1,846
Views
6
CrossRef citations to date
0
Altmetric
Reviews

CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ

&
Pages 57-68 | Received 23 Jun 2017, Accepted 17 Jul 2017, Published online: 29 Sep 2017

References

  • Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948;29(1):58–69.
  • Wekerle H. Immune protection of the brain—efficient and delicate. J Infect Dis 2002;186(Suppl 2):s140–s145.
  • Ehrlich P. Das sauerstufbudurfnis des organismus. Eine Farbenanalytische Studie. Berlin, Germany: Hirschwald; 1885.
  • Goldmann EE. Vitalfarbung am zentralnervensystem. Abhandl Konigl preuss Akad Wiss. 1913;1:1–60
  • Louveau A, Harris TH, Kipnis J. Revisiting the concept of CNS immune privilege. Trends Immunol 2015;36(10):569–577.
  • Giunti D, Borsellino G, Benelli R, et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J. Leukoc Biol 2003;73:584–590.
  • Xiao L, Saiki C, Ide R. Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regen Res 2014;9(13):1253–1260.
  • Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12(9):623–635.
  • Weller RO, Galea I, Carare RO, et al. Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiol Off J Int Soc Pathophysiol/ISP 2010;17:295–306
  • Kaplan HJ, Niederkorn JY. Regional immunity and immuneprivilege. Chem Immunol Allergy 2007;92:11–26,
  • Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 2013;8(4):840–856.
  • Szczepanik M. Mechanisms of immunological tolerance to the antigens of the central nervous system. Skin-induced tolerance as a new therapeutic concept. J Physiol Pharmacol 2011;62(2):159–165.
  • Choi C, Benveniste EN. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Brain Res Rev 2004;44: 65–81.
  • Walsh K, Sata M. Is extravasation a Fas-regulated process? Mol Med Today 1999;5:61–67
  • F1 S, D I, Basso C. T-cell trafficking in the central nervous system. Immunol Rev 2012;248(1):216–227.
  • Wekerle H. Immune protection of the brain—efficient and delicate. JID 2002;186(Suppl 2):S140–S144.
  • Stüve O, Marra CM, Bar-Or A et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 2006;63:1383–1387.
  • Stüve O, Marra CM, Jerome KR et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol 2006;59:743–747.
  • Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 2011;8(1):4.
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005;23:683–747
  • Laman JD, Weller RO. Editorial: route by which monocytes leave the brain is revealed. J Leukoc Biol 2012;92:6–9.
  • Louveau A, Smirnov I, Keyes TJ et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 16;523(7560):337–341
  • Aspelund A, Antila S, Proulx ST et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212(7):991–999.
  • Wagner JA, Varga K, Jarai Z, Kunos G. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension 1999;33(1 Pt 2):429–434.
  • Ransohoff RM, Brown MA. Innate immunity in the central nervous system J Clin Invest 2012;122(4):1164–1171.
  • Kioussis D, Pachnis V. Immunity essay immune and nervous systems: more than just a superficial similarity? Immunity 2009;31(5):705–710.
  • Wilson EH, Weninger W, AC Hunter. Trafficking of immune cells in the central nervous system. J Clin Invest 2010;120(5):1368–1379.
  • Ginhoux F, Lim S, et al. Origin and differentiation of microglia. Front Cell Neurosci 2013;17(7):45.
  • Tambuyzer BR, Ponsaerts P, Nouwen E. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2009;85(3):352–370
  • Ginhoux F, Greter M, Leboeuf M et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845.
  • Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 1993;7(1):9–18.
  • Babcock AA, Kuziel WA, Rivest S, et al. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 2003;23:7922–7930.
  • Si Q, Cosenza M, Zhao ML, et al. GM-CSF and M-CSF modulate beta-chemokine and HIV-1 expression in microglia. Glia 2002;39:174–183.
  • Takami S, Nishikawa H, Minami M, et al. Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett 1997;227:173–176
  • Tian L, Ma L, Kaarela T, et al. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation 2012;2(9):155
  • Yang I, Han SJ, Kaur G, et al. The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 2010;17(1):6–10
  • Lukens JR, Barr MJ, Chaplin DD et al. Inflammasome-derived IL-1β regulates the production of GM-CSF by CD4 (+) T cells and γδ T cells. J Immunol 2012;188(7):3107–3115
  • Cervantes-Barragán L, Firner S, Bechmann I, et al. Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection. J Immunol 2012;188(8):3678–3685
  • Perry VH. A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 1998;90:113–121.
  • Carson MJ, Doose JM, Melchior B et al. CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48–65.
  • Han S, Lin YC, Wu T, et al. Comprehensive immunophenotyping of cerebrospinal fluid cells in patients with neuroimmunological diseases. J Immunol 2014;192:2551–2563.
  • Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 2006;113(4): 477–485.
  • Engelhardt B. T cell migration into the central nervous system during health and disease: Different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 2010;(2):79–93
  • Shrestha R, Millington O, Brewer J et al. Is central nervous system an immune-privileged site? J Neurosci Res 1991;28(2):254–260
  • Engelhardt B, Wolburg H. Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 2004;34(11):2955–2963
  • Sallusto F, Impellizzieri D, Basso C et al. T-cell trafficking in the central nervous system. Immunol Rev 2012;248:216–227.
  • Neumann, H. Control of glial immune function by neurons. Glia 2001;36:191–199
  • Anandasabapathy N, Victora GD, Meredith M, et al. Flt3 L controls the development of radiosensitive dendritic, cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 2011;208(8):1695–1705
  • D' Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, et al. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012;124(5):599–614
  • Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–1164
  • Lowther DE, Hafler DA. Regulatory T cells in the central nervous system, immunological reviews. Immunol Rev 2012;248(1):156–169
  • Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 2008;4(7):384–398
  • Kuhlmann T, Bitsch A, Stadelmann C, et al. Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen. J Neurosci 2001;21:3401–3408
  • Kumar M, Putzki N, Limmroth V, et al. CD4 + CD25 + FoxP3 + T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J Neuroimmunol 2006;180:178–184,
  • De Andrés C1, Aristimuño C, de Las Heras V, et al. Interferon beta-1 a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J Neuroimmunol 2007;182:204–211
  • Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005;81:45–52.
  • Venken K1, Hellings N, Hensen K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4 + CD25 + regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006;83:1432–1446
  • Bailey SL, Schreiner B, McMahon EJ, et al. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 2007;8(2):172–180
  • Deshpande P, King IL, Segal BM. Cutting edge: CNS CD11 c+ cells from mice with encephalomyelitis polarize Th17 cells and support CD25+ CD4+ T cell-mediated immunosuppression, suggesting dual roles in the disease process. J Immunol 2007;178(11):6695–6699
  • Olivares-Villagómez D, Wang Y, Lafaille JJ. Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998;188(10):1883–1894
  • Zhang H, Podojil JR, Chang J, et al. TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis. J Immunol 2010;184(12):6629–6636
  • Burns J, Bartholomew B, Lobo S. Isolation of myelin basic protein-specific T cells predominantly from the memory T-cell compartment in multiple sclerosis. Ann Neurol 1999;45(1):33–39
  • Sinha S, Itani FR, Karandikar NJ. Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Res 2014;59(1–3):254–265
  • Brimnes J, Allez M, Dotan I, et al. Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol 2005;174(9):5814–5822
  • Jiang H, Canfield SM, Gallagher MP, et al. HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J Clin Invest 2010;120(10):3641–3650.
  • Carvalheiro H, da Silva JA, Souto-Carneiro MM. Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun Rev 2013;12(3):401–409.
  • Tang X, Maricic I, Purohit N, et al. Regulation of immunity by a novel population of Qa-1-restricted CD8alphaalpha + TCRalphabeta + T cells. J Immunol 2006;177(11):7645–7655
  • Schreiner B, Heppner FL, Becher B et al. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 2009;31(4):479–495
  • London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 2013;7:34
  • Katsumoto A, Lu H, Miranda AS, et al. Ontogeny and functions of central nervous system macrophages. J Immunol 2014;193(6):2615–2621
  • Butovsky O, Kunis G, Koronyo-Hamaoui M, et al. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. M Eur J Neurosci 2007;26(2):413–416
  • Town T, Laouar Y, Pittenger C, et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008;14(6):681–687
  • Town T, Tan J, Flavell RA, Mullan M. T-cells in Alzheimer's disease. Neuromolecular Med 2005;7:255–264
  • Wisniewski HM, Barcikowska M, Kida E. Phagocytosis of beta/A4 amyloid fibrils of the neuritic neocortical plaques. Acta Neuropathol 1991;81:588–590
  • Wyss-Coray T, Masliah E, Mallory M, et al. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease. Nature 1997;389:603–606.
  • Wyss-Coray T, Lin C, Yan F, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 2001;7:612–618
  • Cardona AE, Pioro EP, Sasse ME, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006;9(7):917–924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.