242
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The prognostic value of regulatory T cells infiltration in HER2-enriched breast cancer microenvironment

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 144-150 | Received 29 Mar 2015, Accepted 02 Nov 2017, Published online: 19 Dec 2017

References

  • Banin Hirata BK, Oda JM, Losi Guembarovski R, Ariza CB, de Oliveira CE, Watanabe MA. Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers. 2014;2014:513158. Epub 2014/03/05. doi:10.1155/2014/513158.
  • Presson AP, Yoon NK, Bagryanova L, et al. Protein expression based multimarker analysis of breast cancer samples. BMC Cancer. 2011;11:230. Epub 2011/06/10. doi:10.1186/1471-2407-11-230.
  • Weigelt B, Reis-Filho JS. Molecular profiling currently offers no more than tumour morphology and basic immunohistochemistry. Breast Cancer Res: BCR. 2010;12 Suppl 4:S5. Epub 2011/01/05. doi:10.1186/bcr2734.
  • Kim M, Agarwal S, Tripathy D. Updates on the treatment of human epidermal growth factor receptor type 2-positive breast cancer. Curr Opin Obstet Gynecol. 2014;26(1):27–33. Epub 2013/12/18. doi:10.1097/GCO.0000000000000043.
  • Kundu N, Ma X, Holt D, et al. Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Res Treat. 2009;117(2):235–42. Epub 2008/09/17. doi:10.1007/s10549-008-0180-5.
  • Ostrand-Rosenberg S. Cancer and complement. Nature Biotechnol. 2008;26(12):1348–9. Epub 2008/12/09. doi:10.1038/nbt1208-1348.
  • Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353(25):2654–66. Epub 2005/12/24. doi:10.1056/NEJMoa051424.
  • Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13. Epub 2003/01/17. doi:10.1056/NEJMoa020177.
  • Tsang JY, Hui SW, Ni YB, et al. Lymphocytic infiltrate is associated with favorable biomarkers profile in HER2-overexpressing breast cancers and adverse biomarker profile in ER-positive breast cancers. Breast Cancer Res Treat. 2014;143(1):1–9. Epub 2013/11/26. doi:10.1007/s10549-013-2781-x.
  • Lee S, Cho EY, Park YH, et al. Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol. 2013;52(1):73–81. Epub 2012/10/19. doi:10.3109/0284186X.2012.731520.
  • Eisenberg ALA, Koifman S. Cancer de mama: marcadores tumorais. Revista Brasileira de Cancerologia. 2001;47(4):11.
  • Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells. 1998;16(6):413–28. Epub 1998/12/01. doi:10.1002/stem.160413.
  • Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003;284(1):99–110. doi:10.1016/S0014-4827(02)00099-X.
  • Citri A, Skaria KB, Yarden Y. The deaf and the dumb: The biology of ErbB-2 and ErbB-3. Exp Cell Res. 2003;284(1):54–65. doi:10.1016/S0014-4827(02)00101-5.
  • Lonardo F, Di Marco E, King CR, et al. The normal erB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. N Biol. 1990;2(11):11.
  • Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol. 2001;12:3–8. doi:10.1093/annonc/12.suppl_1.S3.
  • Gulben K, Berberoglu U, Aydogan O, et al. Subtype is a predictive factor of nonsentinel lymph node involvement in sentinel node-positive breast cancer patients. J Breast Cancer. 2014;17(4):370–5. Epub 2014/12/31. doi:10.4048/jbc.2014.17.4.370.
  • Pathmanathan N, Bilous AM. HER2 testing in breast cancer: An overview of current techniques and recent developments. Pathology. 2012;44(7):587–95. Epub 2012/11/01. doi:10.1097/PAT.0b013e328359cf9a.
  • Knutson KL, Perez EA, Ballman KV, et al. Generation of adaptive HER2-spectific immunity in HER2 breast cancer patients by addition of trastuzumab to chemotherapy in the adjuvant setting: NCCTG (Alliance) study 430 N9831. J. Clin Oncol (Meeting Abstracts) 2013;30(15):522–522. doi:10.1200/jco.2013.31.15_suppl.522.
  • Fridman WH, Pages F, Sautes-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. Epub 2012/03/16. doi:10.1038/nrc3245.
  • DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res: BCR. 2007;9(4):212. Epub 2007/08/21. doi:10.1186/bcr1746.
  • Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;72(13):3125–30. Epub 2012/06/23. doi:10.1158/0008-5472.CAN-11-4094.
  • Huang Y, Ma C, Zhang Q, et al. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget. 2015;6(19):17462–78 . Epub 2015/05/15.
  • Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55. Epub 2011/04/13. doi:10.1200/JCO.2010.30.5037.
  • Bohling SD, Allison KH. Immunosuppressive regulatory T cells are associated with aggressive breast cancer phenotypes: a potential therapeutic target. Mod Pathol. 2008;21(12):1527–32. Epub 2008/09/30. doi:10.1038/modpathol.2008.160.
  • Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64. Epub 1995/08/01.
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 2005;6(4):345–52. Epub 2005/03/24. doi:10.1038/ni1178.
  • Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. Faseb J. 2012;26(6):2253–76. Epub 2012/03/01. doi:10.1096/fj.11-193672.
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 2003;4(4):330–6. Epub 2003/03/04. doi:10.1038/ni904.
  • Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771–5. Epub 2007/01/16. doi:10.1038/nature05543.
  • Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007;445(7130):936–40. Epub 2007/01/24. doi:10.1038/nature05563.
  • Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: How do they suppress immune responses? Int Immunol. 2009;21(10):1105–11. Epub 2009/09/10. doi:10.1093/intimm/dxp095.
  • Lin X, Chen M, Liu Y, et al. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells. Int J Clin Exp Pathol. 2013;6(2):116–23. Epub 2013/01/19.
  • Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol. 2013;4:190. Epub 2013/07/23. doi:10.3389/fimmu.2013.00190.
  • Fan X, Allison JP. Chemokines and recruitment of regulatory T cells to the tumor. J Immunol. 2009;182(40.42).
  • Curiel TJ, Coukos G, Zou LH, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. doi:10.1038/nm1093.
  • Gobert M, Treilleux I, Bendriss-Vermare N, et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9. doi:10.1158/0008-5472.CAN-08-2360.
  • Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: Role of tumor-derived TGF-beta. J Immunol. 2007;178(5):2883–92. Epub 2007/02/22. doi:10.4049/jimmunol.178.5.2883.
  • Yu Y, Xiao CH, Tan LD, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br J Cancer. 2014;110(3):724–32. Epub 2013/12/18. doi:10.1038/bjc.2013.768.
  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nature Rev Immunol. 2012;12(4):253–68. Epub 2012/03/23. doi:10.1038/nri3175.
  • Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24(34):5373–80. Epub 2006/12/01. doi:10.1200/JCO.2006.05.9584.
  • Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13. Epub 2009/11/18. doi:10.1200/JCO.2009.23.7370.
  • Schmidt M, Bohm D, von Torne C, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405–13. Epub 2008/07/03. doi:10.1158/0008-5472.CAN-07-5206.
  • Ladoire S, Arnould L, Apetoh L, et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res. 2008;14(8):2413–20. Epub 2008/04/17. doi:10.1158/1078-0432.CCR-07-4491.
  • Demir L, Yigit S, Ellidokuz H, et al. Predictive and prognostic factors in locally advanced breast cancer: Effect of intratumoral FOXP3+ Tregs. Clin Exp Metastasis. 2013;30(8):1047–62. Epub 2013/07/10. doi:10.1007/s10585-013-9602-9.
  • Liu F, Lang R, Zhao J, et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55. Epub 2011/07/01. doi:10.1007/s10549-011-1647-3.
  • Gupta R, Babb JS, Singh B, et al. The numbers of FoxP3+ lymphocytes in sentinel lymph nodes of breast cancer patients correlate with primary tumor size but not nodal status. Cancer Invest. 2011;29(6):419–25. Epub 2011/06/09. doi:10.3109/07357907.2011.585193.
  • Gokmen-Polar Y, Thorat MA, Sojitra P, et al. FOXP3 expression and nodal metastasis of breast cancer. Cell Oncol (Dordr). 2013;36(5):405–9. Epub 2013/09/03. doi:10.1007/s13402-013-0147-3.
  • deLeeuw RJ, Kost SE, Kakal JA, et al. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9. Epub 2012/04/19. doi:10.1158/1078-0432.CCR-11-3216.
  • Mahmoud SM, Paish EC, Powe DG, et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat. 2011;127(1):99–108. Epub 2010/06/18. doi:10.1007/s10549-010-0987-8.
  • Wang Y, Sun J, Zheng R, et al. Regulatory T cells are an important prognostic factor in breast cancer: a systematic review and meta-analysis. Neoplasma. 2016;63(5):789–98.
  • Hamy AS, Pierga JY, Sabaila A, et al. Stromal lymphocyte infiltration after neoadjuvant chemotherapy is associated with aggressive residual disease and lower disease-free survival in HER2-positive breast cancer. Annals of Oncology: official journal of the European Society for Medical Oncology / ESMO. 2017;28:2233–40.
  • Liu TJ, Sun BC, Zhao XL, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544–53. Epub 2012/04/04. doi:10.1038/onc.2012.85.
  • West NR, Kost SE, Martin SD, et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108(1):155–62. Epub 2012/11/22. doi:10.1038/bjc.2012.524.
  • Oda N, Shimazu K, Naoi Y, et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136(1):107–16. doi:10.1007/s10549-012-2245-8.
  • Ladoire S, Arnould L, Mignot G, et al. Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;125(1):65–72. doi:10.1007/s10549-010-0831-1.
  • Ali HR, Provenzano E, Dawson SJ, et al. Association between CD8+T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol. 2014;25(8):1536–43. doi:10.1093/annonc/mdu191.
  • Li YQ, Liu FF, Zhang XM, et al. Tumor secretion of CCL22 activates intratumoral Treg infiltration and is independent prognostic predictor of breast cancer. PLoS One. 2013;8(10):e76379. Epub 2013/10/15. doi:10.1371/journal.pone.0076379.
  • Herrera AC, Panis C, Victorino VJ, et al. Molecular subtype is determinant on inflammatory status and immunological profile from invasive breast cancer patients. Cancer Immunol Immunother. 2012;61(11):2193–201. Epub 2012/05/24. doi:10.1007/s00262-012-1283-8.
  • Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm. 2014;2014:141747. Epub 2014/06/04. doi:10.1155/2014/141747.
  • Wang SE. The functional crosstalk between HER2 tyrosine kinase and TGF-B signaling in breast cancer malignancy. J Signal Transduct. 2011;2011:8. doi:10.1155/2011/804236.
  • Seton-Rogers SE, Lu Y, Hines LM, et al. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. P Natl Acad Sci USA. 2004;101(5):1257–62. Epub 2004/01/24. doi:10.1073/pnas.0308090100.
  • Chow A, Arteaga CL, Wang SE. When tumor suppressor TGFbeta meets the HER2 (ERBB2) oncogene. J Mammary Gland Biol Neoplasia. 2011;16(2):81–8. Epub 2011/05/19. doi:10.1007/s10911-011-9206-4.
  • Shen Y, Wei Y, Wang Z, et al. TGF-beta regulates hepatocellular carcinoma progression by inducing Treg cell polarization. Cell Physiol Biochem. 2015;35(4):1623–32. Epub 2015/04/01. doi:10.1159/000373976.
  • Moo-Young TA, Larson JW, Belt BA, et al. Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J Immunother. 2009;32(1):12–21. Epub 2009/03/25. doi:10.1097/CJI.0b013e318189f13c.
  • Galon J, Pages F, Marincola FM, et al. The immune score as a new possible approach for the classification of cancer. J Transl Med. 2012;10:1. Epub 2012/01/05. doi:10.1186/1479-5876-10-1.
  • Bluestone JA, Tang Q. Immunotherapy: Making the case for precision medicine. Sci Transl Med. 2015;7(280):280ed3. Epub 2015/03/27. doi:10.1126/scitranslmed.aaa9846.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.