2,914
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals

, , , , &
Pages 20-36 | Received 27 Jul 2017, Accepted 12 Sep 2017, Published online: 13 Oct 2017

References

  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–145.
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–983.
  • Ignacio G, Nordone S, Howard KE, Dean GA. Toll-like receptor expression in feline lymphoid tissues. Vet Immunol Immunopathol. 2005;106(3):229–237.
  • Qureshi ST, Medzhitov R. Toll-like receptors and their role in experimental models of microbial infection. Genes Immun. 2003;4(2):87–94.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14(11):2592–2603.
  • Chao W. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol. 2009;296(1):H1–12.
  • Cairns B, Maile R, Barnes CM, Frelinger JA, Meyer AA. Increased toll-like receptor 4 expression on T cells may be a mechanism for enhanced T cell response late after burn injury. J Trauma. 2006;61(2):293–298.
  • Kruger B, Krick S, Dhillon N, et al. Donor toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci USA. 2009;106(9):3390–3395.
  • Tsujimoto H, Ono S, Efron PA, et al. Role of toll-like receptors in the development of sepsis. Shock. 2008;29(3):315–321.
  • Monaco C, Gregan SM, Navin TJ, et al. Toll-like receptor-2 mediates inflammation and matrix degradation in human atherosclerosis. Circulation. 2009;120:2462–2469.
  • Cole JE, Navin TJ, Cross AJ, et al. Unexpected protective role for toll-like receptor 3 in the arterial wall. PNAS. 2011;108(24):2372–2377.
  • Rakoff-Nahoum S, Medzhitov R. Role of toll-like receptors in tissue repair and tumorigenesis. Biochemistry. 2008;73(5):555–561.
  • Zhang J, Xu K, Ambati B, Fu-Shin XY. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthalmol Vis Sci. 2003;44(10):4247–4254.
  • Gribar SC, Sodhi CP, Richardson WM, et al. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol. 2009;182(1):636–646.
  • Caplan MS, Simon D, Jilling T. The role of PAF, TLR, and the inflammatory response in neonatal necrotizing enterocolitis. Semin Pediatr Surg. 2005;14(3):145–151.
  • Clarke DL, Davis NH, Majithiya JB, et al. Development of a mouse model mimicking key aspects of a viral asthma exacerbation. Clin Sci (Lond). 2014;126(8):567–580.
  • Nadeem A, Siddiqui N, Al-Harbi NO, Al-Harbi MM, Ahmad SF. TLR-7 agonist attenuates airway reactivity and inflammation through Nrf2-mediated antioxidant protection in a murine model of allergic asthma. Int J Biochem Cell Biol. 2016;73:53–62.
  • Netea MG, Van der Graaf CA, Vonk AG, et al. The Role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185(10):1483–1489.
  • Van der Heijden IM, Wilbrink B, Tchetverikov I, et al. Presence of bacterial DNA and bacterial peptidoglycans in the joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum. 1998;41(9):S162.
  • Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–1139.
  • Prinz M, Garbe F, Schmidt H, et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest. 2006;116(2):456–464.
  • Akahoshi T, Murakami Y, Kitasato H. Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol. 2007;19(2):146–150.
  • Shchebliakov DV, Logunov DY, Tukhvatulin AI, et al. Toll-like receptors (TLRs): the role in tumor progression. Acta Naturae. 2010;2(3):21–29.
  • Yu L, Chen S. Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Immunol Immunother. 2008;57(9):1271–1278.
  • Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9(1):57–63.
  • Molteni M, Marabella D, Orlandi C, Rossetti C. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett. 2006;235(1):75–83.
  • Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol. 2013;93(6):847–863.
  • Paulos CM, Kaiser A, Wrzesinski C, et al. Toll-like receptors in tumor immunotherapy. Clin Cancer Res. 2007;13(18):5280–5289.
  • Van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. TRENDS Immunol. 2006;27(1):49–55.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.
  • Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885–890.
  • Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–351.
  • Takeuchi O, Takeda K, Hoshino K, et al. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol. 2000;12(1):113–117.
  • Hoebe K, Du X, Georgel P, Janssen E. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424(6850):743–748.
  • Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816–825.
  • Toshchakov V, Jones BW, Perera PY, et al. TLR4, but not TLR2, mediates IFN-binduced STAT1a/b-dependent gene expression in macrophages. Nat Immunol. 2002;3(4):392–398.
  • Jiang X, Chen ZJ. The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol. 2012;12(1):35–48.
  • Beutler B. SHIP, TGF-beta, and endotoxin tolerance. Immunity. 2004;21(2):134–135.
  • Biswas SK, Tergaonkar V. Myeloid differentiation factor 88-independent toll-like receptor pathway: sustaining inflammation or promoting tolerance. Int J Biochem Cell Biol. 2007;39(9):1582–1592.
  • Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol. 2000;18(1):143–164.
  • Kinjyo I, Hanada T, Inagaki-Ohara K, et al. SOCS1/JAB is a negative regulator of LPS induced macrophage activation. Immunity. 2002;17(5):583–591.
  • Wesche H, Gao X, Li X, et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem. 1999;274(27):19403–19410.
  • Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. 2003 J Exp Med.;197(2):263–268.
  • Ziegler-Heitbrock L. The p50-homodimer mechanism in tolerance to LPS. J Endotoxin Res. J Endotoxin Res. 2001;7(3):219–222.
  • Brint EK, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol. 2004;5(4):373–379.
  • Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 2003;4(9):920–927.
  • An H, Hou J, Zhou J, et al. Phosphatase SHP-1 promotes TLR-and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol. 2008;9(5):542–550.
  • McCoy CE, Carpenter S, Pålsson-McDermott EM, Gearing LJ, O'Neill LA. Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like receptor-3 and -4 by targeting TBK1 activation. J Biol Chem. 2008;283(21):14277–14285.
  • Carty M, Goodbody R, Schroder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7(10):1074–1081.
  • David NF. Factors affecting gene expression. Merck Manual. 2013.
  • Lukas J, Lukas C, Bartek J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol. 2011;13(10):1161–1169.
  • Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–853.
  • Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002;34(3):275–306.
  • Corden J, Wasylyk B, Buchwalder A, et al. Promoter sequences of eukaryotic protein-coding genes. Science. 1980;209(4463):1406–1414.
  • Kaslow RA, McNicholl J, Hill AV, (Eds.) Genetic Susceptibility to Infectious Diseases. USA: Oxford University Press; 2008.
  • Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867.
  • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–273.
  • Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84(3):359–369.
  • Brachat A, Pierrat B, BruÈngger A, Heim J. Comparative microarray analysis of gene expression during apoptosis-induction by growth factor deprivation or protein kinase C inhibition. Oncogene. 2000;19(44):5073–5082.
  • Herrera RE, Sah VP, Williams BO, et al. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mole Cell Biol. 1996;16(5):2402–2407.
  • Lobo I. Environmental influences on gene expression. Nat Edu. 2008;1(1):39.
  • Basu M, Paichha M, Swain B, et al. Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla). Biotech. 2015;5(6):1021–1030.
  • Yan X, Xiu F, An H, et al. Fever range temperature promotes TLR4 expression and signaling in dendritic cells. Life Sci. 2007;80(4):307–313.
  • Sophia I, Sejian V, Bagath M, et al. Quantitative expression of hepatic toll-like receptors 1–10 mRNA in Osmanabadi goats during different climatic stresses. Small Rumin Res. 2016;141:11–16.
  • Sophia I, Sejian V, Bagath M, Bhatta R. influence of different environmental stresses on various spleen toll-like receptors genes in Osmanabadi goats. Asian J Biol Sci. 2016; DOI: 10.3923/ajbs.2016.
  • Rehli M. Of mice and men: species variations of toll-like receptor expression. Trends Immunol. 2002;23(8):375–378.
  • Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000;164(11):5998–6004.
  • Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol. 2000;165(10):5767–5772.
  • Jann OC, Werling D, Chang JS, Haig D, Glass EJ. Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol. 2008;8(1):288.
  • Alvarez-Rodriguez L, Lopez-Hoyos M, Garcia-Unzueta M, et al. Age and low levels of circulating vitamin D are associated with impaired innate immune function. J Leukoc Biol. 2012;91(5):829–838.
  • Boehmer ED, Goral J, Faunce DE, Kovacs EJ. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol. 2004;75(2):342–349.
  • Renshaw M, Rockwell J, Engleman C, et al. Cutting edge: impaired toll-like receptor expression and function in aging. J Immunol. 2002;169(9):4697–4701.
  • Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005;19(5):389–397.
  • Yao XD, Fernandez S, Kelly MM, Kaushic C, Rosenthal KL. Expression of toll-like receptors in murine vaginal epithelium is affected by the estrous cycle and stromal cells. J Reprod Immunol. 2007;75(2):106–119.
  • Rettew JA, Huet YM, Marriott I. Estrogens augment cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrinology. 2009;150(8):3877–3884.
  • Nicol T, Bilbey DL, Charles LM, Cordingley JL, Vernon-Roberts B. Oestrogen: the natural stimulant of body defence. J Endocrinol. 1964;30(3):277–291.
  • Rettew JA, Huet-Hudson YM, Marriott I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod. 2008;78(3):432–437.
  • Kim SY, Choi YJ, Joung SM, et al. Hypoxic stress up‐regulates the expression of toll‐like receptor 4 in macrophages via hypoxia‐inducible factor. Immunology. 2010;129(4):516–524.
  • Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes. Diabetes. 2008;57(11):3090–3098.
  • Nakahira K, Kim HP, Geng XH, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med. 2006;203(10):2377–2389.
  • Gleeson M, McFarlin B, Flynn M. Exercise and toll-like receptors. Exerc Immunol Rev. 2006;12(1):34–53.
  • Nagase H, Okugawa S, Ota Y, et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol. 2003;171(8):3977–3982.
  • Devaraj S, Dasu MR, Rockwood J, et al. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008;93(2):578–583.
  • Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861–868.
  • Zhang E, Lu M. Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection. Med Microbiol Immunol. 2015;204(1):11–20.
  • Hausmann M, Kiessling S, Mestermann S, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology. 2002;122(7):1987–2000.
  • Miyaso H, Morimoto Y, Ozaki M, et al. Obstructive jaundice increases sensitivity to lipopolysaccharide via TLR4 upregulation: possible involvement in gut‐derived hepatocyte growth factor‐protection of hepatocytes. J Gastroenterol Hepatol. 2005;20(12):1859–1866.
  • Feng Y, Chao W. Toll-like receptors and myocardial inflammation. Int J Inflam. 2011;170352:1–21.
  • Hritz I, Mandrekar P, Velayudham A, et al. The critical role of toll‐like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology. 2008;48(4):1224–1231.
  • Delneste Y, Beauvillain C, Jeannin P. Innate immunity: structure and function of TLRs. Med Sci (Paris). 2007;23(1):67–73.
  • Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol. 2006;7(1):49–56.
  • Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.
  • Edelmann KH, Richardson-Burns S, Alexopoulou L, et al. Does Toll-like receptor 3 play a biological role in virus infections?. Virology. 2004;322(2):231–238.
  • Sophia I, Sejian V, Bagath M, Bhatta R. Impact of heat stress on immune responses of livestock: a review. Pertanika J Trop Agric Sci. 2016;39(4):459–482.
  • Takeda K, Akira S. Toll-like receptors in innate immunity”. Int Immunol. 2005;17(1):1–14.
  • Sharma N, Akhade AS, Qadri A. Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells. J Leukoc Biol. 2013;93(4):521–528.
  • Sabroe I, Prince LR, Jones EC, et al. Selective roles for toll-like receptor (TLR) 2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol. 2003;170(10):5268–5275.
  • Shim JH, Xiao C, Paschal AE, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19(22):2668–2681.
  • Kaiser WJ, Offermann MK. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol. 2005;174(8):4942–4952.
  • Månsson A, Adner M, Höckerfelt U, Cardell LO. A distinct Toll‐like receptor repertoire in human tonsillar B cells, directly activated by Pam3CSK4, R‐837 and CpG‐2006 stimulation. Immunol. 2006;118(4):539–548.
  • Wyllie DH, Kiss-Toth E, Visintin A, et al. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol. 2000;165(12):7125–7132.
  • Alexopoulou L, Venetta T, Schnare M, et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1-and TLR2-deficient mice. Nat Med. 2002;8(8):878.
  • Massari P, Visintin A, Gunawardana J, et al. Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J Immunol. 2006;176(4):2373–2380.
  • Wieland CW, Knapp S, Florquin S, et al. Non–Mannose-capped Lipoarabinomannan Induces Lung Inflammation via Toll-like Receptor 2. Am J Respir Crit Care Med. 2004;170(12):1367–1374.
  • Into T, Kiura K, Yasuda M, et al. Stimulation of human Toll‐like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF‐κB activation. Cell Microbiol. 2004;6(2):187–199.
  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274(25):17406–17409.
  • Li M, Chen Q, Shen Y, Liu W. Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll‐like receptor 2. Exp Dermatol. 2009;18(7):603–610.
  • Zhu J, Krishnegowda G, Li G, Gowda DC. Proinflammatory responses by glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum are mainly mediated through the recognition of TLR2/TLR1. Exp Parasitol. 2011;128(3):205–211.
  • Opitz B, Schröder NW, Spreitzer I, et al. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-κB translocation. J Biol Chem. 2001;276(25):22041–22047.
  • Dillon S, Agrawal S, Banerjee K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest. 2006;116(4):916.
  • Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70 role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277(17):15028–15034.
  • Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH. Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J. 2011;75(10):2445–2452.
  • Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272–1281.
  • Bieback K, Lien E, Klagge IM, et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol. 2002;76(17):8729–8736.
  • Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly (I: C). Adv Drug Deliv. 2008;60(7):805–812.
  • Ojaniemi M, Glumoff V, Harju K, et al. Phosphatidylinositol 3‐kinase is involved in Toll‐like receptor 4‐mediated cytokine expression in mouse macrophages. Eur J Immunol. 2003;33(3):597–605.
  • Tada H, Nemoto E, Shimauchi H, et al. Saccharomyces cerevisiae‐and Candida albicans‐derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14‐and Toll‐like receptor 4‐dependent manner. Microbiol Immunol. 2002;46(7):503–512.
  • Gomi K, Kawasaki K, Kawai Y, Shiozaki M, Nishijima M. Toll-like receptor 4-MD-2 complex mediates the signal transduction induced by flavolipin, an amino acid-containing lipid unique to Flavobacterium meningosepticum. J Immunol. 2002;168(6):2939–2943.
  • Kawasaki K, Nogawa H, Nishijima M. Identification of mouse MD-2 residues important for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 antibodies, and for conferring LPS and taxol responsiveness on mouse TLR4 by alanine-scanning mutagenesis. J Immunol. 2003;170(1):413–420.
  • Rallabhandi P, Phillips RL, Boukhvalova MS, et al. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. MBio. 2012;3(4):e00218–12.
  • Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem. 2001;276(33):31332–31339.
  • Campo GM, Avenoso A, Campo S, et al. Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie. 2010;92(2):204–215.
  • Brennan TV, Lin L, Huang X, et al. Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood. 2012;120(14):2899–2908.
  • Motojima M, Matsusaka T, Kon V, Ichikawa I. Fibrinogen that appears in Bowman's space of proteinuric kidneys in vivo activates podocyte Toll-like receptors 2 and 4 in vitro. Nephron Exp Nephrol. 2010;114(2):39–47.
  • Triantafilou K, Vakakis E, Orthopoulos G, et al. TLR8 and TLR7 are involved in the host's immune response to human parechovirus 1. Eur J Immunol. 2005;35(8):2416–2423.
  • Hemmi H, Kaisho T, Takeuchi O. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.
  • Stringfellow DA, Vanderberg HC, Weed SD. Interferon induction by 5-halo-6-phenyl pyrimidinones. J Interferon Res. 1980;1(1):1–4.
  • Horsmans Y, Berg T, Desager JP, et al. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatol. 2005;42(3):724–731.
  • Bauer S, Kirschning CJ, Häcker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. PNAS. 2001;98(16):9237–9242.
  • Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603–607.
  • Chuang TH, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochimica Biophysica Acta. 2001;1518(1):157–161.
  • Ikushima H, Nishida T, Takeda K, et al. Expression of toll-like receptors 2 and 4 is downregulated after operation. Surgery. 2004;135(4):376–385.
  • Holmqvist B, Olsson CF, Svensson ML, et al. Expression of nitric oxide synthase isoforms in the mouse kidney: cellular localization and influence by lipopolysaccharide and Toll-like receptor 4. J Mol Histol. 2005;36(8):499–516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.