335
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy

, , , &
Pages 151-164 | Received 08 Sep 2017, Accepted 07 Nov 2017, Published online: 06 Dec 2017

References

  • Salter JD, Bennett RP, Smith HC. The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem Sci. 2016;41(7):578– 594. doi:10.1016/j.tibs.2016.05.001. PubMed PMID:27283515; PubMed Central PMCID: PMCPMC4930407.
  • Okada A, Iwatani Y. APOBEC3G-Mediated G-to-A Hypermutation of the HIV-1 Genome: The Missing Link in Antiviral Molecular Mechanisms. Front Microbiol. 2016;7:2027. doi:10.3389/fmicb.2016.02027. PubMed PMID:28066353.
  • Monajemi M, Woodworth CF, Benkaroun J, et al. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology. 2012;9:35. doi:10.1186/1742-4690-9-35. PubMed PMID:22546055.
  • Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol. 2014;5:534. doi:10.3389/fmicb.2014.00534. PubMed PMID:25352838.
  • Knisbacher BA, Gerber D, Levanon EY. DNA Editing by APOBECs: A Genomic Preserver and Transformer. Trends Genet. 2016;32(1):16–28. doi:10.1016/j.tig.2015.10.005. PubMed PMID:26608778.
  • King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrodinger's CATalytic Pocket. Front Immunol. 2017;8:351. doi:10.3389/fimmu.2017.00351. PubMed PMID:28439266.
  • Siriwardena SU, Chen K, Bhagwat AS. Functions and Malfunctions of Mammalian DNA-Cytosine Deaminases. Chem Rev. 2016;116(20):12688–12710. doi:10.1021/acs.chemrev.6b00296. PubMed PMID:27585283.
  • McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell. 2017;168(4):613–628. doi:10.1016/j.cell.2017.01.018. PubMed PMID:28187284.
  • Koning FA, Newman EN, Kim EY, et al. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol. 2009;83(18):9474–9485. doi:10.1128/JVI.01089-09. PubMed PMID:19587057.
  • Harris RS, Bishop KN, Sheehy AM, et al. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113(6):803–809. doi:10.1016/S0092-8674(03)00423-9. PubMed PMID:12809610.
  • Zheng YH, Irwin D, Kurosu T, et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 2004;78(11):6073–6076. doi:10.1128/JVI.78.11.6073-6076.2004. PubMed PMID:15141007.
  • Suspene R, Sommer P, Henry M, et al. APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res. 2004;32(8):2421–2429. doi:10.1093/nar/gkh554. PubMed PMID:15121899.
  • Shindo K, Takaori-Kondo A, Kobayashi M, et al. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem. 2003;278(45):44412–44416. doi:10.1074/jbc.C300376200. PubMed PMID:12970355.
  • Wiegand HL, Cullen BR. Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins. J Virol. 2007;81(24):13694–13699. doi:10.1128/JVI.01646-07. PubMed PMID:17913830.
  • Klarmann GJ, Chen X, North TW, et al. Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J Biol Chem. 2003;278(10):7902–7909. doi:10.1074/jbc.M207223200. PubMed PMID:12458216.
  • Lecossier D, Bouchonnet F, Clavel F, et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 2003;300(5622):1112. doi:10.1126/science.1083338. PubMed PMID:12750511.
  • Mangeat B, Turelli P, Caron G, et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424(6944):99–103. doi:10.1038/nature01709. PubMed PMID:12808466.
  • Zhang H, Yang B, Pomerantz RJ, et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003;424(6944):94–98. doi:10.1038/nature01707. PubMed PMID:12808465.
  • Yu Q, Konig R, Pillai S, et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol. 2004;11(5):435–442. doi:10.1038/nsmb758. PubMed PMID:15098018.
  • Sheehy AM, Gaddis NC, Choi JD, et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646–650. doi:10.1038/nature00939. PubMed PMID:12167863.
  • Newman EN, Holmes RK, Craig HM, et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol. 2005;15(2):166–170. doi:10.1016/j.cub.2004.12.068. PubMed PMID:15668174.
  • Navarro F, Bollman B, Chen H, et al. Complementary function of the two catalytic domains of APOBEC3G. Virology. 2005;333(2):374–386. doi:10.1016/j.virol.2005.01.011. PubMed PMID:15721369.
  • Anderson JL, Hope TJ. APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. Virology. 2008;375(1):1–12. doi:10.1016/j.virol.2008.01.042. PubMed PMID:18308358.
  • Li XY, Guo F, Zhang L, et al. APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem. 2007;282(44):32065–32074. doi:10.1074/jbc.M703423200. PubMed PMID:17855362.
  • Luo K, Wang T, Liu B, et al. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol. 2007;81(13):7238–7248. doi:10.1128/JVI.02584-06. PubMed PMID:17428847.
  • Mbisa JL, Barr R, Thomas JA, et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol. 2007;81(13):7099–7110. doi:10.1128/JVI.00272-07. PubMed PMID:17428871.
  • Mbisa JL, Bu W, Pathak VK. APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J Virol. 2010;84(10):5250–5259. doi:10.1128/JVI.02358-09. PubMed PMID:20219927.
  • Guo F, Cen S, Niu M, et al. The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. J Virol. 2007;81(20):11322–11331. doi:10.1128/JVI.00162-07. PubMed PMID:17670826.
  • Browne EP, Allers C, Landau NR. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology. 2009;387(2):313–321. doi:10.1016/j.virol.2009.02.026. PubMed PMID:19304304.
  • Miyagi E, Opi S, Takeuchi H, et al. Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol. 2007;81(24):13346–13353. doi:10.1128/JVI.01361-07. PubMed PMID:17928335.
  • Miyagi E, Brown CR, Opi S, et al. Stably expressed APOBEC3F has negligible antiviral activity. J Virol. 2010;84(21):11067–11075. doi:10.1128/JVI.01249-10. PubMed PMID:20702622.
  • Holmes RK, Koning FA, Bishop KN, et al. APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem. 2007;282(4):2587–2595. doi:10.1074/jbc.M607298200. PubMed PMID:17121840.
  • Liddament MT, Brown WL, Schumacher AJ, et al. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol. 2004;14(15):1385–1391. doi:10.1016/j.cub.2004.06.050. PubMed PMID:15296757.
  • Farrow MA, Sheehy AM. Vif and Apobec3G in the innate immune response to HIV: a tale of two proteins. Future Microbiol. 2008;3(2):145–154. doi:10.2217/17460913.3.2.145. PubMed PMID:18366335.
  • Fehrholz M, Kendl S, Prifert C, et al. The innate antiviral factor APOBEC3G targets replication of measles, mumps, and respiratory syncytial virus. J Gen Virol. 2012;93(Pt 3):565–567. doi:10.1099/vir.0.038919-0. PubMed PMID:22170635.
  • Turelli P, Vianin S, Trono D. The innate antiretroviral factor APOBEC3G does not affect human LINE-1 retrotransposition in a cell culture assay. J Biol Chem. 2004;279(42):43371–43373. doi:10.1074/jbc.C400334200. PubMed PMID:15322092.
  • Chiu YL, Greene WC. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol. 2008;26:317–353. doi:10.1146/annurev.immunol.26.021607.090350. PubMed PMID:18304004.
  • Green LA, Liu Y, He JJ. Inhibition of HIV-1 infection and replication by enhancing viral incorporation of innate anti-HIV-1 protein A3G: a non-pathogenic Nef mutant-based anti-HIV strategy. J Biol Chem. 2009;284(20):13363–13372. doi:10.1074/jbc.M806631200. PubMed PMID:19324886.
  • Santiago ML, Benitez RL, Montano M, et al. Innate retroviral restriction by Apobec3 promotes antibody affinity maturation in vivo. J Immunol. 2010;185(2):1114–1123. doi:10.4049/jimmunol.1001143. PubMed PMID:20566830.
  • Takaori-Kondo A. APOBEC family proteins: novel antiviral innate immunity. Int J Hematol. 2006;83(3):213–216. doi:10.1532/IJH97.05187. PubMed PMID:16720550.
  • Yu XF. Innate cellular defenses of APOBEC3 cytidine deaminases and viral counter-defenses. Curr Opin HIV AIDS. 2006;1(3):187–193. doi:10.1097/01.COH.0000221590.03670.32. PubMed PMID:19372807.
  • Dang Y, Wang X, Esselman WJ, et al. Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol. 2006;80(21):10522–10533. doi:10.1128/JVI.01123-06. PubMed PMID:16920826.
  • Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi:10.1186/gb-2008-9-6-229. PubMed PMID:18598372.
  • Refsland EW, Stenglein MD, Shindo K, et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 2010;38(13):4274–4284. doi:10.1093/nar/gkq174. PubMed PMID:20308164.
  • Borrow P, Lewicki H, Hahn BH, et al. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68(9):6103–6110. PubMed PMID:8057491.
  • Heintel T, Sester M, Rodriguez MM, et al. The fraction of perforin-expressing HIV-specific CD8 T cells is a marker for disease progression in HIV infection. Aids. 2002;16(11):1497–1501. doi:10.1097/00002030-200207260-00006. PubMed PMID:12131187.
  • Shankar P, Russo M, Harnisch B, et al. Impaired function of circulating HIV-specific CD8(+) T cells in chronic human immunodeficiency virus infection. Blood. 2000;96(9):3094–3101. PubMed PMID:11049989.
  • Ogg GS, Jin X, Bonhoeffer S, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science. 1998;279(5359):2103–2106. doi:10.1126/science.279.5359.2103. PubMed PMID:9516110.
  • Rinaldo C, Huang XL, Fan ZF, et al. High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J Virol. 1995;69(9):5838–5842. PubMed PMID:7637030.
  • Harrer T, Harrer E, Kalams SA, et al. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retroviruses. 1996;12(7):585–592. doi:10.1089/aid.1996.12.585. PubMed PMID:8743084.
  • Emu B, Sinclair E, Hatano H, et al. HLA class I-restricted T-cell responses may contribute to the control of human immunodeficiency virus infection, but such responses are not always necessary for long-term virus control. J Virol. 2008;82(11):5398–5407. doi:10.1128/JVI.02176-07. PubMed PMID:18353945.
  • Wibmer CK, Moore PL, Morris L. HIV broadly neutralizing antibody targets. Curr Opin HIV AIDS. 2015;10(3):135–143. doi:10.1097/COH.0000000000000153. PubMed PMID:25760932.
  • McCoy LE, Burton DR. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol Rev. 2017;275(1):11–20. doi:10.1111/imr.12484. PubMed PMID:28133814.
  • Russell RA, Moore MD, Hu WS, et al. APOBEC3G induces a hypermutation gradient: purifying selection at multiple steps during HIV-1 replication results in levels of G-to-A mutations that are high in DNA, intermediate in cellular viral RNA, and low in virion RNA. Retrovirology. 2009;6:16. doi:10.1186/1742-4690-6-16. PubMed PMID:19216784.
  • Armitage AE, Deforche K, Chang CH, et al. APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete “all or nothing” phenomenon. PLoS Genet. 2012;8(3):e1002550. doi:10.1371/journal.pgen.1002550. PubMed PMID:22457633.
  • Pace C, Keller J, Nolan D, et al. Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol. 2006;80(18):9259–9269. doi:10.1128/JVI.00888-06. PubMed PMID:16940537.
  • Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science. 1988;242(4882):1168–1171. doi:10.1126/science.2460924. PubMed PMID:2460924.
  • Conticello SG, Thomas CJ, Petersen-Mahrt SK, et al. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol. 2005;22(2):367–377. doi:10.1093/molbev/msi026. PubMed PMID:15496550.
  • Jern P, Coffin JM. Host-retrovirus arms race: trimming the budget. Cell Host Microbe. 2008;4(3):196–197. doi:10.1016/j.chom.2008.08.008. PubMed PMID:18779045.
  • LaRue RS, Jonsson SR, Silverstein KA, et al. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol Biol. 2008;9:104. doi:10.1186/1471-2199-9-104. PubMed PMID:19017397.
  • Zhang J, Webb DM. Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet. 2004;13(16):1785–1791. doi:10.1093/hmg/ddh183. PubMed PMID:15198990.
  • Nakano Y, Aso H, Soper A, et al. A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif. Retrovirology. 2017;14(1):31. doi:10.1186/s12977-017-0355-4. PubMed PMID:28482907.
  • Greene WC, Debyser Z, Ikeda Y, et al. Novel targets for HIV therapy. Antiviral Res. 2008;80(3):251–265. doi:10.1016/j.antiviral.2008.08.003. PubMed PMID:18789977.
  • Hosseini I, Mac Gabhann F. Multi-scale modeling of HIV infection in vitro and APOBEC3G-based anti-retroviral therapy. PLoS Comput Biol. 2012;8(2):e1002371. doi:10.1371/journal.pcbi.1002371. PubMed PMID:22346743.
  • Hosseini I, Mac Gabhann F. APOBEC3G-Augmented Stem Cell Therapy to Modulate HIV Replication: A Computational Study. PLoS One. 2013;8(5):e63984. doi:10.1371/journal.pone.0063984. PubMed PMID:23724012.
  • Izumi T, Shirakawa K, Takaori-Kondo A. Cytidine deaminases as a weapon against retroviruses and a new target for antiviral therapy. Mini Rev Med Chem. 2008;8(3):231–238. doi:10.2174/138955708783744047. PubMed PMID:18336343.
  • Albin JS, Harris RS. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med. 2010;12:e4. doi:10.1017/S1462399409001343. PubMed PMID:20096141.
  • Carr JM, Davis AJ, Feng F, et al. Cellular interactions of virion infectivity factor (Vif) as potential therapeutic targets: APOBEC3G and more? Curr Drug Targets. 2006;7(12):1583–1593. doi:10.2174/138945006779025356. PubMed PMID:17168833.
  • Jern P, Russell RA, Pathak VK, et al. Likely role of APOBEC3G-mediated G-to-A mutations in HIV-1 evolution and drug resistance. PLoS Pathog. 2009;5(4):e1000367. doi:10.1371/journal.ppat.1000367. PubMed PMID:19343218.
  • Berkhout B, de Ronde A. APOBEC3G versus reverse transcriptase in the generation of HIV-1 drug-resistance mutations. Aids. 2004;18(13):1861–1863. doi:10.1097/00002030-200409030-00022. PubMed PMID:15316354.
  • Hache G, Mansky LM, Harris RS. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance. AIDS Rev. 2006;8(3):148–157. PubMed PMID:17078485.
  • Kim EY, Bhattacharya T, Kunstman K, et al. Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J Virol. 2010;84(19):10402–10405. doi:10.1128/JVI.01223-10. PubMed PMID:20660203.
  • Mulder LC, Harari A, Simon V. Cytidine deamination induced HIV-1 drug resistance. Proc Natl Acad Sci U S A. 2008;105(14):5501–5506. doi:10.1073/pnas.0710190105. PubMed PMID:18391217.
  • Sadler HA, Stenglein MD, Harris RS, et al. APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virol. 2010;84(14):7396–7404. doi:10.1128/JVI.00056-10. PubMed PMID:20463080.
  • Fourati S, Malet I, Binka M, et al. Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. Aids. 2010;24(15):2313–2321. PubMed PMID:20729708.
  • Yebra G, Holguin A. Mutation Vif-22H, which allows HIV-1 to use the APOBEC3G hypermutation to develop resistance, could appear more quickly in certain non-B variants. J Antimicrob Chemother. 2011;66(4):941–942. doi:10.1093/jac/dkr012. PubMed PMID:21393191.
  • Sato K, Takeuchi JS, Misawa N, et al. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model. PLoS Pathog. 2014;10(10):e1004453. doi:10.1371/journal.ppat.1004453. PubMed PMID:25330146.
  • Wood N, Bhattacharya T, Keele BF, et al. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog. 2009;5(5):e1000414. doi:10.1371/journal.ppat.1000414. PubMed PMID:19424423.
  • Casartelli N, Guivel-Benhassine F, Bouziat R, et al. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. J Exp Med. 2010;207(1):39–49. doi:10.1084/jem.20091933. PubMed PMID:20038599.
  • Monajemi M, Woodworth CF, Zipperlen K, et al. Positioning of APOBEC3G/F mutational hotspots in the human immunodeficiency virus genome favors reduced recognition by CD8+ T cells. PLoS One. 2014;9(4):e93428. doi:10.1371/journal.pone.0093428. PubMed PMID:24722422.
  • Squires KD, Monajemi M, Woodworth CF, et al. Impact of APOBEC Mutations on CD8+ T Cell Recognition of HIV Epitopes Varies Depending on the Restricting HLA. J Acquir Immune Defic Syndr. 2015;70(2):172–178. doi:10.1097/QAI.0000000000000689. PubMed PMID:26035050.
  • Grant M, Larijani M. Evasion of adaptive immunity by HIV through the action of host APOBEC3G/F enzymes. AIDS Research and Therapy. 2017;14(1):44. doi:10.1186/s12981-017-0173-8.
  • Kao S, Khan MA, Miyagi E, et al. The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol. 2003;77(21):11398–11407. doi:10.1128/JVI.77.21.11398-11407.2003. PubMed PMID:14557625.
  • Conticello SG, Harris RS, Neuberger MS. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol. 2003;13(22):2009–2013. doi:10.1016/j.cub.2003.10.034. PubMed PMID:14614829.
  • Cullen BR. HIV-1 Vif: counteracting innate antiretroviral defenses. Mol Ther. 2003;8(4):525–527. doi:10.1016/j.ymthe.2003.08.010. PubMed PMID:14565218.
  • Marin M, Rose KM, Kozak SL, et al. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med. 2003;9(11):1398–1403. doi:10.1038/nm946. PubMed PMID:14528301.
  • Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 2003;9(11):1404–1407. doi:10.1038/nm945. PubMed PMID:14528300.
  • Baraz L, Kotler M. The Vif protein of human immunodeficiency virus type 1 (HIV-1): enigmas and solutions. Curr Med Chem. 2004;11(2):221–231. doi:10.2174/0929867043456124. PubMed PMID:14754418.
  • Dussart S, Courcoul M, Bessou G, et al. The Vif protein of human immunodeficiency virus type 1 is posttranslationally modified by ubiquitin. Biochem Biophys Res Commun. 2004;315(1):66–72. doi:10.1016/j.bbrc.2004.01.023. PubMed PMID:15013426.
  • Goncalves J, Santa-Marta M. HIV-1 Vif and APOBEC3G: multiple roads to one goal. Retrovirology. 2004;1:28. doi:10.1186/1742-4690-1-28. PubMed PMID:15383144.
  • Mehle A, Strack B, Ancuta P, et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem. 2004;279(9):7792–7798. doi:10.1074/jbc.M313093200. PubMed PMID:14672928.
  • Schrofelbauer B, Chen D, Landau NR. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A. 2004;101(11):3927–3932. doi:10.1073/pnas.0307132101. PubMed PMID:14978281.
  • Yu Y, Xiao Z, Ehrlich ES, et al. Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev. 2004;18(23):2867–2872. doi:10.1101/gad.1250204. PubMed PMID:15574593.
  • Kremer M, Schnierle BS. HIV-1 Vif: HIV's weapon against the cellular defense factor APOBEC3G. Curr HIV Res. 2005;3(4):339–344. doi:10.2174/157016205774370456. PubMed PMID:16250885.
  • Shirakawa K, Takaori-Kondo A, Kobayashi M, et al. Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex. Virology. 2006;344(2):263–266. doi:10.1016/j.virol.2005.10.028. PubMed PMID:16303161.
  • Xiao Z, Ehrlich E, Yu Y, et al. Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology. 2006;349(2):290–299. doi:10.1016/j.virol.2006.02.002. PubMed PMID:16530799.
  • Dang Y, Siew LM, Zheng YH. APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J Biol Chem. 2008;283(19):13124–13131. doi:10.1074/jbc.M708728200. PubMed PMID:18326044.
  • Iwatani Y, Chan DS, Liu L, et al. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc Natl Acad Sci U S A. 2009;106(46):19539–19544. doi:10.1073/pnas.0906652106. PubMed PMID:19887642.
  • Santa-Marta M, Aires da Silva F, Fonseca AM, et al. HIV-1 Vif protein blocks the cytidine deaminase activity of B-cell specific AID in E. coli by a similar mechanism of action. Mol Immunol. 2007;44(4):583–590. doi:10.1016/j.molimm.2006.02.005. PubMed PMID:16580072.
  • Santa-Marta M, da Silva FA, Fonseca AM, et al. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem. 2005;280(10):8765–8775. doi:10.1074/jbc.M409309200. PubMed PMID:15611076.
  • Britan-Rosich E, Nowarski R, Kotler M. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif. J Mol Biol. 2011;410(5):1065–1076. doi:10.1016/j.jmb.2011.03.058. PubMed PMID:21763507.
  • Feng Y, Baig TT, Love RP, et al. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol. 2014;5:450. doi:10.3389/fmicb.2014.00450. PubMed PMID:25206352.
  • Mercenne G, Bernacchi S, Richer D, et al. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Res. 2010;38(2):633–646. doi:10.1093/nar/gkp1009. PubMed PMID:19910370.
  • Kao S, Akari H, Khan MA, et al. Human immunodeficiency virus type 1 Vif is efficiently packaged into virions during productive but not chronic infection. J Virol. 2003;77(2):1131–1140. doi:10.1128/JVI.77.2.1131-1140.2003. PubMed PMID:12502829.
  • Stopak K, de Noronha C, Yonemoto W, et al. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell. 2003;12(3):591–601. doi:10.1016/S1097-2765(03)00353-8. PubMed PMID:14527406.
  • Goila-Gaur R, Khan MA, Miyagi E, et al. HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes. Virology. 2008;372(1):136–146. doi:10.1016/j.virol.2007.10.017. PubMed PMID:18023836.
  • Wedekind JE, Gillilan R, Janda A, et al. Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biol Chem. 2006;281(50):38122–38126. doi:10.1074/jbc.C600253200. PubMed PMID:17079235.
  • Kozak SL, Marin M, Rose KM, et al. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem. 2006;281(39):29105–29119. doi:10.1074/jbc.M601901200. PubMed PMID:16887808.
  • Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2006;2(5):e41. doi:10.1371/journal.ppat.0020041. PubMed PMID:16699599.
  • Kreisberg JF, Yonemoto W, Greene WC. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med. 2006;203(4):865–870. doi:10.1084/jem.20051856. PubMed PMID:16606671.
  • Chiu YL. Biochemical fractionation and purification of high-molecular-mass APOBEC3G complexes. Methods Mol Biol. 2011;718:185–206. doi:10.1007/978-1-61779-018-8_12. PubMed PMID:21370050.
  • Chiu YL, Greene WC. APOBEC3G: an intracellular centurion. Philos Trans R Soc Lond B Biol Sci. 2009;364(1517):689–703. doi:10.1098/rstb.2008.0193. PubMed PMID:19008196.
  • Gallois-Montbrun S, Kramer B, Swanson CM, et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol. 2007;81(5):2165–2178. doi:10.1128/JVI.02287-06. PubMed PMID:17166910.
  • Soros VB, Greene WC. APOBEC3G and HIV-1: strike and counterstrike. Curr Infect Dis Rep. 2006;8(4):317–323. doi:10.1007/s11908-006-0077-6. PubMed PMID:16822376.
  • Stopak KS, Chiu YL, Kropp J, et al. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem. 2007;282(6):3539–3546. doi:10.1074/jbc.M610138200. PubMed PMID:17110377.
  • Noguera-Julian M, Cozzi-Lepri A, Di Giallonardo F, et al. Contribution of APOBEC3G/F activity to the development of low-abundance drug-resistant human immunodeficiency virus type 1 variants. Clin Microbiol Infect. 2016;22(2):191–200. doi:10.1016/j.cmi.2015.10.004. PubMed PMID:26482266.
  • Geller R, Domingo-Calap P, Cuevas JM, et al. The external domains of the HIV-1 envelope are a mutational cold spot. Nat Commun. 2015;6:8571. doi:10.1038/ncomms9571. PubMed PMID:26450412.
  • Holtz CM, Sadler HA, Mansky LM. APOBEC3G cytosine deamination hotspots are defined by both sequence context and single-stranded DNA secondary structure. Nucleic Acids Res. 2013;41(12):6139–6148. doi:10.1093/nar/gkt246. PubMed PMID:23620282.
  • Mangeat B, Turelli P, Liao S, et al. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem. 2004;279(15):14481–14483. doi:10.1074/jbc.C400060200. PubMed PMID:14966139.
  • Walker RC, Jr., Khan MA, Kao S, et al. Identification of dominant negative human immunodeficiency virus type 1 Vif mutants that interfere with the functional inactivation of APOBEC3G by virus-encoded Vif. J Virol. 2010;84(10):5201–5211. doi:10.1128/JVI.02318-09. PubMed PMID:20219919.
  • Letko M, Booiman T, Kootstra N, et al. Identification of the HIV-1 Vif and Human APOBEC3G Protein Interface. Cell Rep. 2015;13(9):1789–1799. doi:10.1016/j.celrep.2015.10.068. PubMed PMID:26628364.
  • Salter JD, Morales GA, Smith HC. Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem Sci. 2014;39(9):373–380. doi:10.1016/j.tibs.2014.07.001. PubMed PMID:25124760.
  • Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, et al. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol. 2014;426(6):1220–1245. doi:10.1016/j.jmb.2013.10.033. PubMed PMID:24189052.
  • Jonsson SR, Andresdottir V. Host restriction of lentiviruses and viral countermeasures: APOBEC3 and Vif. Viruses. 2013;5(8):1934–1947. doi:10.3390/v5081934. PubMed PMID:23903287.
  • Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology. 2008;5:51. doi:10.1186/1742-4690-5-51. PubMed PMID:18577210.
  • Romani B, Engelbrecht S, Glashoff RH. Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif. Arch Virol. 2009;154(10):1579–1588. doi:10.1007/s00705-009-0481-y. PubMed PMID:19669862.
  • Munk C, Jensen BE, Zielonka J, et al. Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses. 2012;4(11):3132–3161. doi:10.3390/v4113132. PubMed PMID:23202519.
  • Burns MB, Lackey L, Carpenter MA, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494(7437):366–370. doi:10.1038/nature11881. PubMed PMID:23389445; PubMed Central PMCID: PMCPMC3907282.
  • Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 2013;45(9):977–983. doi:10.1038/ng.2701. PubMed PMID:23852168; PubMed Central PMCID: PMCPMC3902892.
  • Leonard B, Hart SN, Burns MB, et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res. 2013;73(24):7222–7231. doi:10.1158/0008-5472.CAN-13-1753. PubMed PMID:24154874; PubMed Central PMCID: PMCPMC3867573.
  • Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer. 2014;14(12):786–800. doi:10.1038/nrc3816. PubMed PMID:25568919; PubMed Central PMCID: PMCPMC4280484.
  • Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45(9):970–976. doi:10.1038/ng.2702. PubMed PMID:23852170; PubMed Central PMCID: PMCPMC3789062.
  • Nik-Zainal S, Alexandrov LB, Wedge DC, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–993. doi:10.1016/j.cell.2012.04.024. PubMed PMID:22608084.
  • Gwak M, Choi YJ, Yoo NJ, et al. Expression of DNA cytosine deaminase APOBEC3 proteins, a potential source for producing mutations, in gastric, colorectal and prostate cancers. Tumori. 2014;100(4):112e–7e. PubMed PMID:25296601.
  • Morganella S, Alexandrov LB, Glodzik D, et al. The topography of mutational processes in breast cancer genomes. Nat Commun. 2016;7:11383. doi:10.1038/ncomms11383. PubMed PMID:27136393.
  • Shinohara M, Io K, Shindo K, et al. APOBEC3B can impair genomic stability by inducing base substitutions in genomic DNA in human cells. Sci Rep. 2012;2:806. doi:10.1038/srep00806. PubMed PMID:23150777.
  • Kosumi K, Baba Y, Ishimoto T, et al. APOBEC3B is an enzymatic source of molecular alterations in esophageal squamous cell carcinoma. Med Oncol. 2016;33(3):26. doi:10.1007/s12032-016-0739-7. PubMed PMID:26880326.
  • Yan S, He F, Gao B, et al. Increased APOBEC3B Predicts Worse Outcomes in Lung Cancer: A Comprehensive Retrospective Study. J Cancer. 2016;7(6):618–625. doi:10.7150/jca.14030. PubMed PMID:27076842.
  • Ding Q, Chang CJ, Xie X, et al. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest. 2011;121(11):4526–4536. doi:10.1172/JCI45008. PubMed PMID:21985787.
  • Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(22):2109–2121. doi:10.1056/NEJMoa1616288. PubMed PMID:28445112.
  • Starrett GJ, Luengas EM, McCann JL, et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat Commun. 2016;7:12918. doi:10.1038/ncomms12918. PubMed PMID:27650891; PubMed Central PMCID: PMCPMC5036005.
  • Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–421. doi:10.1038/nature12477. PubMed PMID:23945592; PubMed Central PMCID: PMCPMC3776390.
  • Swanton C, McGranahan N, Starrett GJ, et al. APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity. Cancer Discov. 2015;5(7):704–712. doi:10.1158/2159-8290.CD-15-0344. PubMed PMID:26091828; PubMed Central PMCID: PMCPMC4497973.
  • Kanu N, Cerone MA, Goh G, et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol. 2016;17(1):185. doi:10.1186/s13059-016-1042-9. PubMed PMID:27634334.
  • Law EK, Sieuwerts AM, LaPara K, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv. 2016;2(10):e1601737. doi:10.1126/sciadv.1601737. PubMed PMID:27730215.
  • Henderson S, Chakravarthy A, Su X, et al. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 2014;7(6):1833–1841. doi:10.1016/j.celrep.2014.05.012. PubMed PMID:24910434.
  • Chan K, Roberts SA, Klimczak LJ, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015;47(9):1067–1072. doi:10.1038/ng.3378. PubMed PMID:26258849; PubMed Central PMCID: PMCPMC4594173.
  • Sieuwerts AM, Willis S, Burns MB, et al. Elevated APOBEC3B correlates with poor outcomes for estrogen-receptor-positive breast cancers. Horm Cancer. 2014;5(6):405–413. doi:10.1007/s12672-014-0196-8. PubMed PMID:25123150.
  • Periyasamy M, Patel H, Lai CF, et al. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer. Cell Rep. 2015;13(1):108–121. doi:10.1016/j.celrep.2015.08.066. PubMed PMID:26411678.
  • Sasaki H, Suzuki A, Tatematsu T, et al. APOBEC3B gene overexpression in non-small-cell lung cancer. Biomed Rep. 2014;2(3):392–395. PubMed PMID:24748981; PubMed Central PMCID: PMCPMC3990218.
  • Sieuwerts AM, Schrijver WA, Dalm SU, et al. Progressive APOBEC3B mRNA expression in distant breast cancer metastases. PLoS One. 2017;12(1):e0171343. doi:10.1371/journal.pone.0171343. PubMed PMID:28141868.
  • Nowarski R, Kotler M. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion. Cancer Res. 2013;73(12):3494–3498. doi:10.1158/0008-5472.CAN-13-0728. PubMed PMID:23598277; PubMed Central PMCID: PMCPMC3686885.
  • Nowarski R, Wilner OI, Cheshin O, et al. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood. 2012;120(2):366–375. doi:10.1182/blood-2012-01-402123. PubMed PMID:22645179; PubMed Central PMCID: PMCPMC3398754.
  • Yang Z, Lu Y, Xu Q, et al. Correlation of APOBEC3 in tumor tissues with clinico-pathological features and survival from hepatocellular carcinoma after curative hepatectomy. Int J Clin Exp Med. 2015;8(5):7762–7769. PubMed PMID:26221327.
  • Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4(1):94–109. doi:10.1158/2159-8290.CD-13-0617. PubMed PMID:24265153.
  • Faltas BM, Prandi D, Tagawa ST, et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat Genet. 2016;48(12):1490–1499. doi:10.1038/ng.3692. PubMed PMID:27749842.
  • Mertz TM, Harcy V, Roberts SA. Risks at the DNA Replication Fork: Effects upon Carcinogenesis and Tumor Heterogeneity. Genes (Basel). 2017;8(1):46. doi:10.3390/genes8010046. PubMed PMID:28117753; PubMed Central PMCID: PMCPMC5295039.
  • Rebhandl S, Huemer M, Greil R, et al. AID/APOBEC deaminases and cancer. Oncoscience. 2015;2(4):320–333. doi:10.18632/oncoscience.155. PubMed PMID:26097867; PubMed Central PMCID: PMCPMC4468319.
  • Swanton C, Govindan R. Clinical Implications of Genomic Discoveries in Lung Cancer. N Engl J Med. 2016;374(19):1864–1873. doi:10.1056/NEJMra1504688. PubMed PMID:27168435.
  • Hollstein M, Alexandrov LB, Wild CP, et al. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer. Oncogene. 2017;36(2):158–167. doi:10.1038/onc.2016.192. PubMed PMID:27270430.
  • McGranahan N, Favero F, de Bruin EC, et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7(283):283ra54. doi:10.1126/scitranslmed.aaa1408. PubMed PMID:25877892.
  • Leonard B, Starrett GJ, Maurer MJ, et al. APOBEC3G Expression Correlates with T-Cell Infiltration and Improved Clinical Outcomes in High-grade Serous Ovarian Carcinoma. Clin Cancer Res. 2016;22(18):4746–4755. doi:10.1158/1078-0432.CCR-15-2910. PubMed PMID:27016308; PubMed Central PMCID: PMCPMC5026552.
  • Cescon DW, Haibe-Kains B, Mak TW. APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation. Proc Natl Acad Sci U S A. 2015;112(9):2841–2846. doi:10.1073/pnas.1424869112. PubMed PMID:25730878.
  • Long J, Delahanty RJ, Li G, et al. A common deletion in the APOBEC3 genes and breast cancer risk. J Natl Cancer Inst. 2013;105(8):573–579. doi:10.1093/jnci/djt018. PubMed PMID:23411593; PubMed Central PMCID: PMCPMC3627644.
  • Wen WX, Soo JS, Kwan PY, et al. Germline APOBEC3B deletion is associated with breast cancer risk in an Asian multi-ethnic cohort and with immune cell presentation. Breast Cancer Res. 2016;18(1):56. doi:10.1186/s13058-016-0717-1. PubMed PMID:27233495; PubMed Central PMCID: PMCPMC4884363.
  • Xuan D, Li G, Cai Q, et al. APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. Carcinogenesis. 2013;34(10):2240–2243. doi:10.1093/carcin/bgt185. PubMed PMID:23715497; PubMed Central PMCID: PMCPMC3786378.
  • Stenglein MD, Burns MB, Li M, et al. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. 2010;17(2):222–229. doi:10.1038/nsmb.1744. PubMed PMID:20062055.
  • Dutko JA, Schafer A, Kenny AE, et al. Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases. Curr Biol. 2005;15(7):661–666. doi:10.1016/j.cub.2005.02.051. PubMed PMID:15823539.
  • Schumann GG. APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. Biochem Soc Trans. 2007;35(Pt 3):637–642. doi:10.1042/BST0350637. PubMed PMID:17511669.
  • Lovsin N, Peterlin BM. APOBEC3 proteins inhibit LINE-1 retrotransposition in the absence of ORF1p binding. Ann N Y Acad Sci. 2009;1178:268–275. doi:10.1111/j.1749-6632.2009.05006.x. PubMed PMID:19845642.
  • Hulme AE, Bogerd HP, Cullen BR, et al. Selective inhibition of Alu retrotransposition by APOBEC3G. Gene. 2007;390(1-2):199–205. doi:10.1016/j.gene.2006.08.032. PubMed PMID:17079095.
  • Esnault C, Priet S, Ribet D, et al. Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo "traces" on the murine IAPE and human HERV-K elements. Retrovirology. 2008;5:75. doi:10.1186/1742-4690-5-75. PubMed PMID:18702815.
  • Green AM, Landry S, Budagyan K, et al. APOBEC3A damages the cellular genome during DNA replication. Cell Cycle. 2016;15(7):998–1008. doi:10.1080/15384101.2016.1152426. PubMed PMID:26918916; PubMed Central PMCID: PMCPMC4889253.
  • Ascierto ML, De Giorgi V, Liu Q, et al. An immunologic portrait of cancer. J Transl Med. 2011;9:146. doi:10.1186/1479-5876-9-146. PubMed PMID:21875439.
  • Mullane SA, Werner L, Rosenberg J, et al. Correlation of Apobec Mrna Expression with overall Survival and pd-l1 Expression in Urothelial Carcinoma. Sci Rep. 2016;6:27702. doi:10.1038/srep27702. PubMed PMID:27283319.
  • Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1-2):48–61. doi:10.1016/j.cell.2014.12.033. PubMed PMID:25594174.
  • Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–2199. doi:10.1056/NEJMoa1406498. PubMed PMID:25409260; PubMed Central PMCID: PMCPMC4315319.
  • Gourzi P, Leonova T, Papavasiliou FN. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity. 2006;24(6):779–786. doi:10.1016/j.immuni.2006.03.021. PubMed PMID:16782033.
  • Perez-Garcia A, Perez-Duran P, Wossning T, et al. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway. EMBO Mol Med. 2015;7(10):1327–1336. doi:10.15252/emmm.201505348. PubMed PMID:26282919; PubMed Central PMCID: PMCPMC4604686.
  • Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi:10.1126/science.aaa1348. PubMed PMID:25765070.
  • Madore J, Strbenac D, Vilain R, et al. PD-L1 Negative Status is Associated with Lower Mutation Burden, Differential Expression of Immune-Related Genes, and Worse Survival in Stage III Melanoma. Clin Cancer Res. 2016;22(15):39153923. doi:10.1158/1078-0432.CCR-15-1714. PubMed PMID:26960397.
  • Greil R, Hutterer E, Hartmann TN, et al. Reactivation of dormant anti-tumor immunity – a clinical perspective of therapeutic immune checkpoint modulation. Cell Commun Signal. 2016;15(1):5. doi:10.1186/s12964-016-0155-9. PubMed PMID:28100240.
  • Boichard A, Tsigelny IF, Kurzrock R. High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations. Oncoimmunology. 2017;6(3):e1284719. doi:10.1080/2162402X.2017.1284719. PubMed PMID:28405512.
  • Richards CM, Li M, Perkins AL, et al. Reassessing APOBEC3G Inhibition by HIV-1 Vif-Derived Peptides. J Mol Biol. 2017;429(1):88–96. doi:10.1016/j.jmb.2016.11.012. PubMed PMID:27887868.
  • Weydert C, De Rijck J, Christ F, et al. Targeting Virus-host Interactions of HIV Replication. Curr Top Med Chem. 2016;16(10):1167–1190. doi:10.2174/1568026615666150901115106. PubMed PMID:26324041.
  • Pery E, Sheehy A, Nebane NM, et al. Identification of a novel HIV-1 inhibitor targeting Vif-dependent degradation of human APOBEC3G protein. J Biol Chem. 2015;290(16):10504–10517. doi:10.1074/jbc.M114.626903. PubMed PMID:25724652.
  • Mehle A, Wilson H, Zhang C, et al. Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding. J Virol. 2007;81(23):13235–13241. doi:10.1128/JVI.00204-07. PubMed PMID:17898068.
  • Li ZY, Zhan P, Liu XY. Progress in the study of HIV-1 Vif and related inhibitors. Yao Xue Xue Bao. 2010;45(6):684–693. PubMed PMID:20939174.
  • Huang W, Zuo T, Jin H, et al. Design, synthesis and biological evaluation of indolizine derivatives as HIV-1 VIF-ElonginC interaction inhibitors. Mol Divers. 2013;17(2):221–243. doi:10.1007/s11030-013-9424-3. PubMed PMID:23378232.
  • Smith JL, Bu W, Burdick RC, et al. Multiple ways of targeting APOBEC3-virion infectivity factor interactions for anti-HIV-1 drug development. Trends Pharmacol Sci. 2009;30(12):638–646. doi:10.1016/j.tips.2009.09.006. PubMed PMID:19837465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.