1,606
Views
67
CrossRef citations to date
0
Altmetric
Review

Single-Domain Antibodies or Nanobodies: A Class of Next-Generation Antibodies

, , & ORCID Icon
Pages 316-322 | Received 12 Sep 2017, Accepted 31 Aug 2018, Published online: 11 Feb 2019

References

  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013;82:775–797.
  • Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest 2011;40(3):299–338.
  • Eyer L, Hruska K. Single-domain antibody fragments derived from heavy-chain antibodies: a review. Veterinarni Medicina 2012;57(9):439–513.
  • Harmsen M, De Haard H. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007;77(1):13–22.
  • Cortez‐Retamozo V, Lauwereys M, Hassanzadeh Gh G, et al. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 2002;98(3):456–462.
  • Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single‐domain antibody fragments with high conformational stability. Protein Sci 2009;11(3):500–515.
  • Walper SA, Anderson GP, Lee PAB, et al. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells. PLoS One 2012;7(3):e32801.
  • Hussack G, Hirama T, Ding W, et al. Engineered single-domain antibodies with high protease resistance and thermal stability. PloS One 2011;6(11):e28218.
  • Conrath K, Vincke C, Stijlemans B, et al. Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol 2005;350(1):112–125.
  • Moghimi SM, Rahbarizadeh F, Ahmadvand D, et al. Heavy chain only antibodies: a new paradigm in personalized HER2+ breast cancer therapy. Bioimpacts 2013;3(1):1.
  • Abulrob A, Sprong H, Henegouwen E, et al. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 2005;95(4):1201–1214.
  • Kolkman JA, Law DA. Nanobodies–from llamas to therapeutic proteins. Drug Discovery Today Technol 2010;7(2):e139–ee46.
  • Muyldermans S. Single domain camel antibodies: current status. Reviews in Molecular. J Biotechnol 2001;74(4):277–302.
  • Muyldermans S, Baral T, Retamozzo VC, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2009;128(1-3):178–183.
  • Nguyen VK, Hamers R, Wyns L, et al. Camel heavy‐chain antibodies: diverse germline V H H and specific mechanisms enlarge the antigen‐binding repertoire. EMBO J 2000;19(5):921–930.
  • Paalanen MM, Ekokoski E, El Khattabi M, et al. The development of activating and inhibiting camelid VHH domains against human protein kinase C epsilon. Eur J Pharm Sci 2011;42(4):332–339.
  • Vercruysse T, Pardon E, Vanstreels E, et al. An intrabody based on a llama single-domain antibody targeting the N-terminal alpha-helical multimerization domain of HIV-1 rev prevents viral production. J Biol Chem 2010;285(28):21768–21780.
  • Marschall AL, Dübel S. Antibodies inside of a cell can change its outside: Can intrabodies provide a new therapeutic paradigm? Comput Struct Biotechnol J 2016;14:304–308.
  • Vandenbroucke K, De Haard H, Beirnaert E, et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 2010;3(1):49.
  • Rutgers K, Nabuurs R, Van den Berg S, et al. Transmigration of beta amyloid specific heavy chain antibody fragments across the in vitro blood-brain barrier. Neuroscience 2011;190:37–42.
  • Stone E, Hirama T, Tanha J, et al. The assembly of single domain antibodies into bispecific decavalent molecules. J Immunol Methods 2007;318(1–2):88–94.
  • Kazemi-Lomedasht F, Behdani M, Rahimpour A, et al. Selection and characterization of specific Nanobody against human immunoglobulin G. Monoclonal Antibodies Immunodiagnosis Immunother 2015;34(3):201–205.
  • Kazemi-Lomedasht F, Pooshang-Bagheri K, Habibi-Anbouhi M, et al. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies. Iran J Basic Med Sci 2017;20(5):489.
  • Homayouni V, Ganjalikhani-Hakemi M, Rezaei A, et al. Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3). Iran J Basic Med Sci 2016;19(11):1201.
  • Bagheri M, Babaei E, Shahbazzadeh D, et al. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Rev 2017;36(1):7–11.
  • Kazemi-Lomedasht F, Behdani M, Habibi-Anbouhi M, et al. Production and characterization of novel camel single domain antibody targeting mouse vascular endothelial growth factor. Monoclonal Antibodies Immunodiagnosis Immunother 2016;35(3):167–171.
  • Kazemi-Lomedasht F, Behdani M, Bagheri KP, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 2015;65(1):58–67.
  • Alirahimi E, Ashkiyan A, Kazemi-Lomedasht F, et al. Intrabody targeting vascular endothelial growth factor receptor-2 mediates downregulation of surface localization. Cancer Gene Ther 2017;24(1):33–37.
  • Conrad U, Plagmann I, Malchow S, et al. ELPylated anti‐human TNF therapeutic single‐domain antibodies for prevention of lethal septic shock. Plant Biotechnol J 2011;9(1):22–31.
  • Jähnichen S, Blanchetot C, Maussang D, et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci 2010;107(47):20565–20570.
  • Vaneycken I, Govaert J, Vincke C, et al. In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nucl Med 2010;51(7):1099–1106.
  • Schmidthals K, Helma J, Zolghadr K, et al. Novel antibody derivatives for proteome and high-content analysis. Anal Bioanal Chem 2010;397(8):3203–3208.
  • Abskharon RN, Soror SH, Pardon E, et al. Combining in-situ proteolysis and microseed matrix screening to promote crystallization of PrPc-nanobody complexes. Protein Eng Design Sel 2011;24(9):737–741.
  • Franco EJ, Sonneson GJ, DeLegge TJ, et al. Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2010;878(2):177–186.
  • Harmsen MM, Van Solt CB, Fijten HP, et al. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 2005;23(41):4926–4934.
  • Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther 2015;17(1):135.
  • Hoefman S, Ottevaere I, Baumeister J, et al. Pre-clinical intravenous serum pharmacokinetics of albumin binding and non-half-life extended Nanobodies®. Antibodies 2015;4(3):141–156.
  • Tijink BM, Laeremans T, Budde M, et al. Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol Cancer Ther 2008;7(8):2288–2297.
  • Holt LJ, Basran A, Jones K, et al. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Design Sel 2008;21(5):283–288.
  • Qasemi M, Behdani M, Shokrgozar MA, et al. Construction and expression of an anti-VEGFR2 Nanobody-Fc fusionbody in NS0 host cell. Protein Expr Purif 2016;123:19–25.
  • Vugmeyster Y, Entrican CA, Joyce AP, et al. Pharmacokinetic, biodistribution, and biophysical profiles of TNF nanobodies conjugated to linear or branched poly (ethylene glycol). Bioconjugate Chem 2012;23(7):1452–1462.
  • Kontermann R. Therapeutic proteins: strategies to modulate their plasma half-lives. Vol. 48. John Wiley & Sons; 2012.
  • Khodabakhsh F, Norouzian D, Vaziri B, et al. Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties. Artif Cells Nanomed Biotechnol 2018;46(7): 1402–1414.
  • Koide A, Koide S. Affinity maturation of single-domain antibodies by yeast surface display. Single Domain Antibodies Methods Protoc 2012;911:431–443.
  • Fanning SW, Horn JR. An anti‐hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop. Protein Sci 2011;20(7):1196–1207.
  • Pollithy A, Romer T, Lang C, et al. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2011;77(17):6165–6171.
  • Vincke C, Loris R, Saerens D, et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 2009;284(5):3273–3284.
  • Zhang J, Tanha J, Hirama T, et al. Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol 2004;335(1):49–56.
  • Kazemi-Lomedasht F, Habibi-Anbouhi M, Behdani M. Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function. Iran J Basic Med Sci 2018;21(3):260.
  • Van de Broek B, Devoogdt N, D’Hollander A, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011;5(6):4319–4328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.