537
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Innate immune cells for immunotherapy of autoimmune and cancer disorders

, ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 315-337 | Received 13 Mar 2017, Accepted 04 Aug 2017, Published online: 21 Sep 2017

References

  • Chakravarty SD, Poulikakos PI, Ivashkiv LB, et al. Kinase inhibitors: a new tool for the treatment of rheumatoid arthritis. Clin Immunol 2013;148(1):66–78. doi:10.1016/j.clim.2013.04.007. PMID:23651870
  • Benson RA, Brewer JM, Platt AM. Mechanisms of autoimmunity in human diseases: a critical review of current dogma. Curr Opin Rheumatol 2014;26(2):197–203. doi:10.1097/BOR.0000000000000037. PMID:24445477
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3(11):e442. doi:10.1371/journal.pmed.0030442. PMID:17132052
  • Michelle Xu M, Pu Y, Weichselbaum RR, et al. Integrating conventional and antibody-based targeted anticancer treatment into immunotherapy. Oncogene 2017;36(5):585–592. doi:10.1038/onc.2016.231. PMID:27425593
  • Caspi RR. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 2008;8(12):970–976. doi:10.1038/nri2438. PMID:19008897
  • Ehling R, Di Pauli F, Lackner P, et al. Impact of glatiramer acetate on paraclinical markers of neuroprotection in multiple sclerosis: A prospective observational clinical trial. J Neuroimmunol 2015;287:98–105. doi:10.1016/j.jneuroim.2015.08.004. PMID:26439969
  • Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol 2006;90:297–339. doi:10.1016/S0065-2776(06)90008-X. PMID:16730267
  • Yuan J, Ginsberg B, Page D, et al. CTLA-4 blockade increases antigen-specific CD8(+) T cells in prevaccinated patients with melanoma: three cases. Cancer Immunol Immunother 2011;60(8):1137–1146. doi:10.1007/s00262-011-1011-9. PMID:21465316
  • Romero P, Cerottini JC, Speiser DE. Monitoring tumor antigen specific T-cell responses in cancer patients and phase I clinical trials of peptide-based vaccination. Cancer Immunol Immunother 2004;53(3):249–255. doi:10.1007/s00262-003-0473-9. PMID:14704832
  • Bodey B, Bodey B, Jr., Siegel SE, et al. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res 2000;20(4):2665–2676. PMID:10953341
  • Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science 2010;327(5966):656–661. doi:10.1126/science.1178331. PMID:20133564
  • Gordon S, Mantovani A. Diversity and plasticity of mononuclear phagocytes. Eur J Immunol 2011;41(9):2470–2472. doi:10.1002/eji.201141988. PMID:21952798
  • Gordon S, Pluddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 2014;262(1):36–55. doi:10.1111/imr.12223. PMID:25319326
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122(3):787–795. doi:10.1172/JCI59643. PMID:22378047
  • Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41(1):49–61. doi:10.1016/j.immuni.2014.06.010. PMID:25035953
  • Forget MA, Voorhees JL, Cole SL, et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS ONE 2014;9(6):e98623. doi:10.1371/journal.pone.0098623
  • Roca H, Varsos ZS, Sud S, et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 2009;284(49):34342–34354. doi:10.1074/jbc.M109.042671. PMID:19833726
  • Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 2014;105(1):1–8. doi:10.1111/cas.12314. PMID:24168081
  • Vlaicu P, Mertins P, Mayr T, et al. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator. BMC Cancer 2013;13:197. doi:10.1186/1471-2407-13-197. PMID:23597096
  • Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006;66(2):605–612. doi:10.1158/0008-5472.CAN-05-4005. PMID:16423985
  • Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell 1999;98(3):295–303. PMID:10458605
  • Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;10(1):105–115. PMID:10023775
  • Garcia R, Bowman TL, Niu G, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001;20(20):2499–2513. doi:10.1038/sj.onc.1204349. PMID:11420660
  • Bowman T, Broome MA, Sinibaldi D, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A2001;98(13):7319–7324. doi:10.1073/pnas.131568898. PMID:11404481
  • Garner JM, Fan M, Yang CH, et al. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappaB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem 2013;288(36):26167–26176. doi:10.1074/jbc.M113.477950. PMID:23902772
  • Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004;10(1):48–54. doi:10.1038/nm976. PMID:14702634
  • Komohara Y, Fujiwara Y, Ohnishi K, et al. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 2016;99(Pt B):180–185. doi:10.1016/j.addr.2015.11.009. PMID:26621196
  • Zhang Q, Zhang C, He J, et al. STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol 2015;36(3):2135–2142. doi:10.1007/s13277-014-2823-y. PMID:25492480
  • Spitzner M, Roesler B, Bielfeld C, et al. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer 2014;134(4):997–1007. doi:10.1002/ijc.28429. PMID:23934972
  • Molavi O, Ma Z, Hamdy S, et al. Synergistic antitumor effects of CpG oligodeoxynucleotide and STAT3 inhibitory agent JSI-124 in a mouse melanoma tumor model. Immunol Cell Biol 2008;86(6):506–514. doi:10.1038/icb.2008.27. PMID:18392040
  • González FE, Ortiz C, Reyes M, et al. Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells. Immunology 2014;142(3):396–405. doi:10.1111/imm.12264. PMID:24673602
  • Guo C, Buranych A, Sarkar D, et al. The role of tumor-associated macrophages in tumor vascularization. Vascular Cell 2013;5:20-. doi:10.1186/2045-824X-5-20. PMID:PMC3913793
  • Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 2010;12(11):1113–1125. doi:10.1093/neuonc/noq082. PMID:20667896
  • Mhawech-Fauceglia P, Wang D, Ali L, et al. Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. Cancer Immun 2013;13:1. PMID:23390372
  • Chen EP, Markosyan N, Connolly E, et al. Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function. Carcinogenesis 2014;35(8):1788–1797. doi:10.1093/carcin/bgu053. PMID:24590894
  • Clynes RA, Towers TL, Presta LG, et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000;6(4):443–446. doi:10.1038/74704. PMID:10742152
  • Park S, Jiang Z, Mortenson ED, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010;18(2):160–170. doi:10.1016/j.ccr.2010.06.014. PMID:20708157
  • Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010;142(5):699–713. doi:10.1016/j.cell.2010.07.044. PMID:20813259
  • De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013;23(3):277–286. doi:10.1016/j.ccr.2013.02.013. PMID:23518347
  • De Palma M, Naldini L. Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin Cancer Res 2011;17(16):5226–5232. doi:10.1158/1078-0432.CCR-10-0171. PMID:21576085
  • Garcia S, Krausz S, Ambarus CA, et al. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype. PLoS One 2014;9(1):e82088. doi:10.1371/journal.pone.0082088. PMID:24404127
  • Gaitskell K, Martinek I, Bryant A, et al. Angiogenesis inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev 2011(9):CD007930. doi:10.1002/14651858.CD007930.pub2. PMID:21901715
  • Bak SP, Walters JJ, Takeya M, et al. Scavenger receptor-A-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression. Cancer Res 2007;67(10):4783–4789. doi:10.1158/0008-5472.CAN-06-4410. PMID:17510407
  • Komohara Y, Morita T, Annan DA, et al. The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas. Cancer Immunol Res 2015;3(9):999–1007. doi:10.1158/2326-6066.CIR-14-0156. PMID:25783986
  • Aharinejad S, Abraham D, Paulus P, et al. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 2002;62(18):5317–5324. PMID:12235002
  • Aharinejad S, Paulus P, Sioud M, et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 2004;64(15):5378–5384. doi:10.1158/0008-5472.CAN-04-0961. PMID:15289345
  • Paulus P, Stanley ER, Schafer R, et al. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 2006;66(8):4349–4356. doi:10.1158/0008-5472.CAN-05-3523. PMID:16618760
  • Shiao SL, Ruffell B, DeNardo DG, et al. TH2-Polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol Res 2015;3(5):518–525. doi:10.1158/2326-6066.CIR-14-0232. PMID:25716473
  • Fujiwara Y, Takaishi K, Nakao J, et al. Corosolic acid enhances the antitumor effects of chemotherapy on epithelial ovarian cancer by inhibiting signal transducer and activator of transcription 3 signaling. Oncol Lett 2013;6(6):1619–1623. doi:10.3892/ol.2013.1591. PMID:24260055
  • Horlad H, Fujiwara Y, Takemura K, et al. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res 2013;57(6):1046–1054. doi:10.1002/mnfr.201200610. PMID:23417831
  • Freitas MS, Oliveira AF, da Silva TA, et al. Paracoccin induces M1 polarization of macrophages via interaction with TLR4. Frontiers in Microbiology 2016;7: 1003. doi:10.3389/fmicb.2016.01003
  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007;447(7148):1116–1120. doi:10.1038/nature05894. PMID:17515919
  • Hevener AL, Olefsky JM, Reichart D, et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 2007;117(6):1658–1669. doi:10.1172/JCI31561. PMID:17525798
  • Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 2008;7(6):496–507. doi:10.1016/j.cmet.2008.04.003. PMID:18522831
  • Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013;229(2):176–185. doi:10.1002/path.4133. PMID:23096265
  • Qian F, Deng J, Lee YG, et al. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation. Journal of Molecular Cell Biology 2015;7(6):557–567. doi:10.1093/jmcb/mjv042
  • Gupta GK, Agrawal DK. CpG oligodeoxynucleotides as TLR9 agonists: therapeutic application in allergy and asthma. BioDrugs 2010;24(4):225–235. doi:10.2165/11536140-000000000-00000. PMID:20623989
  • Campbell JD, Kell SA, Kozy HM, et al. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax 2014;69(6):565–573. doi:10.1136/thoraxjnl-2013-204605. PMID:24464743
  • Creticos PS, Schroeder JT, Hamilton RG, et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med 2006;355(14):1445–1455. doi:10.1056/NEJMoa052916. PMID:17021320
  • Steinman RM. Dendritic cells: understanding immunogenicity. Eur J Immunol 2007;37(Suppl 1):S53–S60. doi:10.1002/eji.200737400. PMID:17972346
  • Ganguly D, Haak S, Sisirak V, et al. The role of dendritic cells in autoimmunity. Nat Rev Immunol 2013;13(8):566–577. doi:10.1038/nri3477. PMID:23827956
  • Lutz MB, Suri RM, Niimi M, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000;30(7):1813–1822. doi:10.1002/1521-4141(200007)30:7<1813::AID-IMMU1813>3.0.CO;2-8. PMID:10940870
  • Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 2006;108(5):1435–1440. doi:10.1182/blood-2006-03-006403. PMID:16684955
  • Thomas R, Lipsky PE. Presentation of self peptides by dendritic cells: possible implications for the pathogenesis of rheumatoid arthritis. Arthritis Rheum 1996;39(2):183–190. PMID:8849366
  • Serafini B, Rosicarelli B, Magliozzi R, et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 2006;65(2):124–141. doi:10.1097/01.jnen.0000199572.96472.1c. PMID:16462204
  • Perrot I, Blanchard D, Freymond N, et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 2007;178(5):2763–2769. PMID:17312119
  • Nestle FO, Burg G, Fah J, et al. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 1997;150(2):641–651. PMID:9033277
  • Enk AH, Jonuleit H, Saloga J, et al. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 1997;73(3):309–316. PMID:9359474
  • Hackstein H, Thomson AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 2004;4(1):24–34. doi:10.1038/nri1256. PMID:14704765
  • Condon C, Watkins SC, Celluzzi CM, et al. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2(10):1122–1128. PMID:8837611
  • Creusot RJ, Yaghoubi SS, Kodama K, et al. Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clin Immunol 2008;127(2):176–187. doi:10.1016/j.clim.2007.12.009. PMID:18337172
  • Perone MJ, Bertera S, Tawadrous ZS, et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J Immunol 2006;177(8):5278–5289. PMID:17015713
  • Giannoukakis N, Phillips B, Finegold D, et al. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 2011;34(9):2026–2032. doi:10.2337/dc11-0472. PMID:21680720
  • Garate D, Rojas-Colonelli N, Pena C, et al. Blocking of p38 and transforming growth factor beta receptor pathways impairs the ability of tolerogenic dendritic cells to suppress murine arthritis. Arthritis Rheum 2013;65(1):120–129. doi:10.1002/art.37702. PMID:22972370
  • Garcia-Gonzalez P, Morales R, Hoyos L, et al. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines. J Transl Med 2013;11:128. doi:10.1186/1479-5876-11-128. PMID:23706017
  • Bell GM, Anderson AE, Diboll J, et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis 2017;76(1):227–234. doi:10.1136/annrheumdis-2015-208456. PMID:27117700
  • Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004;5(12):1219–1226. doi:10.1038/ni1141. PMID:15549123
  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295(5564):2387–2392. doi:10.1126/science.1067100. PMID:11923519
  • Valmori D, Souleimanian NE, Tosello V, et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci U S A 2007;104(21):8947–8952. doi:10.1073/pnas.0703395104. PMID:17517626
  • Gonzalez-Gugel E, Saxena M, Bhardwaj N. Modulation of innate immunity in the tumor microenvironment. Cancer Immunol Immunother 2016;65(10):1261–1268. doi:10.1007/s00262-016-1859-9. PMID:27344341
  • Duran-Aniotz C, Segal G, Salazar L, et al. The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses. Cancer Immunol Immunother 2013;62(4):761–772. doi:10.1007/s00262-012-1377-3. PMID:23242374
  • Javed A, Sato S, Sato T. Autologous melanoma cell vaccine using monocyte-derived dendritic cells (NBS20/eltrapuldencel-T). Future Oncol 2016;12(6):751–762. doi:10.2217/fon.16.13. PMID:26837440
  • Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997;7(4):493–504. PMID:9354470
  • Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 2012;30:647–675. doi:10.1146/annurev-immunol-020711-075053. PMID:22224763
  • Boos MD, Yokota Y, Eberl G, et al. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 2007;204(5):1119–1130. doi:10.1084/jem.20061959. PMID:17452521
  • Almeida FF, Belz GT. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunol 2016;9(5):1103–1112. doi:10.1038/mi.2016.64. PMID:27484190
  • Spits H, Artis D, Colonna M, et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 2013;13(2):145–149. doi:10.1038/nri3365. PMID:23348417
  • Eberl G, Colonna M, Di Santo JP, et al. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 2015;348(6237):aaa6566. doi:10.1126/science.aaa6566. PMID:25999512
  • Vonarbourg C, Mortha A, Bui VL, et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010;33(5):736–751. doi:10.1016/j.immuni.2010.10.017. PMID:21093318
  • Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013;14(3):221–229. doi:10.1038/ni.2534. PMID:23334791
  • Seillet C, Belz GT. Differentiation and diversity of subsets in group 1 innate lymphoid cells. Int Immunol 2016;28(1):3–11. doi:10.1093/intimm/dxv051. PMID:26346810
  • Knox JJ, Cosma GL, Betts MR, et al. Characterization of T-bet and eomes in peripheral human immune cells. Front Immunol 2014;5:217. doi:10.3389/fimmu.2014.00217. PMID:24860576
  • Artis D, Spits H. The biology of innate lymphoid cells. Nature 2015;517(7534):293–301. doi:10.1038/nature14189. PMID:25592534
  • Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011;12(11):1045–1054. doi:10.1031/ni.2131. PMID:21946417
  • Lee MW, Odegaard JI, Mukundan L, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 2015;160(1,2):74–87. doi:10.1016/j.cell.2014.12.011. PMID:25543153
  • Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 2013;38(4):769–781. doi:10.1016/j.immuni.2013.02.010. PMID:23453631
  • Buonocore S, Ahern PP, Uhlig HH, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010;464(7293):1371–1375. doi:10.1038/nature08949. PMID:20393462
  • Geremia A, Arancibia-Carcamo CV, Fleming MP, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011;208(6):1127–1133. doi:10.1084/jem.20101712. PMID:21576383
  • Chang YJ, Kim HY, Albacker LA, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 2011;12(7):631–638. doi:10.1038/ni.2045. PMID:21623379
  • Halim TY, Krauss RH, Sun AC, et al. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 2012;36(3):451–563. doi:10.1016/j.immuni.2011.12.020. PMID:22425247
  • Hams E, Armstrong ME, Barlow JL, et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A 2014;111(1):367–372. doi:10.1073/pnas.1315854111. PMID:24344271
  • Kim BS, Siracusa MC, Saenz SA, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 2013;5(170):170ra16. doi:10.1126/scitranslmed.3005374. PMID:23363980
  • Perry JS, Han S, Xu Q, et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med 2012;4(145):145ra06. doi:10.1126/scitranslmed.3004140. PMID:22855463
  • Gillard GO, Saenz SA, Huss DJ, et al. Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy. J Neuroimmunol 2016;294:41–45. doi:10.1016/j.jneuroim.2016.03.008. PMID:27138097
  • Lao-Araya M, Steveling E, Scadding GW, et al. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol 2014;134(5):1193–1195 e4. doi:10.1016/j.jaci.2014.07.029. PMID:25212194
  • Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 2012;12(4):239–252. doi:10.1038/nri3174. PMID:22437937
  • Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 2016;16(1):7–19. doi:10.1038/nrc.2015.5. PMID:26694935
  • Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ 2014;21(1):5–14. doi:10.1038/cdd.2013.26
  • Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol 2014;92(3):230–236. doi:10.1038/icb.2013.111. PMID:24445601
  • de Andrade LF, Smyth MJ, Martinet L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 2014;92(3):237–244. doi:10.1038/icb.2013.95
  • Wang W, Erbe AK, Hank JA, et al. NK Cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Frontiers in Immunology 2015;6:368. doi:10.3389/fimmu.2015.00368. PMID:PMC4515552
  • Kruse PH, Matta J, Ugolini S, et al. Natural cytotoxicity receptors and their ligands. Immunol Cell Biol 2014;92(3):221–229. doi:10.1038/icb.2013.98. PMID:24366519
  • Anfossi N, Andre P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006;25(2):331–342. doi:10.1016/j.immuni.2006.06.013. PMID:16901727
  • Norman PJ, Hollenbach JA, Nemat-Gorgani N, et al. Co-evolution of human leukocyte antigen (HLA) class i ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-saharan africans. PLoS Genet 2013;9(10):e1003938. doi:10.1371/journal.pgen.1003938
  • Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 2016;16(2):112–123. doi:10.1038/nri.2015.9
  • O'Leary JG, Goodarzi M, Drayton DL, et al. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 2006;7(5):507–516. doi:10.1038/ni1332. PMID:16617337
  • Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009;457(7229):557–561. doi:10.1038/nature07665. PMID:19136945
  • Hendricks DW, Min-Oo G, Lanier LL. Sweet Is the Memory of Past Troubles: NK Cells Remember. Curr Top Microbiol Immunol 2016;395:147–171. doi:10.1007/82_2015_447. PMID:26099194
  • Farcy É, Voiseux C, Lebel J-M, et al. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress & Chaperones 2009;14(4):371–380. doi:10.1007/s12192-008-0091-8. PMID:PMC2728272
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013. PMID:21376230
  • Raulet DH, Gasser S, Gowen BG, et al. Regulation of Ligands for the NKG2D Activating Receptor. Annual Review of Immunology 2013;31(1):413–441. doi:10.1146/annurev-immunol-032712-095951
  • Zhang J, Basher F, Wu JD. NKG2D Ligands in Tumor Immunity: Two Sides of a Coin. Front Immunol 2015;6:97. doi:10.3389/fimmu.2015.00097. PMID:25788898
  • Diefenbach A, Jamieson AM, Liu SD, et al. Ligands for the murine NKG2D receptor: Expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000;1(2):119–126. doi:10.1038/77793. PMID:11248803
  • Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419(6908):734–738. doi:10.1038/nature01112. PMID:12384702
  • Salih HR, Rammensee HG, Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 2002;169(8):4098–4102. PMID:12370336
  • Wu JD, Higgins LM, Steinle A, et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 2004;114(4):560–568. doi:10.1172/JCI22206. PMID:15314693
  • Salih HR, Goehlsdorf D, Steinle A. Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol 2006;67(3):188–195. doi:10.1016/j.humimm.2006.02.008. PMID:16698441
  • Kaiser BK, Yim D, Chow IT, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007;447(7143):482–486. doi:10.1038/nature05768. PMID:17495932
  • Fernandez-Messina L, Ashiru O, Boutet P, et al. Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem 2010;285(12):8543–8551. doi:10.1074/jbc.M109.045906. PMID:20080967
  • Molfetta R, Quatrini L, Capuano C, et al. c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells. Eur J Immunol 2014;44(9):2761–2770. doi:10.1002/eji.201444512. PMID:24846123
  • Holdenrieder S, Stieber P, Peterfi A, et al. Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 2006;55(12):1584–1589. doi:10.1007/s00262-006-0167-1. PMID:16636811
  • Holdenrieder S, Stieber P, Peterfi A, et al. Soluble MICA in malignant diseases. Int J Cancer 2006;118(3):684–687. doi:10.1002/ijc.21382. PMID:16094621
  • Ribeiro CH, Kramm K, Gálvez-Jirón F, et al. Clinical significance of tumor expression of major histocompatibility complex class I-related chains A and B (MICA/B) in gastric cancer patients. Oncol Rep 2016;35(3):1309–1317. doi:10.3892/or.2015.4510. PMID:26708143
  • Oppenheim DE, Roberts SJ, Clarke SL, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 2005;6(9):928–937. doi:10.1038/ni1239. PMID:16116470
  • de Kruijf EM, Sajet A, van Nes JG, et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 2012;12(1):1–12. doi:10.1186/1471-2407-12-24
  • Crane CA, Han SJ, Barry JJ, et al. TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 2010;12(1):7–13. doi:10.1093/neuonc/nop009. PMID:20150362
  • Clayton A, Mitchell JP, Court J, et al. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008;180(11):7249–7258. PMID:18490724
  • Mincheva-Nilsson L, Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: Impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol 2014;28:24–30. doi:10.1016/j.semcancer.2014.02.010. PMID:24602822
  • Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-source follow-up study of a general population. Lancet 2000;356(9244):1795–1799. doi:10.1016/S0140-6736(00)03231-1. PMID:11117911
  • Bezman NA, Kim CC, Sun JC, et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol 2012;13(10):1000–1009. doi:http://www.nature.com/ni/journal/v13/n10/abs/ni.2395.html#supplementary-information.
  • Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985;313(23):1485–1492. doi:10.1056/NEJM198512053132327. PMID:3903508
  • Ruggeri L, Capanni M, Tosti A, et al. Innate immunity against hematological malignancies. Cytotherapy 2002;4(4):343–346. doi:10.1080/146532402760271127. PMID:12396834
  • Ballen KK, Woolfrey AE, Zhu X, et al. Allogeneic hematopoietic cell transplantation for advanced polycythemia vera and essential thrombocythemia. Biology of Blood and Marrow Transplantation 2012;18(9):1446–1454. doi: https://doi.org/10.1016/j.bbmt.2012.03.009
  • Lissandre S, Bay JO, Cahn JY, et al. Retrospective study of allogeneic haematopoietic stem-cell transplantation for myelofibrosis. Bone Marrow Transplant 2011;46(4):557–561.
  • Lussana F, Rambaldi A, Finazzi MC, et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the chronic malignancies working party of the european group for blood and marrow transplantation. Haematologica 2014;99(5):916–921. doi:10.3324/haematol.2013.094284
  • Ullah MA, Hill GR, Tey S-K. Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation. Frontiers in Immunology 2016;7:144. doi:10.3389/fimmu.2016.00144. PMID:PMC4831973
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105(8):3051.
  • Palucka AK, Coussens LM. The basis of oncoimmunology. Cell 2016;164(6):1233–1247. doi:10.1016/j.cell.2016.01.049. PMID:26967289
  • Mellor JD, Brown MP, Irving HR, et al. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 2013;6(1):1. doi:10.1186/1756-8722-6-1
  • Battella S, Cox MC, Santoni A, et al. Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J Leukoc Biol 2016;99(1):87–96. doi:10.1189/jlb.5VMR0415-141R. PMID:26136506
  • Jinushi M, Hodi FS, Dranoff G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc Natl Acad Sci U S A 2006;103(24):9190–9195. doi:10.1073/pnas.0603503103. PMID:16754847
  • Benson DM, Jr., Bakan CE, Mishra A, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010;116(13):2286–2294. doi:10.1182/blood-2010-02-271874. PMID:20460501
  • Contardi E, Palmisano GL, Tazzari PL, et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 2005;117(4):538–550. doi:10.1002/ijc.21155. PMID:15912538
  • Laurent S, Queirolo P, Boero S, et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J Transl Med 2013;11:108. doi:10.1186/1479-5876-11-108. PMID:23634660
  • Zamarin D, Holmgaard RB, Subudhi SK, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014;6(226):226ra32. doi:10.1126/scitranslmed.3008095. PMID:24598590
  • Benson DM, Jr., Cohen AD, Jagannath S, et al. A Phase I Trial of the Anti-KIR Antibody IPH2101 and Lenalidomide in Patients with Relapsed/Refractory Multiple Myeloma. Clin Cancer Res 2015;21(18):4055–4061. doi:10.1158/1078-0432.CCR-15-0304. PMID:25999435
  • Malhotra A, Shanker A. NK cells: immune cross-talk and therapeutic implications. Immunotherapy 2011;3(10):1143–1166. doi:10.2217/imt.11.102. PMID:21995569
  • Crouse J, Xu HC, Lang PA, et al. NK cells regulating T cell responses: mechanisms and outcome. Trends immunol 2015;36(1):49–58. doi:10.1016/j.it.2014.11.001. PMID:25432489
  • Nielsen N, Odum N, Urso B, et al. Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2 A. PLoS One 2012;7(2):e31959. doi:10.1371/journal.pone.0031959. PMID:22384114
  • Soderquest K, Walzer T, Zafirova B, et al. Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 2011;186(6):3304–3308. doi:10.4049/jimmunol.1004122. PMID:21307295
  • Van Acker HH, Beretta O, Anguille S, et al. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget 2017;8(8):13652–13665. doi:10.18632/oncotarget.14622. PMID:28099143
  • Srivastava RM, Trivedi S, Concha-Benavente F, et al. CD137 stimulation enhances cetuximab-induced natural killer: Dendritic cell priming of antitumor T-Cell immunity in patients with head and neck cancer. Clin Cancer Res 2017;23(3):707–716. doi:10.1158/1078-0432.CCR-16-0879. PMID:27496866
  • Gasteiger G, Hemmers S, Firth MA, et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 2013;210(6):1167–1178. doi:10.1084/jem.20122462. PMID:23650441
  • Shanker A, Verdeil G, Buferne M, et al. CD8 T cell help for innate antitumor immunity. J Immunol 2007;179(10):6651–6662. PMID:17982055
  • Shanker A, Buferne M, Schmitt-Verhulst AM. Cooperative action of CD8 T lymphocytes and natural killer cells controls tumour growth under conditions of restricted T-cell receptor diversity. Immunology 2010;129(1):41–54. doi:10.1111/j.1365-2567.2009.03150.x. PMID:20050329
  • Cerboni C, Zingoni A, Cippitelli M, et al. Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis. Blood 2007;110(2):606–615. doi:10.1182/blood-2006-10-052720. PMID:17405908
  • Brennan K, McSharry BP, Keating S, et al. Human Natural Killer cell expression of ULBP2 is associated with a mature functional phenotype. Hum Immunol 2016;77(10):876–885. doi:10.1016/j.humimm.2016.06.018. PMID:27349945
  • Fujii S, Shimizu K, Okamoto Y, et al. NKT cells as an ideal anti-tumor immunotherapeutic. Front Immunol 2013;4:409. doi:10.3389/fimmu.2013.00409. PMID:24348476
  • Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol 2010;11(3):197–206. doi:10.1038/ni.1841. PMID:20139988
  • Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013;13(2):101–117. doi:10.1038/nri3369. PMID:23334244
  • Kawano T, Cui J, Koezuka Y, et al. CD1 d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997;278(5343):1626–1629. PMID:9374463
  • O'Reilly V, Zeng SG, Bricard G, et al. Distinct and overlapping effector functions of expanded human CD4+, CD8alpha+ and CD4-CD8alpha- invariant natural killer T cells. PLoS One 2011;6(12):e28648. doi:10.1371/journal.pone.0028648. PMID:22174854
  • Kuylenstierna C, Bjorkstrom NK, Andersson SK, et al. NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1 d. Eur J Immunol 2011;41(7):1913–1923. doi:10.1002/eji.200940278. PMID:21590763
  • Tian G, Courtney AN, Jena B, et al. CD62 L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clin Invest 2016;126(6):2341–2355. doi:10.1172/jci83476. PMID:27183388
  • Shissler SC, Bollino DR, Tiper IV, et al. Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016. doi:10.1007/s00251-016-0928-8. PMID:27393665
  • Carreño LJ, Saavedra-Ávila NA, Porcelli SA. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clinical & Translational Immunology 2016;5(4):e69. doi:10.1038/cti.2016.14. PMID:PMC4855264
  • Cohen NR, Brennan PJ, Shay T, et al. Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nat Immunol 2013;14(1):90–99. doi:10.1038/ni.2490. PMID:23202270
  • Salio M, Silk JD, Jones EY, et al. Biology of CD1- and MR1-restricted T cells. Annu Rev Immunol 2014;32:323–366. doi:10.1146/annurev-immunol-032713-120243. PMID:24499274
  • Carreño LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 2014;6(3):309–320. doi:10.2217/imt.13.175. PMID:24762075
  • Bassiri H, Das R, Nichols KE. Invariant NKT cells: Killers and conspirators against cancer. Oncoimmunology 2013;2(12):e27440. doi:10.4161/onci.27440. PMID:24575380
  • Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 2011;11(2):131–142. doi:10.1038/nri2904. PMID:21267014
  • Wu L, Van Kaer L. Natural killer T cells and autoimmune disease. Curr Mol Med 2009;9(1):4–14. PMID:19199937
  • Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J2015;38(6):484–95. doi: https://doi.org/10.1016/j.bj.2015.04.001
  • Usero L, Sánchez A, Pizarro E, et al. Interleukin-13 pathway alterations impair invariant natural killer T-cell–mediated regulation of effector T cells in type 1 diabetes. Diabetes 2016;65(8):2356–2366. doi:10.2337/db15-1350
  • Novak J, Griseri T, Beaudoin L, et al. Regulation of type 1 diabetes by NKT cells. Int Rev Immunol 2007;26(1,2):49–72. doi:10.1080/08830180601070229. PMID:17454264
  • O'Keeffe J, Gately CM, Counihan T, et al. T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to α-galactosylceramide are impaired. J Neurol Sci 2008;275(1):22–28. doi:10.1016/j.jns.2008.07.007
  • O'Keeffe J, Podbielska M, Hogan EL. Invariant natural killer T cells and their ligands: focus on multiple sclerosis. Immunology 2015;145(4):468–475. doi:10.1111/imm.12481
  • Kojo S, Adachi Y, Keino H, et al. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum 2001;44(5):1127–1138. doi:10.1002/1529-0131(200105)44:5<1127::AID-ANR194>3.0.CO;2-W. PMID:11352245
  • Gabriel L, Morley BJ, Rogers NJ. The role of iNKT cells in the immunopathology of systemic lupus erythematosus. Ann N Y Acad Sci 2009;1173(1):435–441. doi:10.1111/j.1749-6632.2009.04743.x
  • Shen L, Zhang H, Caimol M, et al. Invariant natural killer T cells in lupus patients promote IgG and IgG autoantibody production. Eur J Immunol 2015;45(2):612–623. doi:10.1002/eji.201444760
  • Sutherland JS, Jeffries DJ, Donkor S, et al. High granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting. Tuberculosis (Edinb) 2009;89(6):398–404. doi:10.1016/j.tube.2009.07.004. PMID:19683473
  • Hill TM, Gilchuk P, Cicek BB, et al. Border patrol gone awry: Lung NKT cell activation by Francisella tularensis exacerbates tularemia-like disease. PLoS Pathog 2015;11(6):e1004975. doi:10.1371/journal.ppat.1004975
  • Kawano T, Nakayama T, Kamada N, et al. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res 1999;59(20):5102–5105. PMID:10537282
  • Kawano T, Tanaka Y, Shimizu E, et al. A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Int Immunol 1999;11(6):881–887. PMID:10360961
  • Tahir SM, Cheng O, Shaulov A, et al. Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 2001;167(7):4046–4050. PMID:11564825
  • Motohashi S, Kobayashi S, Ito T, et al. Preserved IFN-alpha production of circulating Valpha24 NKT cells in primary lung cancer patients. Int J Cancer 2002;102(2):159–165. doi:10.1002/ijc.10678. PMID:12385012
  • Molling JW, Kolgen W, van der Vliet HJ, et al. Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 2005;116(1):87–93. doi:10.1002/ijc.20998. PMID:15756674
  • Yoneda K, Morii T, Nieda M, et al. The peripheral blood Valpha24+ NKT cell numbers decrease in patients with haematopoietic malignancy. Leuk Res 2005;29(2):147–152. doi:10.1016/j.leukres.2004.06.005. PMID:15607362
  • Dhodapkar MV, Geller MD, Chang DH, et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 2003;197(12):1667–1676. doi:10.1084/jem.20021650. PMID:12796469
  • Molling JW, Langius JA, Langendijk JA, et al. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 2007;25(7):862–868. doi:10.1200/JCO.2006.08.5787. PMID:17327607
  • Najera Chuc AE, Cervantes LA, Retiguin FP, et al. Low number of invariant NKT cells is associated with poor survival in acute myeloid leukemia. J Cancer Res Clin Oncol 2012;138(8):1427–1432. doi:10.1007/s00432-012-1251-x. PMID:22692855
  • van der Vliet HJJ, Wang R, Yue SC, et al. Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J Immunol 2008;180(11):7287–7293. PMID:18490728
  • Neparidze N, Dhodapkar MV. Harnessing CD1 d-restricted T cells toward antitumor immunity in humans. Ann N Y Acad Sci 2009;1174:61–67. doi:10.1111/j.1749-6632.2009.04931.x. PMID:19769737
  • Tachibana T, Onodera H, Tsuruyama T, et al. Increased intratumor Valpha24-positive natural killer T cells: A prognostic factor for primary colorectal carcinomas. Clin Cancer Res 2005;11(20):7322–7327. doi:10.1158/1078-0432.CCR-05-0877. PMID:16243803
  • McEwen-Smith RM, Salio M, Cerundolo V. The Regulatory Role of Invariant NKT Cells in Tumor Immunity. Cancer Immunol Res 2015;3(5):425–435. doi:10.1158/2326-6066.CIR-15-0062. PMID:25941354
  • Wilson SB, Delovitch TL. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 2003;3(3):211–222. doi:10.1038/nri1028. PMID:12658269
  • Sag D, Krause P, Hedrick CC, et al. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014;124(9):3725–3740. doi:10.1172/JCI72308. PMID:25061873
  • La Cava A, Van Kaer L, Fu Dong S. CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol 2006;27(7):322–327. doi:10.1016/j.it.2006.05.003. PMID:16735139
  • Spanoudakis E, Hu M, Naresh K, et al. Regulation of multiple myeloma survival and progression by CD1 d. Blood 2009;113(11):2498–2507. doi:10.1182/blood-2008-06-161281. PMID:19056691
  • Song W, van der Vliet HJ, Tai YT, et al. Generation of antitumor invariant natural killer T cell lines in multiple myeloma and promotion of their functions via lenalidomide: a strategy for immunotherapy. Clin Cancer Res 2008;14(21):6955–6962. doi:10.1158/1078-0432.CCR-07-5290. PMID:18980990
  • Chang DH, Liu N, Klimek V, et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 2006;108(2):618–621. doi:10.1182/blood-2005-10-4184. PMID:16569772
  • Li J, Sun W, Subrahmanyam PB, et al. NKT cell responses to B cell lymphoma. Med Sci (Basel) 2014;2(2):82–97. doi:10.3390/medsci2020082. PMID:24955247
  • Matsuyoshi H, Hirata S, Yoshitake Y, et al. Therapeutic effect of α-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells. Cancer Science 2005;96(12):889–896. doi:10.1111/j.1349-7006.2005.00123.x
  • Chung Y, Qin H, Kang CY, et al. An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood 2007;110(6):2013–2019. doi:10.1182/blood-2006-12-061309. PMID:17581919
  • Bagnara D, Ibatici A, Corselli M, et al. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1 d-expressing lymphoid neoplasms. Haematologica 2009;94(7):967–974. doi:10.3324/haematol.2008.001339. PMID:19454494
  • Wen X, Rao P, Carreno LJ, et al. Human CD1 d knock-in mouse model demonstrates potent antitumor potential of human CD1 d-restricted invariant natural killer T cells. Proc Natl Acad Sci U S A 2013;110(8):2963–2968. doi:10.1073/pnas.1300200110. PMID:23382238
  • Giaccone G, Punt CJA, Ando Y, et al. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002;8(12):3702–3709.
  • Nieda M, Okai M, Tazbirkova A, et al. Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 2004;103(2):383–389. doi:10.1182/blood-2003-04-1155. PMID:14512316
  • Ishikawa A, Motohashi S, Ishikawa E, et al. A phase I study of α-galactosylceramide (KRN7000)–pulsed dendritic cells in patients with advanced and recurrent non–small cell lung cancer. Clin Cancer Res 2005;11(5):1910–1917. doi:10.1158/1078-0432.ccr-04-1453
  • Motohashi S, Ishikawa A, Ishikawa E, et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non–small cell lung cancer. Clin Cancer Res 2006;12(20):6079–6086. doi:10.1158/1078-0432.ccr-06-0114
  • Motohashi S, Nagato K, Kunii N, et al. A phase I-II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 2009;182(4):2492–2501.
  • Yamada D, Iyoda T, Vizcardo R, et al. Efficient regeneration of human Vα24+ invariant natural killer T Cells and their anti-tumor activity In Vivo. Stem Cells 2016;34(12):2852–2860. doi:10.1002/stem.2465
  • Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413(6855):531–534. doi:10.1038/35097097. PMID:11586362
  • Schmieg J, Yang G, Franck RW et al. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 2003;198(11):1631–1641. doi:10.1084/jem.20031192. PMID:14657217
  • Li X, Fujio M, Imamura M, et al. Design of a potent CD1 d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci U S A 2010;107(29):13010–13015. doi:10.1073/pnas.1006662107. PMID:20616071
  • Padte NN, Li X, Tsuji M, et al. Clinical development of a novel CD1 d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 2011;140(2):142–151. doi:10.1016/j.clim.2010.11.009. PMID:21185784
  • Oki S, Chiba A, Yamamura T, et al. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 2004;113(11):1631–1640. doi:10.1172/JCI20862. PMID:15173890
  • Arora P, Kharkwal SS, Ng TW, et al. Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1 d complexes. Chem Phys Lipids 2016;194:49–57. doi:10.1016/j.chemphyslip.2015.10.006. PMID:26496152
  • Macho-Fernandez E, Cruz LJ, Ghinnagow R, et al. Targeted delivery of alpha-galactosylceramide to CD8alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses. J Immunol 2014;193(2):961–969. doi:10.4049/jimmunol.1303029. PMID:24913977
  • Stirnemann K, Romero JF, Baldi L, et al. Sustained activation and tumor targeting of NKT cells using a CD1 d-anti-HER2-scFv fusion protein induce antitumor effects in mice. J Clin Invest 2008;118(3):994–1005. doi:10.1172/JCI33249. PMID:18259610
  • Maude SL, Teachey DT, Porter DL, et al. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015;125(26):4017.
  • Heczey A, Liu D, Tian G, et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 2014;124(18):2824–2833. doi:10.1182/blood-2013-11-541235. PMID:25049283
  • Tilloy F, Treiner E, Park SH, et al. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 1999;189(12):1907–1921. PMID:10377186
  • Treiner E, Duban L, Bahram S, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003;422(6928):164–169. doi:10.1038/nature01433. PMID:12634786
  • Treiner E, Duban L, Moura IC, et al. Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect 2005;7(3):
  • Kjer-Nielsen L, Patel O, Corbett AJ, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012;491(7426):717–723. doi:10.1038/nature11605. PMID:23051753
  • Miley MJ, Truscott SM, Yu YY, et al. Biochemical features of the MHC-related protein 1 consistent with an immunological function. J Immunol 2003;170(12):6090–6098. PMID:12794138
  • Serriari NE, Eoche M, Lamotte L, et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol 2014;176(2):266–274. doi:10.1111/cei.12277. PMID:24450998
  • Rahimpour A, Koay HF, Enders A, et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 2015;212(7):1095–1108. doi:10.1084/jem.20142110. PMID:26101265
  • Walker LJ, Kang YH, Smith MO, et al. Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 2012;119(2):422–433. doi:10.1182/blood-2011-05-353789. PMID:22086415
  • Gerart S, Siberil S, Martin E, et al. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 2013;121(4):614–623. doi:10.1182/blood-2012-09-456095. PMID:23223428
  • Hinks TS. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology 2016;148(1):1–12. doi:10.1111/imm.12582. PMID:26778581
  • Cho YN, Kee SJ, Kim TJ, et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J Immunol 2014;193(8):3891–901. doi:10.4049/jimmunol.1302701. PMID:25225673
  • Hinks TS, Wallington JC, Williams AP, et al. Steroid-induced deficiency of mucosal-associated invariant T cells in the COPD lung: implications for NTHi infection. Am J Respir Crit Care Med 2016;194(10):1208–1218. doi:10.1164/rccm.201601-0002OC. PMID:27115408
  • Chiba A, Tajima R, Tomi C, et al. Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis. Arthritis Rheum 2012;64(1):153–161. doi:10.1002/art.33314. PMID:21904999
  • Magalhaes I, Pingris K, Poitou C, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 2015;125(4):1752–1762. doi:10.1172/JCI78941. PMID:25751065
  • Carolan E, Tobin LM, Mangan BA, et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J Immunol 2015;194(12):5775–5780. doi:10.4049/jimmunol.1402945. PMID:25980010
  • Sundstrom P, Ahlmanner F, Akeus P, et al. Human mucosa-associated invariant T Cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-gamma. J Immunol 2015;195(7):3472–3481. Epub 2015/08/25. doi:10.4049/jimmunol.1500258. PMID:26297765
  • Ling L, Lin Y, Zheng W, et al. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep 2016;6:20358. doi:10.1038/srep20358. http://www.nature.com/articles/srep20358#supplementary-information
  • Giannoukakis N, Trucco M. Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy 2012;4(10):1063–1074. doi:10.2217/imt.12.76. PMID:23148758
  • Gilham DE, Debets R, Pule M, et al. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 2012;18(7):377–384. doi:10.1016/j.molmed.2012.04.009. PMID:22613370
  • Muenst S, Laubli H, Soysal SD, et al. The immune system and cancer evasion strategies: Therapeutic concepts. J Intern Med 2016;279(6):541–562. doi:10.1111/joim.12470. PMID:26748421

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.