811
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game

&
Pages 90-110 | Received 10 Apr 2017, Accepted 12 Sep 2017, Published online: 06 Nov 2017

References

  • Werb Z, Coussens LM. Inflammation and cancer. Nature. 2002;420:860–867.
  • Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79(3–4):123–130.
  • Lu H, Ouyang W, Huang C. Inflammation, a Key event in cancer development. Mol Cancer Res. 2006;4:221–223.
  • Serhan CN, Brain SD, Buckley CD, et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21(2):325–332.
  • Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med. 2013;5(5):661–674.
  • Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol. 2013;13, 59–66.
  • Kumar V, Sharma A. Mast cells: emerging innate immune cells with diverse role in immunity. Mol Immunol. 2010;48(1–3):14–25.
  • Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. International Immunopharmacology. 2010;10(11):1325–1334.
  • Kantari C, Pederzoli-Ribeil M, Witko-Sarsat V. The role of neutrophils and monocytes in innate immunity. Contrib Microbiol. 2008;15:118–146.
  • Fattahi F, Ward PA. Anti-inflammatory interventions-what has been worked, not worked, and what may work in future. Transl Res. 2016;167(1):1–6.
  • Hosac AM. Drotrecogin alfa (activated): the first FDA-approved treatment for severe sepsis. Proc (Bayl Univ Med Cent). 2002;15(2):224–227.
  • Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–2064.
  • Hams E, Bermingham R, Fallon PG. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis. Front Immunol. 2015;6:597.
  • Kumar V. Innate lymphoid cells: new paradigm in immunology of inflammation. Immunol Lett. 2014;157(1–2):23–37.
  • Kumar V. Innate lymphoid cells: immunoregulatory cells of mucosal inflammation. European Journal of Inflammation. 2014;12(1):11–20.
  • Gapin L. Where do MAIT cell fit in the family of unconventional T cells? PLoS Biol. 2009;7(3):e1000070 (0435–0438).
  • Liuzzi AR, McLaren JE, Price DA, Eberl M. Early innate responses to pathogens: pattern recognition by unconventional human T-cells. Curr Opin Immunol. 2015;36:31–37.
  • Huang S. Targeting innate-like T cells in tuberculosis. Frontiers Immunol. 2016;7:594.
  • Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med. 1993;178(1):1–16.
  • Treiner E, Duban L, Bahram S, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422(6928):164–169.
  • Gao Y., Williams AP. Role of innate T cells in anti-bacterial immunity. Front Immunol. 2015;6:Article 302. doi:10.3389/fimmu.2015.00302. PMID:26124758
  • Mori L, Lepore M, De Libero G. The Immunology of CD1- and MR1-Restricted T Cells. Annu Rev Immunol. 2016;34:479–510.
  • Ussher JE, Klenerman P, Willberg CB. Mucosal-associated invariant T-cells: new players in anti-bacterial immunity. Front Immunol. 2014;5:450. eCollection 2014 doi:10.3389/fimmu.2014.00450.
  • Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–1123.
  • Cowley SC. MAIT Cells and pathogen defense. Cell Mol Life Sci. 2014;71:4831–4840.
  • Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc MP, Lantz O. Restricting non classical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. Proc Natl Acad Sci U S A. 2016;113(21):E2983–E2992.
  • Mondot S, Boudinot P, Lantz O. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules? Immunogenetics. 2016;68(8):537–548.
  • Reantragoon R, Corbett AJ, Sakala IG, et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med. 2013;210(11):2305–2320.
  • Gold MC, McLaren JE, Reistetter JA, et al. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J Exp Med. 2014;211(8):1601–1610.
  • Lepore M, Kalinichenko A, Colone A, et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat Commun. 2014;5:3866.
  • Treiner E, Duban L, Moura IC, Hansen T, Gilfillan S, Lantz O. Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect. 2005;7(3):552–559.
  • Martin E, Treiner E, Duban L, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol 2009;7:e54.
  • Dusseaux M, Martin E, Serriari N, et al. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood. 2011;117:1250–1259.
  • Walker LJ, Kang YH, Smith MO, et al. Human MAIT and CD8alpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 2012;119:422–433.
  • Billerbeck E, Kanh YH, Walker L, et al. Analysis of CD161 expression of human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci USA. 2010;107(7):3006–3011.
  • Turtle CJ, Delrow J, Joslyn RC, et al. Innate signals overcome acquired TCR signalling pathway regulation and govern the fate of human CD161(hi) CD8alpha semi-invariant T cells. Blood. 2011;118:2752–2762.
  • Gold MC, Eid T, Smyk-Pearson S, et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 2013;6(1):35–44.
  • Koay HF, Gherardin NA, Enders A, et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol. 2016;17(11):1300–1311.
  • Gold MC, Lewinsohn DM. Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat Rev Microbiol. 2013;11:14–19.
  • Gold MC, Lewinsohn DM. Mucosal-associated invariant T-cells and the immune response to infection. Microbes and Infection. 2011;13:742–748.
  • Howson LJ, Salio M, Cerundolo V. MR1-restircted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol. 2015;6:Article 303. doi:10.3389/fimmu.2015.00303. PMID:26136743
  • Huang S, Gilfillan S, Kim S, et al. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J Exp Med. 2008;205(5):1201–1211.
  • Martin E, Treiner E, Duban L, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol 2009;7:e54.
  • Walker LJ, Kang YH, Smith MO, et al. Human MAIT and CD8alpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 2012;119:422–433.
  • Le Bourhis L, Mburu YK, Lantz O. MAIT cells, Surveyors of a new class of antigen: development and functions. Curr Opin Immunol. 2013;25:174–180.
  • Arduini S, Dunne J, Conlon N, Feighery C, Doherty DG. Mucosal-associated invariant T cells are depleted and functionally altered in patients with common variable immunodeficiency. Clin Immunol. 2017;176:23–30.
  • Le Bourhis L, Guerri L, Dusseaux M, Martin E, Soudais C, Lantz O. Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol. 2011;32(5):212–218.
  • Dusseaux M, Martin E, Serriari N, et al. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood. 2011;117:1250–1259.
  • Griewank K, Borowski C, Rietdijk S, et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 2007;27:751–762.
  • Seach N, Guerri L, Le Bourhis L, et al. Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol. 2013;191(12):6002–6009.
  • Franciszkiewicz K, Salou M, Legoux F, et al. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev. 2016;272(1):120–138.
  • Lee OJ, Cho YN, Kee SJ, et al. Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults. Exp Gerontol. 2014;49:47–54.
  • Rahimpour A, Koay HF, Enders A, et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Mfed. 2015;212(7):1095–1108.
  • Booth JS, Salerno-Goncalves R, Blanchard TG, et al. Mucosal-associated invariant t cells in the human gastric mucosa and blood: Role in Helicobacter pylori infection. Front Immunol. 2015;6:466.
  • Le Bourhis L, Martin E, Péguillet I, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 2010;11:701–708.
  • Jenny NS. Inflammation in aging: cause, effect, or both? Discov Med. 2012;13(73):451–460.
  • Lepore M, Kalinichenko A, Colone A, et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat Commun. 2014;5:3866.
  • Gibbs A, Leeansyah E, Introini A, et al. Expression of MAIT Cells in Blood and Genital Mucosa of HIV Infected and Uninfected Women. AIDS Res Hum Retroviruses. 2014;30(S1):A47–A48.
  • Gibbs A, Leeansyah E, Introini A, et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017;10(1):35:45. doi:10.1038/mi.2016.30. PMID:27049062
  • Gold MC, Cerri S, Smyk-Pearson S, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8(6):e1000407.
  • van Wilgenburg B, Scherwitzl I, Hutchinson EC, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7:11653.
  • Loh L, Wang Z, Sant S, et al. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc Natl Acad Sci USA. 2016;113(36):10133–10138.
  • Wong EB, Ndung'u T, Kasprowicz VO. The role of mucosal-associated invariant T cells in infectious diseases. Immunology. 2017;150(1):45–54.
  • Kjer-Nielsen L, Patel O, Corbett AJ, et al. MR1 presents vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–723.
  • Corbett AJ, Eckle SB, Birkinshaw RW, et al. T cell activation by transitory neo-antigens from distinct microbial pathways. Nature. 2014;509(7500):361–365.
  • Napier RJ, Adams EJ, Gold MC, Lawinsohn DM. The role of mucosal invariant T cells in antimicrobial immunity. Front Immunol. 2015;6:344.
  • Chen Z, Wang H, D'Souza C, et al. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol. 2017;10:58–68.
  • Yamaguchi H, Kurosawa Y, Hashimoto K. Expanded genomic organization of conserved mammalian MHC class I-related genes, human MR1 and its murine ortholog. Biochem Biophys Res Commun. 1998;250(3):558–564.
  • Tsukamoto K, Deakin JE, Graves JA, Hashimoto K. Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics. 2013;65(2):115–124.
  • Riegert P, Wanner V, Bahram S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol. 1999;161980:4066–4077.
  • Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun. 2012;80(9):3256–3267.
  • Meierovics A, Yankelevich WJ, Cowley SC. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci USA. 2013;110(33):E119–E128.
  • Meierovics AI, Cowley SC. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J Exp Med. 2016;213(12):2793–2809.
  • Ussher JE, van Wilgenburg B, Hannaway RF, et al. TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol. 2016;46(7):1600–1614.
  • Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. doi:10.1038/ncomms3142. PMID:23846752
  • Eckle SB, Birkinshaw RW, Kostenko L, et al. A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J Exp Med. 2014;211(8):1585–1600.
  • Davey MS, Morgan MP, Liuzzi AR, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193(7):3704–3716.
  • Salerno-Goncalves R, Rezwan T, Sztein MB. B cells modulate mucosal associated invariant T cell immune responses. Front Immunol. 2014;4(511):1–15.
  • Kurioka A, Ussher JE, Cosgrove C, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015;8(2):429–440.
  • Gold MC, Napier RJ, Lewinsohn DM. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev. 2015;264(1):154–166.
  • Jiang J, Wang X, An H, et al. Mucosal-associated invariant T-cell function is modulated by programmed death-1 signalling in patients with active tuberculosis. Am J Respir Crit Care Med. 2014;190(3):329–339.
  • Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signalling. Sci Rep. 2016;6:32320.
  • Jiang J, Yang B, An H, et al. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Infect. 2016;72(3):338–352.
  • Wallington JC, Williams AP, Staples KJ, Wilkinson TMA. IL-12 and IL-7 synergise to control MAIT cell cytotoxic responses to bacterial infection. J Allergy Clin Immunol. 2017; Sep 1. pii:S0091-6749(17)31358-1. doi: 10.1016/j.jaci.2017.08.009. [Epub ahead of print].
  • Greene JM, Dash P, Roy S, et al. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. Mucosal Immunol. 2016;10(3):802–813. doi:10.1038/mi.2016.91. [Epub ahead of print] PMID:27759023
  • Kang SJ, Jin HM, Won EJ, et al. Activation, impaired tumor necrosis factor-α production, and deficiency of circulating mucosal-associated invariant T cells in patients with scrub typhus. PLoS Negl Trop Dis. 2016;10(7):e0004832. doi:10.1371/journal.pntd.0004832. PMID:27463223
  • Billerbeck E, Kanh YH, Walker L, et al. Analysis of CD161 expression of human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci USA. 2010;107(7):3006–3011.
  • Barathan M, Mohamed R, Vadivelu J, et al. Peripheral loss of CD8(+)CD161(++)TCRVα7·2(+) mucosal-associated invariant T cells in chronic hepatitis C virus-infected patients. Eur J Clin Invest. 2016;46(2):170–180.
  • Hengst J, Strunz B, Deterding K, et al. Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy. Eur J Immunol. 2016;46(9):2204–2210.
  • Ussher JE, Phalora P, Cosgrove C, et al. Molecular analyses define Vα7.2-Jα33+ MAIT cell depletion in HIV infection: a case-control study. Medicine (Baltimore). 2015;94(29):e1134.
  • Leeansyah E, Ganesh A, Quigley MF, et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood. 2013;121(7):1124–1135.
  • Cosgrove C, Ussher JE, Rauch A, et al. Early and non-reversible decrease of CD161++/MAIT cells in HIV infection. Blood. 2013;121:951–961.
  • Greathead L, Metcalf R, Gazzard B, Gotch F, Steel A, Kelleher P. CD8+/CD161++ mucosal-associated invariant T-cell levels in the colon are restored on long-term antiretroviral therapy and correlate with CD8þ T-cell immune activation. AIDS. 2014;28:1690–1692.
  • Wong EB, Akilimali NA, Govender P, et al. Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PLoS One. 2013;8:e83474.
  • Gaardbo JC, Hartling HJ, Thorsteinsson K, Ullum H, Nielsen SD. CD3+ CD8+ CD161 high Tc17 cells are depleted in HIV-infection. Aids. 2013;27:659–662.
  • Saeidi A, Ellegård R, Yong YK, , et al. Functional role of mucosal-associated invariant T cells in HIV infection. J Leukoc Biol. 2016;100(2):305–314.
  • Fernandez CS, Amarasena T, Kelleher AD, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2015;93:177–188.
  • Leeansyah E, Svärd J, Dias J, et al. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLoS Pathog. 2015 Aug;11(8):e1005072.
  • Khaitan A, Kilberg M, Kravietz A, et al. HIV-infected children have lower frequencies of CD8+ mucosal-associated invariant T (MAIT) cells that correlate with innate, Th17 and Th22 cell subsets. PLoS One. 2016;11(8):e0161786.
  • Chu HX, Arumugam TV, Gelderblom M, et al. Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab. 2014;34(9):1425–1429
  • McWilliam HEG, Villadangos JA. How MR1 Presents a Pathogen Metabolic Signature to Mucosal-Associated Invariant T (MAIT) Cells. Trends Immunol. 2017;38(9):679–689.
  • Le Bourhis L, Dusseaux M, Bohineust A, et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013;9(10):e1003681
  • Grimaldi D, Le Bourhis L, Sauneuf B, et al. Specific MAIT behaviour among innate-like lymphocytes in critically ill patients with severe infections. Intensive Care Med. 2014;40(2):192–201.
  • Meierovics A, Yankelevich WJ, Cowley SC. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci USA. 2013;110(33):E119–E128.
  • Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microb Infect. 2013;2:e60.
  • Li J, Reantragoon R, Kostenko L, Corbett AJ, Varigos G, Carbone FR. The frequency of mucosal-associated invariant T cells is selectively increased in dermatitis herpetiformis. Aust J Dermatol. 2017:58(3):200–204. Mar 4. doi:10.1111/ajd.12456. [Epub ahead of print]
  • Singal A, Bhattacharya SN, Baruah MC. Dermatitis herpetiformis and rheumatoid arthritis. Indian J Dermatol Venereol Leprol. 68(4):229–230.
  • Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–322.
  • Turtle CJ, Swanson HM, Fujii N, Estey EH, Riddell SR. A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity. 2009;31:834–844.
  • Dusseaux M, Martin E, Serriari N, et al. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood. 2011;117:1250–1259.
  • Havenith SH, Yong SL, Henson SM, et al. Analysis of stem-cell-like properties of human CD161++IL-18Ralpha+ memory CD8+ T cells. Int Immunol 2012;24:625–636.
  • Turtle CJ, Delrow J, Joslyn RC, et al. Innate signals overcome acquired TCR signalling pathway regulation and govern the fate of human CD161(hi) CD8alpha semi-invariant T cells. Blood. 2011;118:2752–2762.
  • Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: New guardians of the liver. Clin Transl Immunology. 2016;5(8):e98.
  • Jo J, Tan AT, Ussher JE, Sandalova E, Tang X-Z, Tan-Garcia A et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 2014;10:e1004210.
  • Ille´s Z, Shimamura M, Newcombe J, Oka N, Yamamura T. Accumulation of Vα7.2-Jα33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int Immunol. 2004;16:223–230.
  • Treiner E, Liblau RS. Mucosal associated invariant T cells in multiple sclerosis: the jury is still out. Front Immunol. 2015;6:503.
  • Croxford JL, Miyake S, Huang YY, Shimamura M, Yamamura T. Invariant V(alpha)19iT cells regulate autoimmune inflammation. Nat Immunol. 2006;7(9):987–994.
  • Miyazaki Y, Miyake S, Chiba A, Lantz O, Yamamura T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int Immunol. 2011;23(9):529–535.
  • Annibali V, Ristori G, Angelini DF, et al. CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. Brain. 2011;134(Pt 2):542–554.
  • Willing A, Leach OA, Ufer F, et al. CD8(+) MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur J Immunol. 2014;44(10):3119–3128.
  • Bianchini E, De Biasi S, Simone AM, et al. Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis. Immunol Lett. 2017;183:1–7.
  • Salou M, Nicol B, Garcia A, et al. Neuropathologic, phenotypic and functional analyses of mucosal associated invariant T cells in multiple sclerosis. Clin Immunol. 2016;166–167:1–11.
  • Sugimoto C, Hirotani M, Yoshikiyo K, et al. The dynamics of mucosal-associated invariant T cells in multiple sclerosis. Springerplus. 2016;5(1):1259.
  • Wen Z, Fiocchi C. Inflammatory Bowel Disease: Autoimmune or immune-mediated pathogenesis? Clin Develop Immunol. 2004;11(3/4):195–204.
  • De Souza H, Fiocchi C. Immunopathogenesis of IBD: Current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27.
  • Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M, Marcelo P, et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol. 2014;176(2):266–274.
  • Treiner E. Mucosal-associated invariant T cells in inflammatory bowel disease: bystanders, defenders, or offenders. Front Immunol. 2015;6:27. doi:10.3389/fimmu.2015.00027. https://doi.org/10.3389/fimmu.2015.00027” PMID:25699045
  • Haga K, Chiba A, Shibuya T, et al. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J Gastroenterol Hepatol. 2016;31(5):965–972.
  • Hiejima E, Kawai T, Nakase H, et al. Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflam Bowel Dis. 2015;21(7):1529–1540.
  • Wada J and Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016;12:13–26.
  • Magalhaes I, Pingris K, Poitou C, et al. Mucosal associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125(4):1752–1762.
  • Magalhaes I, Kiaf B, Lehuen A. iNKT and MAIT cell alterations in diabetes. Front Immunol. 2015;6:341.
  • Cho YN, Kee SJ, Kim TJ, et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J Immunol. 2014;193(8):3891–3901.
  • Riley J. PD-1 signalling in primary T cells. Immunol Rev. 2009;229(1):114–125.
  • Teunissen MB, Yeremenko NG, Baeten DL, et al. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J Invest Dermatol. 2014;134(12):2898–2907.
  • Mortezavi M, Ritchlin C. Immunologic advances reveal new targets in psoriasis and psoriatic arthritis. Discov Med. 2015;20(110):169–175.
  • Smith DJ, Hill GR, Bell SC, Reid DW. Reduced mucosal associated invariant T-cells are associated with increased disease severity and Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One. 2014;9(10):e109891.
  • Braudeau C, Amouriaux K, Néel A, et al. Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J Autoimmun. 2016;70:73–79.
  • Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013;65(1):1–11.
  • Moutsopoulos HM, Chused TM, Mann DL, et al. Sjögren's syndrome (Sicca syndrome): Current issues. Ann Intern Med. 1980;92(2 Pt 1):212–226.
  • Brito-Zeron P, Ramos-Casals M. Advances in the understanding and treatment of systemic complications in Sjogren's syndrome. Curr Opin Rheumatol. 2014;26:520–527.
  • Moreira I, Teixeira F, Martins Silva A, Vasconcelos C, Farinha F, Santos E. Frequent involvement of central nervous system in primary Sjogren syndrome. Rheumatol Int. 2015;35:289–294.
  • Wang JJ, Macardle C, Weedon H, Beroukas D, Banovic T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjögren's syndrome patients. Eur J Immunol. 2016;46(10):2444–2453.
  • Peterfalvi A, Gomori E, Magyarlaki T, et al. Invariant Valpha7.2-Jalpha33 TCR is expressed in human kidney and brain tumors indicating infiltration by mucosal-associated invariant T (MAIT) cells. Int Immunol. 2008;20(12):1517–1525.
  • Zabijak L, Attencourt C, Guignant C, et al. Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol Immunother. 2015;64:1601–1608.
  • Sundström P, Ahlmanner F, Akéus P, et al. Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-γ. J Immunol. 2015;195(7):3472–3481.
  • Won EJ, Ju JK, Cho YN, et al. Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget. 2016;7(46):76274–76290.
  • Kim JC, Jin HM, Cho YN, Kwon Y-S, Kee S-J, Park Y-W. Deficiencies of circulating mucosal-associated invariant T cells and natural killer T cells in patients with acute cholecystitis. J Korean Med Sci. 2015;30(5):606–611.
  • Kumar V, Sharma A. Innate immunity in sepsis pathogenesis and its modulation: New immunomodulatory targets revealed. J Chemother. 2008;20(6):672–683.
  • Grimaldi D, Le Bourhis L, Sauneuf B, et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 2014;40(2):192–201.
  • Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SM. CD1d- and MR1-restricted T cells in sepsis. Front Immunol. 2015;6:401. doi:10.3389/fimmu.2015.00401 https://doi.org/10.3389/fimmu.2015.00401 PMID:26322041
  • Kwon YS, Jin HM, Cho YN, , et al. Mucosal-associated invariant T cell deficiency in chronic obstructive pulmonary disease. COPD. 2015;9:1–7. [Epub ahead of print]
  • Sugimoto C, Konno T, Wakao R, Fujita H, Fujita H, Wakao H. Mucosal-associated invariant T cell is a potential marker to distinguish fibromyalgia syndrome from arthritis. PLoS One. 2015;10(4):e0121124.
  • Ishimori A, Harada N, Chiba A, et al. Circulating activated innate lymphoid cells and mucosal-associated invariant T cells are associated with airflow limitation in patients with asthma. Allergol Int. 2016;S1323–8930(16):30105–30108.
  • Cui Y, Franciszkiewicz K, Mburu YK, et al. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J Clin Invest. 2015;125(11):4171–4185.
  • Sugimoto C, Fujita H, Wakao H. Mucosal-associated invariant T cells from induced pluripotent stem cells: A novel approach for modelling human diseases. World J Stem Cells. 2016;8(4):1581–1569.
  • Laugel B, Lloyd A, Meermeier EW, et al. Engineering of isogenic cells deficient for MR1 with a CRISPR/Cas9 lentiviral system: Tools to study microbial antigen processing and presentation to human MR1-restricted T cells. J Immunol. 2016;197(3):971–982.
  • Meermeier EW, Laugel BF, Sewell AK, et al. Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens. Nat Commun. 2016;7:12506.
  • Novak J, Dobrovolny J, Novakova L, Kozak T. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol. 2014;80(4):271–275.
  • Jo YG, Choi HJ, Kim JC, , et al. Deficiencies of circulating Mucosal-associated invariant T cells and Natural Killer T cells in patients with multiple trauma. J Korean Med Sci. 2017;32(5):750–756.
  • Keller AN, Eckle SB, Xu W et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat Immunol. 2017;18(4):402–411.
  • Ammitzboll C, Bornsen L, Christensen JR, et al. Smoking reduces circulating CD26hiCD161hi MAIT cells in healthy individuals and patients with multiple sclerosis. J Leukoc Biol. 2017;101:1–10. [Epub ahead of print]. doi:10.1189/jlb.3A0616-267R. PMID:28049141
  • Seeff LB, Curto TM, Szabo G, et al. Herbal product use by a persons enrolled in the hepatitis C antiviral long-term treatment against Cirrhosis (HALT-C) Trial. Hepatology. 2008;47(2):605–612.
  • Polyak SJ, Ferenci P, Pawlotsky JM. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology. 2013;57(3):1262–1271.
  • McClure J, Lovelace ES, Elahi S, Maurice NJ, Wagoner J, Dragavon J, et al. Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation. PLoS One. 2012;7(7):e41832.
  • Lovelace ES, Maurice NJ, Miller HW, et al. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells. PLoS One. 2017;12(2):e0171139.
  • Mak JY, Xu W, Reid RC, et al. Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells. Nat Commun. 2017;8:14599. doi:10.1038/ncomms14599. https://doi.org/10.1038/ncomms14599 PMID:28272391
  • Chiba A, Tamura N, Yoshikiyo K, et al. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res Ther. 2017;19(1):58. doi:10.1186/s13075-017-1257-5. https://doi.org/10.1186/s13075-017-1257-5 PMID:28288675
  • Conti P, Shaik-Dasthagirisaeb Y. Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol. 2015;40(3):380–386.
  • Spirig R, Tsui J, Shaw S. The emerging role of TLRs and innate immunity in cardiovascular disease. Cardiol Res Pract. 2012;18:1394.
  • Fergusson JR, Hühn MH, Swadling L, et al. CD161(int)CD8+ T cells: A novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol. 2016;9(2):401–413.
  • Tang X, Jo J, Tan AT, et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 2013;190:3142–3152.
  • Jeffery HC, van Wilgenburg B, Kurioka A, et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol. 2016;64(5):1118–1127.
  • Hinks TS, Wallington JC, Williams AP, Djukanović R, Staples KJ, Wilkinson TM. Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung. Implications for non type able Haemophilus influenzae infection. Am J Respir Crit Care Med. 2016;194(10):1208–1218.
  • Lepore M, Kalinichenko A, Colone A, et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat Commun. 2014;5:3866. doi:10.1038/ncomms4866. PMID:24832684
  • Kawachi I, Maldonado J, Strader C, Gilfillan S. MR1-Restricted V 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J Immunol. 2006;176:1618–1627.
  • McCulloch CA, Downey GP, El-Gabalawy H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Discov. 2006;5(10):864–876.
  • Keystone EC, Kavanaugh A. What to do with TNF failures. Expert Opin Drug Saf. 2005;4:149–155.
  • Durham AL, Caramori G, Chung KF, Adcock IM. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res. 2016;167(1):192–203.
  • Tominaga K, Yamagiwa S, Setsu T, et al. Possible involvement of mucosal-associated invariant T cells in the progression of inflammatory bowel diseases. Biomed Res. 2017;38(2):111–121.
  • Salerno-Goncalves R, Luo D, Fresnay S, et al. Challenge of humans with wild-type Salmonella enterica serovar Typhi elicits changes in the activation and homing characteristics of mucosal-associated invariant T cells. Front Immunol. 2017;8:398. doi:10.3389/fimmu.2017.00398. PMID:28428786
  • Liu J, Brutkiewicz RR. The TLR9 signaling pathway regulates MR1-mediated bacterial antigen presentation in B cells. Immunology. 2017;152(2):232–242. doi:10.1111/imm.12759.
  • Lamichhane R, Ussher JE. Expression and trafficking of MR1. Immunology. 2017;151(3):270–279.
  • Paquin-Proulx D, Greenspun BC, Costa EA, et al. MAIT cells are reduced in frequency and functionally impaired in human T lymphotropic virus type 1 infection: Potential clinical implications. PLoS One. 2017 6;12(4):e0175345. doi:10.1371/journal.pone.0175345. PMID:28384290
  • Saito Y, Sugimoto C, Mituyama T, Wakao H. Epigenetic silencing of V(D)J recombination is a major determinant for selective differentiation of mucosal-associated invariant t cells from induced pluripotent stem cells. PLoS One. 2017;12(3):e0174699. doi:10.1371/journal.pone.0174699. PMID:28346544
  • Chiba A, Tajima R, Tomi C, Miyazaki Y, Yamamura T, Miyake S. Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis. Arthritis Rheum. 2012;64(1):153–161.
  • Keller AN, Corbett AJ, Wubben JM, McCluskey J, Rossjohn J. MAIT cells and MR1-antigen recognition. Curr Opin Immunol. 2017;46:66–74.
  • Moreira ML, Tsuji M, Corbett AJ, et al. MAIT-cells: A tailor-made mate in the ancient battle against infectious diseases? Immunol Lett. 2017;187:53–60.
  • Hinks TS. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology. 2016;148(1):1–12.
  • Sakala IG, Kjer-Nielsen L, Eickhoff CS, et al. Functional heterogeneity and antimycobacterial effects of mouse mucosal-associated invariant T cells specific for riboflavin metabolites. J Immunol. 2015;195 (2):587–601.
  • Cannons JL, Yu LJ, Hill B, Mijares LA, et al. SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity. 2004;21(5):693–706.
  • Dias J, Leeansyah E, Sandber JK. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokine. Proc Natl Acad Sci USA. 2017;114(27):E5434–E5443. pii: 201705759. doi:10.1073/pnas.1705759114. [Epub ahead of print].
  • Yong YK, Tan HY, Saeidi A, Rosmawati M, et al. Decrease of CD69 levels on TCR Va7.2þCD4þ innate-like lymphocytes is associated with impaired cytotoxic functions in chronic hepatitis B virus-infected patients. Innate Immun. 2017;23(5):459–467. doi:10.1177/1753425917714854. [Epub ahead of print]. PMID:28606013
  • Shaler CR, Choi J, Rudak PT, Memarnejadian A, et al. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol. 2017 Jun 20; 15(6):e2001930. doi:10.1371/journal.pbio.2001930. eCollection 2017 Jun. PMID:28632753

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.