57–66.
  • Fitzgerald JB, George J, Christenson LK. Non-coding RNA in ovarian development and disease. Adv Exp Med Biol 2016;886:79–93.
  • Navakanitworakul R, Hung WT, Gunewardena S, et al. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep 2016;6:25486.
  • Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell 2017;8(5):328--348.
  • Staedel C, Darfeuille F. MicroRNAs and bacterial infection. Cell Microbiol 2013;15(9):1496–1507.
  • Eulalio A, Schulte L, Vogel J. The mammalian microRNA response to bacterial infections. RNA Biol 2012;9(6):742–750.
  • Maudet C, Mano M, Eulalio A. MicroRNAs in the interaction between host and bacterial pathogens. FEBS Lett 2014;588(22):4140–4147.
  • Igietseme JU, Omosun Y, Stuchlik O, et al. Role of epithelial-mesenchyme transition in Chlamydia pathogenesis. PLoS One 2015;10(12):e0145198.
  • Yeruva L, Pouncey DL, Eledge MR, et al. MicroRNAs Modulate pathogenesis resulting from chlamydial infection in mice. Infect Immun 2017;85(1).
  • Peng W, Lu DQ, Li GF, et al. Two distinct interferon-gamma genes in Tetraodon nigroviridis: Functional analysis during Vibrio parahaemolyticus infection. Mol Immunol 2016;70:34–46.
  • Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol 2017;139(2):519–532.
  • Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009;10(8):578–585.
  • Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013;12(11):847–865.
  • Baltimore D, Boldin M Taganov K. Modulating immune system development and function through microrna mir-146. 2009; Google Patents.
  • Meyers R, Bettencourt B, Wong JE, et al. Viral attenuation and vaccine production. 2013; Google Patents.
  • Nair V, Lambeth L. Vector 2009; Google Patents.
  • Tenoever B. Live attenuated influenza virus vaccines comprising microrna response elements. 2012; Google Patents.
  • Guo J, Lv J, Liu M, et al. MiR-346 Up-regulates argonaute 2 (AGO2) protein expression to augment the activity of other MiRNAs and contributes to cervical cancer cell malignancy. J Biol Chem 2015.
  • Sharma G, Dua P, Agarwal SM. A comprehensive review of dysregulated miRNAs involved in cervical cancer. Curr Genomics 2014;15(4):310–323.
  • van den Akker EK, Dor FJ, JN IJ, et al. MicroRNAs in kidney transplantation: Living up to their expectations? J Transplant 2015;2015:354826.
  • Raschzok N, Sallmon H, Pratschke J, et al. MicroRNAs in liver tissue engineering - New promises for failing organs. Adv Drug Deliv Rev 2015;88:67–77.
  • Fishman JA. What's new and what's hot? basic science at the american transplant congress 2012. Am J Transplant 2013;13(2):275–280.
  • Vela EM, Kasoji MD, Wendling MQ, et al. MicroRNA expression in mice infected with seasonal H1N1, swine H1N1 or highly pathogenic H5N1. J Med Microbiol 2014;63(Pt 9):1131–1142.
  • Perez JT, Pham AM, Lorini MH, et al. MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 2009;27(6):572–576.
  • Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368(18):1685–1694.
  • Thibault PA, Wilson JA. Targeting miRNAs to treat Hepatitis C Virus infections and liver pathology: Inhibiting the virus and altering the host. Pharmacol Res 2013;75:48–59.
  • Xiong Y, Chen S, Liu L, et al. Increased serum microRNA-155 level associated with nonresponsiveness to hepatitis B vaccine. Clin Vaccine Immunol 2013;20(7):1089–1091.
  • Zhang B, Liu Y, Wang X, et al. A novel recombinant Salmonella vaccine enhances the innate immunity of NK cells against acute myeloid leukaemia cells Kasumi-1 in vitro. Cell Biol Int 2013;37(12):1320–1329.
  • Singh Y, Kaul V, Mehra A, et al. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J Biol Chem 2013;288(7):5056–5061.
  • Koch M, Meyer TF Moss SF. Inflammation, immunity, vaccines for Helicobacter pylori infection. Helicobacter 2013;18 Suppl 1:18–23.
  • Lauring AS, Jones JO, Andino R. Rationalizing the development of live attenuated virus vaccines. Nat Biotechnol 2010;28(6):573–579.
  • Holmstrom K, Pedersen AW, Claesson MH, et al. Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy. Hum Immunol 2010;71(1):67–73.
  • Bela-ong DB, Schyth BD, Zou J, et al. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus. Vaccine 2015;33(28):3215–3222.
  • Hentzschel F, Hammerschmidt-Kamper C, Borner K, et al. AAV8-mediated in vivo overexpression of miR-155 enhances the protective capacity of genetically attenuated malarial parasites. Mol Ther 2014;22(12):2130–2141.
  • Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137(6):1005–1017.
  • Esposito CL, Cerchia L, Catuogno S, et al. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther 2014;22(6):1151–1163.
  • Liang X, Liu Y, Mei S, et al. MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38. PLoS One 2015;10(3):e0121510.
  • Kouri FM, Hurley LA, Daniel WL, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015;29(7):732–745.
  • de Candia P, Torri A, Pagani M, et al. Serum microRNAs as Biomarkers of human lymphocyte activation in health and Disease. Front Immunol 2014;5:43.
  • Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 2012;3:120.
  • Misso G, Di Martino MT, De Rosa G, et al. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 2014;3:e194.
  • Lieberman J, Sarnow P. Micromanaging hepatitis C virus. N Engl J Med 2013;368(18):1741–1743.
  • Jopling CL, Norman KL, Sarnow P. Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol 2006;71:369–376.
  • Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005;309(5740):1577–1581.
  • Jain CK, Gupta A, Dogra N, et al. MicroRNA therapeutics: the emerging anticancer strategies. Recent Pat Anticancer Drug Discov 2014;9(3):286–296.
  • Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 2014;13(8):622–638.
  • Fellmann C, Lowe SW. Stable RNA interference rules for silencing. Nat Cell Biol 2014;16(1):10–18.
  • Xu F, Liu G, Liu Q, et al. RNA interference of influenza A virus replication by microRNA-adapted lentiviral loop short hairpin RNA. J Gen Virol 2015;96(10):2971–2981.
  • Kasinski AL, Kelnar K, Stahlhut C, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 2015;34(27):3547–3555.
  • Cheng SF, Li L, Wang LM. miR-155 and miR-146b negatively regulates IL6 in Helicobacter pylori (cagA+) infected gastroduodenal ulcer. Eur Rev Med Pharmacol Sci 2015;19(4):607–613.
  • Craig VJ, Cogliatti SB, Rehrauer H, et al. Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives Helicobacter-associated gastric lymphomagenesis. Cancer Res 2011;71(10):3616–3624.
  • Derrick T, Last AR, Burr SE, et al. Inverse relationship between microRNA-155 and −184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection. BMC Infect Dis 2016;16:60.
  • Derrick T, Roberts C, Rajasekhar M, et al. Conjunctival MicroRNA expression in inflammatory trachomatous scarring. PLoS Negl Trop Dis 2013;7(3):e2117.
  • Fassi Fehri L, Koch M, Belogolova E, et al. Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS One 2010;5(3):e9500.
  • Feng Y, Wang L, Zeng J, et al. FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370. Mol Cancer Res 2013;11(8):834–844.
  • Gupta R, Arkatkar T, Yu JJ, et al. Chlamydia muridarum infection associated host MicroRNAs in the murine genital tract and contribution to generation of host immune response. Am J Reprod Immunol 2015;73(2):126–140.
  • Hishida A, Matsuo K, Goto Y, et al. Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. Dig Dis Sci 2011;56(4):1131–1137.
  • Huang WT, Kuo SH, Cheng AL, et al. Inhibition of ZEB1 by miR-200 characterizes Helicobacter pylori-positive gastric diffuse large B-cell lymphoma with a less aggressive behavior. Mod Pathol 2014;27(8):1116–1125.
  • Ishimoto T, Izumi D, Watanabe M, et al. Chronic inflammation with Helicobacter pylori infection is implicated in CD44 overexpression through miR-328 suppression in the gastric mucosa. J Gastroenterol 2015;50(7):751–757.
  • Kaakoush NO, Deshpande NP, Man SM, et al. Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immun 2015;83(2):832–845.
  • Kiga K, Mimuro H, Suzuki M, et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat Commun 2014;5:4497.
  • Lochhead RB, Zachary JF, Dalla Rosa L, et al. Antagonistic Interplay between MicroRNA-155 and IL-10 during lyme carditis and arthritis. PLoS One 2015;10(8):e0135142.
  • Lv X, Song H, Yang J, et al. A multi-epitope vaccine CTB-UE relieves Helicobacter pylori-induced gastric inflammatory reaction via up-regulating microRNA-155 to inhibit Th17 response in C57/BL6 mice model. Hum Vaccin Immunother 2014;10(12):3561–3569.
  • Lv X, Yang J, Song H, et al. Therapeutic efficacy of the multi-epitope vaccine CTB-UE against Helicobacter pylori infection in a Mongolian gerbil model and its microRNA-155-associated immuno-protective mechanism. Vaccine 2014;32(41):53435352.
  • Nayar G, Gauna A, Chukkapalli S, et al. Polymicrobial infection alter inflammatory microRNA in rat salivary glands during periodontal disease. Anaerobe 2016;38:70–75.
  • Nosho K, Igarashi H, Nojima M, et al. Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis 2014;35(4):776–783.
  • Ordas A, Kanwal Z, Lindenberg V, et al. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC Genomics 2013;14:696.
  • Qi Y, Cui L, Ge Y, et al. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection. BMC Infect Dis 2012;12:384.
  • Qi Y, Zhu Z, Shi Z, et al. Dysregulated microRNA expression in serum of non-vaccinated children with varicella. Viruses 2014;6(4):1823–1836.
  • Saito Y, Suzuki H, Tsugawa H, et al. Overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS One 2012;7(11):e47396.
  • Shen J, Xiao Z, Wu WK, et al. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res 2015;75(4):754–765.
  • Suzuki R, Yamamoto E, Nojima M, et al. Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk. J Gastroenterol 2014;49(7):1135–1144.
  • Uribe JH, Collado-Romero M, Zaldivar-Lopez S, et al. Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum. Vet Res 2016;47:11.
  • Voinnet O. Micro-balancing innate immunity to Salmonella. EMBO J 2011;30(10):1877–1879.
  • Wang W, Stassen FR, Surcel HM, et al. Analyses of polymorphisms in the inflammasome-associated NLRP3 and miRNA-146A genes in the susceptibility to and tubal pathology of Chlamydia trachomatis infection. Drugs Today (Barc) 2009;45 Suppl B:95–103.
  • Wu K, Yang L, Li C, et al. MicroRNA-146a enhances Helicobacter pylori induced cell apoptosis in human gastric cancer epithelial cells. Asian Pac J Cancer Prev 2014;15(14):5583–5586.
  • Wu K, Zhu C, Yao Y, et al. MicroRNA-155-enhanced autophagy in human gastric epithelial cell in response to Helicobacter pylori. Saudi J Gastroenterol 2016;22(1):30–36.
  • Xiao B, Liu Z, Li BS, et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 2009;200(6):916–925.
  • Xiao B, Zhu ED, Li N, et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol Rep 2012;27(2):559–566.
  • Yan H, Chen Y, Zhou S, et al. Expression profile analysis of miR-221 and miR-222 in different tissues and head kidney cells of Cynoglossus semilaevis, following pathogen infection. Mar Biotechnol (NY) 2016;18(1):37–48.
  • Yao M, Gao W, Tao H, et al. Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis. Mol Genet Genomics 2016;291(2):789–799.
  • Adams BD, Parsons C, Walker L, et al. Targeting noncoding RNAs in disease. J Clin Invest 2017;127(3):761–771.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017;16(3):203–222.
  • Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and Human Diseases: A Review. J Cell Physiol 2017. doi:10.1002/jcp.25854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.