673
Views
25
CrossRef citations to date
0
Altmetric
Reviews

The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target

The CS, TLRs, and Inflammasomes are the first line of immune defense working by crosstalking with each other to mount the effective immune response

ORCID Icon
Pages 131-156 | Received 18 May 2018, Accepted 13 Apr 2019, Published online: 08 May 2019

References

  • Buchmann K. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 2014;5:459. doi:10.3389/fimmu.2014.00459.
  • Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012;28:137–161. doi:10.1146/annurev-cellbio-101011-155745.
  • Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol 2018;50:32–38. doi:10.1016/j.coi.2017.10.011.
  • Dolasia K, Bisht MK, Pradhan G, et al. TLRs/NLRs: shaping the landscape of host immunity. Int Rev Immunol 2018;37(1):3–19. doi:10.1080/08830185.2017.1397656.
  • Roozendaal R, Carroll MC. Emerging patterns in complement-mediated pathogen recognition. Cell 2006;125(1):29–32. doi:10.1016/j.cell.2006.03.018.
  • Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol 2010;28(1):131–155. doi:10.1146/annurev-immunol-030409-101250.
  • Lee MS, Kim YJ. Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol Cells 2007;23:1–10.
  • Kolev M, Le Friec G, Kemper C. Complement–tapping into new sites and effector systems. Nat Rev Immunol 2014;14(12):811–820. doi:10.1038/nri3761.
  • Ricklin D, Lambris JD. Complement therapeutics. Semin Immunol. 2016;28(3):205–207. doi:10.1016/j.smim.2016.07.001.
  • Ricklin D, Reis ES, Mastellos DC, et al. Complement component C3 – the “Swiss Army Knife” of innate immunity and host defense. Immunol Rev 2016;274(1):33–58. doi:10.1111/imr.12500.
  • Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016;12(7):383–401. doi:10.1038/nrneph.2016.70.
  • West EE, Kolev M, Kemper C. Complement and the regulation of T cell responses. Annu Rev Immunol 2018;36:309–338. doi:10.1146/annurev-immunol-042617-053245.
  • Kumar V. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 2018;59:391–412. doi:10.1016/j.intimp.2018.03.002.
  • Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016;39(8):1032–1049. doi:10.1007/s12272-016-0806-9.
  • Henrick BM, Yao X-D, Taha AY, et al. Insights into soluble toll-like receptor 2 as a downregulator of virally induced inflammation. Front Immunol 2016;7:291. doi:10.3389/fimmu.2016.00291.
  • Zunt SL, Burton LV, Goldblatt LI, et al. Soluble forms of toll-like receptor 4 are present in human saliva and modulate tumour necrosis factor-alpha secretion by macrophage-like cells . Clin Exp Immunol 2009;156(2):285–293. doi:10.1111/j.1365-2249.2009.03854.x.
  • ten Oever J, Kox M, van de Veerdonk FL, et al. The discriminative capacity of soluble Toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases. BMC Immunol 2014;15:55. doi:10.1186/s12865-014-0055-y.
  • Sokół B, Wąsik N, Jankowski R, et al. Soluble toll-like receptors 2 and 4 in cerebrospinal fluid of patients with acute hydrocephalus following aneurysmal subarachnoid haemorrhage. PLoS One 2016;11(5):e0156171. doi:10.1371/journal.pone.0156171.
  • Kumar V. Inflammasomes: Pandora's box for sepsis. J Inflamm Res 2018;11:477–502. doi:10.2147/JIR.S178084.
  • Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010;11(9):785–797. doi:10.1038/ni.1923.
  • Bulla R, Bossi F, Tedesco F. The complement system at the embryo implantation site: friend or foe? Front Immunol 2012;3:55.doi:10.3389/fimmu.2012.00055.
  • Agostinis C, Tedesco F, Bulla R. Alternative functions of the complement protein C1q at embryo implantation site. J Reprod Immunol 2017;119:74–80. doi:10.1016/j.jri.2016.09.001.
  • Poole AZ, Kitchen SA, Weis VM. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida. Front Microbiol 2016;7:519. doi:10.3389/fmicb.2016.00519.
  • Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 1998;160(6):2983–2997.
  • Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev 2016;274(1):9–15. doi:10.1111/imr.12474.
  • Reid KBM. Complement component C1q: historical perspective of a functionally versatile, and structurally unusual, serum protein. Front Immunol 2018;9:764. doi:10.3389/fimmu.2018.00764.
  • Nonaka M, Smith SL. Complement system of bony and cartilaginous fish. Fish Shellfish Immunol 2000;10(3):215–228. doi:10.1006/fsim.1999.0252.
  • Jensen JA, Festa E, Smith DS, Cayer M. The complement system of the nurse shark: hemolytic and comparative characteristics. Science (New York, NY) 1981;214(4520):566–569. doi:10.1126/science.7291995.
  • Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics 2006;58(9):701–713. doi:10.1007/s00251-006-0142-1.
  • Gauthier MEA, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of toll-like and interleukin 1 receptor pathways. Evol Dev 2010;12(5):519–533. doi:10.1111/j.1525-142X.2010.00436.x.
  • Anderson KV, Jurgens G, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 1985;42(3):779–789.
  • Hashimoto C, Hudson KL, Anderson KV. The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988;52(2):269–279.
  • Ferrandon D, Imler JL, Hetru C, Hoffmann JA. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007;7(11):862–874. doi:10.1038/nri2194.
  • Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from C. elegans and primitive invertebrates. Nat Rev Immunol 2010;10(1):47–58. doi:10.1038/nri2689.
  • Weber ANR, Tauszig-Delamasure S, Hoffmann JA, et al. Binding of the Drosophila cytokine Spatzle to toll is direct and establishes signaling. Nat Immunol 2003;4(8):794–800. doi:10.1038/ni955.
  • Arnot CJ, Gay NJ, Gangloff M. Molecular mechanism that induces activation of spätzle, the ligand for the drosophila toll receptor. J Biol Chem 2010;285(25):19502–19509. doi:10.1074/jbc.M109.098186.
  • Lewis M, Arnot CJ, Beeston H, et al. Cytokine Spatzle binds to the Drosophila immunoreceptor toll with a neurotrophin-like specificity and couples receptor activation . Proc Natl Acad Sci U S A 2013;110(51):20461–20466. doi:10.1073/pnas.1317002110.
  • Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005;6(8):603–614. doi:10.1038/nrn1726.
  • Nakamoto M, Moy RH, Xu J, et al. Virus recognition by toll-7 activates antiviral autophagy in Drosophila. Immunity 2012;36(4):658–667. doi:10.1016/j.immuni.2012.03.003.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34(5):637–650. doi:10.1016/j.immuni.2011.05.006.
  • Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014;157(5):1013–1022. doi:10.1016/j.cell.2014.04.007.
  • Knodler LA, Crowley SM, Sham HP, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 2014;16:249–256. doi:10.1016/j.chom.2014.07.002.
  • Russo AJ, Behl B, Banerjee I, Rathinam V. Emerging insights into noncanonical inflammasome recognition of microbes. J Mol Biol 2018;430(2):207–216. doi:10.1016/j.jmb.2017.10.003.
  • Lamkanfi M, Declercq W, Kalai M, et al. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9(4):358–361. doi:10.1038/sj/cdd/4400989.
  • Boyce M, Degterev A, Yuan J. Caspases: an ancient cellular sword of Damocles. Cell Death Differ 2004;11(1):29–37. doi:10.1038/sj.cdd.4401339.
  • Cikala M, Wilm B, Hobmayer E, et al. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol 1999;9(17):959–962.
  • Shaham S. Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J Biol Chem 1998;273(52):35109–35117. doi:10.1074/jbc.273.52.35109.
  • Sakamaki K, Satou Y. Caspases: evolutionary aspects of their functions in vertebrates. J Fish Biol 2009;74(4):727–753. doi:10.1111/j.1095-8649.2009.02184.x.
  • Wiens M, Krasko A, Perovic S, Muller WE. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. Biochim Biophys Acta 2003;1593(2–3):179–189.
  • López-Castejón G, Sepulcre MP, Mulero I, et al. Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: the first identification of an inflammatory caspase in fish. Mol Immunol 2008;45(1):49–57. doi:10.1016/j.molimm.2007.05.015.
  • Maltez VI, Miao EA. Reassessing the evolutionary importance of inflammasomes. J Immunol 2016;196(3):956–962. doi:10.4049/jimmunol.1502060.
  • Angosto D, López-Castejón G, López-Muñoz A, et al. Evolution of inflammasome functions in vertebrates: inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1beta. Innate Immun 2012;18(6):815–824. doi:10.1177/1753425912441956.
  • Lin XY, Choi MS, Porter AG. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma. J Biol Chem 2000;275(51):39920–39926. doi:10.1074/jbc.M007255200.
  • Kumar S, Hanning CR, Brigham-Burke MR, et al. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 2002;18(2):61–71.
  • Kang SJ, Wang S, Hara H, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 2000;149(3):613–622.
  • Brunette RL, Young JM, Whitley DG, et al. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med 2012;209(11):1969–1983. doi:10.1084/jem.20121960.
  • von Moltke J, Ayres JS, Kofoed EM, et al. Recognition of bacteria by inflammasomes. Annu Rev Immunol 2013;31:73–106. doi:10.1146/annurev-immunol-032712-095944.
  • Chavarría-Smith J, Mitchell PS, Ho AM, et al. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog 2016;12(12):e1006052. doi:10.1371/journal.ppat.1006052.
  • Lukácsi S, Nagy-Baló Z, Erdei A, et al. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol Lett 2017;189:64–72. doi:10.1016/j.imlet.2017.05.014.
  • Brown EJ. Complement receptors and phagocytosis. Curr Opin Immunol 1991;3(1):76–82.
  • Campagne MVL, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol 2007;9:2095–2102. doi:10.1111/j.1462-5822.2007.00981.x.
  • Holers VM, Kinoshita T, Molina H. The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. Immunol Today 1992;13(6):231–236.
  • Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 1998;282(5394):1717–1721.
  • Shi Y, Tohyama Y, Kadono T, et al. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 2006;107(11):4554–4562. doi:10.1182/blood-2005-09-3616.
  • Tohyama Y, Yamamura H. Complement-mediated phagocytosis-the role of Syk. IUBMB Life 2006;58(5–6):304–308. doi:10.1080/15216540600746377.
  • Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 2010;31(4):154–163. doi:10.1016/j.it.2010.01.002.
  • Hajishengallis G, Lambris JD. More than complementing tolls: complement-toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev 2016;274(1):233–244. doi:10.1111/imr.12467.
  • Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell 2006;125(5):943–955. doi:10.1016/j.cell.2006.03.047.
  • Ermert D, Weckel A, Magda M, et al. Human IgG increases Virulence of Streptococcus pyogenes through complement evasion. J Immunol (Baltimore, Md: 1950) 2018;200:3495–3505. doi:10.4049/jimmunol.180009.
  • Hoang KV, Rajaram MVS, Curry HM, et al. Complement receptor 3-mediated inhibition of inflammasome priming by Ras GTPase-activating protein during Francisella tularensis phagocytosis by human mononuclear phagocytes. Front Immunol 2018;9:561. doi:10.3389/fimmu.2018.00561.
  • Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement-mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation. J Cell Sci 2016;129(9):1928–1939. doi:10.1242/jcs.179291.
  • Helmy KY, Katschke KJ, Jr., Gorgani NN, et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 2006;124(5):915–927. doi:10.1016/j.cell.2005.12.039.
  • Lee MY, Kim WJ, Kang YJ, et al. Z39Ig is expressed on macrophages and may mediate inflammatory reactions in arthritis and atherosclerosis. J Leukoc Biol 2006;80(4):922–928. doi:10.1189/jlb.0306160.
  • Vogt L, Schmitz N, Kurrer MO, et al. VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest 2006;116(10):2817–2826. doi:10.1172/JCI25673.
  • He JQ, Wiesmann C, van Lookeren Campagne M. A role of macrophage complement receptor CRIg in immune clearance and inflammation. Mol Immunol 2008;45(16):4041–4047. doi:10.1016/j.molimm.2008.07.011.
  • Reyes L, Wolfe B, Golos T. Hofbauer cells: placental macrophages of fetal origin. Results Probl Cell Differ 2017;62:45–60. doi:10.1007/978-3-319-54090-0_3.
  • Ghebrehiwet B, Hosszu KK, Valentino A, et al. Monocyte expressed macromolecular C1 and C1q receptors as molecular sensors of danger: implications in SLE. Front Immunol 2014;5:278. doi:10.3389/fimmu.2014.00278.
  • Peerschke EIB, Ghebrehiwet B. The contribution of gC1qR/p33 in infection and inflammation. Immunobiology 2007;212(4–5):333–342. doi:10.1016/j.imbio.2006.11.011.
  • Peerschke EI, Ghebrehiwet B. cC1qR/CR and gC1qR/p33: observations in cancer. Mol Immunol 2014;61(2):100–109. doi:10.1016/j.molimm.2014.06.011.
  • Ghebrehiwet B, Hosszu KH, Peerschke EI. C1q as an autocrine and paracrine regulator of cellular functions. Mol Immunol 2017;84:26–33. doi:10.1016/j.molimm.2016.11.003.
  • Fraser DA, Laust AK, Nelson EL, Tenner AJ. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J Immunol (Baltimore, Md: 1950) 2009;183(10):6175–6185. doi:10.4049/jimmunol.0902232.
  • Kang YH, Urban BC, Sim RB, Kishore U. Human complement Factor H modulates C1q-mediated phagocytosis of apoptotic cells. Immunobiology 2012;217(4):455–464. doi:10.1016/j.imbio.2011.10.008.
  • Ferreira VP, Pangburn MK, Cortés C. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 2010;47(13):2187–2197. doi:10.1016/j.molimm.2010.05.007.
  • Losse J, Zipfel PF, Jozsi M. Factor H and factor H-related protein 1 bind to human neutrophils via complement receptor 3, mediate attachment to Candida albicans, and enhance neutrophil antimicrobial activity. J Immunol (Baltimore, Md: 1950) 2010;184(2):912–921. doi:10.4049/jimmunol.0901702.
  • Lu JH, Teh BK, Wang L, et al. The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol Immunol 2008;5:9–21. doi:10.1038/cmi.2008.2.
  • Bijl M, Reefman E, Horst G, et al. Reduced uptake of apoptotic cells by macrophages in systemic lupus erythematosus: correlates with decreased serum levels of complement. Ann Rheumat Dis 2006;65(1):57–63. doi:10.1136/ard.2005.035733.
  • Ling GS, Crawford G, Buang N, et al. C1q restrains autoimmunity and viral infection by regulating CD8(+) T cell metabolism. Science (New York, NY) 2018;360(6388):558–563. doi:10.1126/science.aao4555.
  • Prokhorenko I, Zubova S, Kabanov D, et al. Toll-like receptor 4 in phagocytosis of Escherichia coli by endotoxin-activated human neutrophils in whole blood. Crit Care 2012;16(Suppl. 3):P80. doi:10.1186/cc11767.
  • Doyle SE, O'Connell RM, Miranda GA, et al. Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 2004;199(1):81–90. doi:10.1084/jem.20031237.
  • Ribes S, Ebert S, Regen T, et al. Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated Streptococcus pneumoniae by murine microglia. Infect Immun 2010;78(2):865–871. doi:10.1128/IAI.01110-09.
  • Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science 2004;304(5673):1014–1018. doi:10.1126/science.1096158.
  • Kong L, Ge BX. MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Res 2008;18(7):745–755. doi:10.1038/cr.2008.65.
  • Laroux FS, Romero X, Wetzler L, et al. Cutting edge: MyD88 controls phagocyte NADPH oxidase function and killing of gram-negative bacteria. J Immunol (Baltimore, Md: 1950) 2005;175(9):5596–5600. doi:10.4049/jimmunol.175.9.5596.
  • Vulcano M, Dusi S, Lissandrini D, et al. Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells. J Immunol (Baltimore, Md: 1950) 2004;173(9):5749–5756. doi:10.4049/jimmunol.173.9.5749.
  • Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007;450(7173):1253–1257. doi:10.1038/nature06421.
  • Sanjuan MA, Milasta S, Green DR. Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 2009;227(1):203–220. doi:10.1111/j.1600-065X.2008.00732.x.
  • Hayashi K, Taura M, Iwasaki A. The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci Signal 2018;11:pii: eaan4144. doi:10.1126/scisignal.aan4144.
  • Henault J, Martinez J, Riggs JM, et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 2012;37(6):986–997. doi:10.1016/j.immuni.2012.09.014.
  • Arredouani MS. Is the scavenger receptor MARCO a new immune checkpoint? Oncoimmunology 2014;3(10):e955709doi:10.4161/21624011.2014.955709.
  • Tricker E, Cheng G. With a little help from my friends: modulation of phagocytosis through TLR activation. Cell Res 2008;18(7):711doi:10.1038/cr.2008.78.
  • van Bruggen R, Zweers D, van Diepen A, et al. Complement receptor 3 and toll-like receptor 4 act sequentially in uptake and intracellular killing of unopsonized salmonella enterica serovar typhimurium by human neutrophils. Infect Immun 2007;75(6):2655–2660. doi:10.1128/IAI.01111-06.
  • Harokopakis E, Hajishengallis G. Integrin activation by bacterial fimbriae through a pathway involving CD14, toll-like receptor 2, and phosphatidylinositol-3-kinase. Eur J Immunol 2005;35(4):1201–1210. doi:10.1002/eji.200425883.
  • Sendide K, Reiner NE, Lee JS, et al. Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1. J Immunol (Baltimore, Md: 1950). 2005;174(7):4210–4219. doi:10.4049/jimmunol.174.7.4210.
  • Arbibe L, Mira JP, Teusch N, et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 2000;1(6):533–540. doi:10.1038/82797.
  • Hajishengallis G, Wang M, Harokopakis E, et al. Porphyromonas gingivalis fimbriae proactively modulate beta2 integrin adhesive activity and promote binding to and internalization by macrophages. Infect Immun 2006;74(10):5658–5666. doi:10.1128/IAI.00784-06.
  • Wang M, Shakhatreh MA, James D, et al. Fimbrial proteins of porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. J Immunol (Baltimore, Md: 1950) 2007;179(4):2349–2358. doi:10.4049/jimmunol.179.4.2349.
  • Lowell CA. Rewiring phagocytic signal transduction. Immunity 2006;24(3):243–245. doi:10.1016/j.immuni.2006.03.002.
  • Suresh R, Sutterwala F, Mosser D. Complement mediated phagocytosis induces the activation of the NALP3 Inflammasome (INC5P.331). J Immunol 2014;192:120.11–111.
  • Sokolovska A, Becker CE, Eddie Ip WK, et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 2013;14(6):543–553. doi:10.1038/ni.2595.
  • Shimada T, Park BG, Wolf AJ, et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 2010;7:38–49. doi:10.1016/j.chom.2009.12.008.
  • Itoh R, Murakami I, Chou B, et al. Chlamydia pneumoniae harness host NLRP3 inflammasome-mediated caspase-1 activation for optimal intracellular growth in murine macrophages. Biochem Biophys Res Commun 2014;452(3):689–694. doi:10.1016/j.bbrc.2014.08.128.
  • Prebeck S, Kirschning C, Dürr S, et al. Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 2001;167(6):3316–3323.
  • Fernandes-Alnemri T, Yu JW, Juliana C, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 2010;11(5):385–393. doi:10.1038/ni.1859.
  • Jones JW, Kayagaki N, Broz P, et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 2010;107(21):9771–9776. doi:10.1073/pnas.1003738107.
  • Moretti J, Blander JM. Insights into phagocytosis-coupled activation of Pattern Recognition Receptors and Inflammasomes. Curr Opin Immunol 2014; 26:0:100–10. doi:10.1016/j.coi.2013.11.003.
  • Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010;11(12):1136–1142. doi:10.1038/ni.1960.
  • Schotte P, Denecker G, Van Den Broeke A, et al. Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J Biol Chem 2004;279(24):25134–25142. doi:10.1074/jbc.M401245200.
  • Higa N, Toma C, Nohara T, et al. Lose the battle to win the war: bacterial strategies for evading host inflammasome activation. Trends Microbiol 2013;21(7):342–349. doi:10.1016/j.tim.2013.04.005.
  • Brodsky IE, Palm NW, Sadanand S, et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 2010;7:376–387. doi:10.1016/j.chom.2010.04.009.
  • Chen K, Shanmugam NKN, Pazos MA, et al. Commensal bacteria-induced inflammasome activation in mouse and human macrophages is dependent on potassium efflux but does not require phagocytosis or bacterial viability. PLoS One 2016;11(8):e0160937. doi:10.1371/journal.pone.0160937.
  • Couturier J, Stancu I-C, Schakman O, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammat 2016;13:20. doi:10.1186/s12974-016-0477-y.
  • Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 2012;12(3):168–179. doi:10.1038/nri3151.
  • Tahara K, Kim H-D, Jin J-J, et al. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006;129(Pt 11):3006–3019. doi:10.1093/brain/awl249.
  • Aderem A. Phagocytosis and the inflammatory response. J Infect Dis 2003;187(s2):S340–S345. doi:10.1086/374747.
  • Heckmann BL, Boada-Romero E, Cunha LD, et al. LC3-associated phagocytosis and inflammation. J Mol Biol 2017;429(23):3561–3576. doi:10.1016/j.jmb.2017.08.012.
  • Lotze MT, Herberman RB. Cancer as a chronic inflammatory disease: role of immunotherapy. In: Morgan DW, Forssmann UJ, Nakada MT, editors. Cancer and inflammation. Basel: Birkhäuser Basel; 2004. pp 21–51.
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860–867. doi:10.1038/nature01322.
  • Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet?. Science (New York, NY) 2013;339(6117):286–291. doi:10.1126/science.1232227.
  • Mangsbo SM, Sanchez J, Anger K, et al. Complement activation by CpG in a human whole blood loop system: mechanisms and immunomodulatory effects. J Immunol (Baltimore, Md: 1950) 2009;183(10):6724–6732. doi:10.4049/jimmunol.0902374.
  • Zhang X, Kimura Y, Fang C, et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 2007;110(1):228–236. doi:10.1182/blood-2006-12-063636.
  • Ullah MO, Sweet MJ, Mansell A, et al. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016;100(1):27–45. doi:10.1189/jlb.2RI1115-531R.
  • Harris CL, Pettigrew DM, Lea SM, Morgan BP. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. J Immunol 2007;178(1):352–359.
  • Sogabe H, Nangaku M, Ishibashi Y, et al. Increased susceptibility of decay-accelerating factor deficient mice to anti-glomerular basement membrane glomerulonephritis. J Immunol 2001;167(5):2791–2797.
  • Kim DD, Song WC. Membrane complement regulatory proteins. Clin Immunol 2006;118(2–3):127–136. doi:10.1016/j.clim.2005.10.014.
  • Verschoor A, Karsten CM, Broadley SP, et al. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev 2016;274(1):112–126. doi:10.1111/imr.12473.
  • Freeley S, Kemper C, Le Friec G. The “ins and outs” of complement-driven immune responses. Immunol Rev 2016;274(1):16–32. doi:10.1111/imr.12472.
  • Klos A, Tenner AJ, Johswich K-O, et al. The role of the anaphylatoxins in health and disease. Mol Immunol 2009;46(14):2753–2766. doi:10.1016/j.molimm.2009.04.027.
  • Sunderhauf A, Skibbe K, Preisker S, et al. Regulation of epithelial cell expressed C3 in the intestine – relevance for the pathophysiology of inflammatory bowel disease? Mol Immunol 2017;90:227–238. doi:10.1016/j.molimm.2017.08.003.
  • Pope MR, Hoffman SM, Tomlinson S, Fleming SD. Complement regulates TLR4-mediated inflammatory responses during intestinal ischemia reperfusion. Mol Immunol 2010;48(1-3):356–364. doi:10.1016/j.molimm.2010.07.004.
  • Goering J, Pope MR, Fleming SD. TLR2 regulates complement-mediated inflammation induced by blood loss during hemorrhage. Shock (Augusta, Ga) 2016;45(1):33–39. doi:10.1097/SHK.0000000000000477.
  • Lappegard KT, Christiansen D, Pharo A, et al. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature. Proc Natl Acad Sci U S A 2009;106(37):15861–15866. doi:10.1073/pnas.0903613106.
  • Lau C, Nygård S, Fure H, et al. CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray. PLoS One 2015;10(2):e0117261. doi:10.1371/journal.pone.0117261.
  • Brekke OL, Christiansen D, Fure H, et al. The role of complement C3 opsonization, C5a receptor, and CD14 in E. coli-induced up-regulation of granulocyte and monocyte CD11b/CD18 (CR3), phagocytosis, and oxidative burst in human whole blood. J Leukocyte Biol 2007;81(6):1404–1413. doi:10.1189/jlb.0806538.
  • Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011;147(4):868–880. doi:10.1016/j.cell.2011.09.051.
  • Rajaiah R, Perkins DJ, Ireland DDC, Vogel SN. CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc Natl Acad Sci U S A 2015;112(27):8391–8396. doi:10.1073/pnas.1424980112.
  • van Bergenhenegouwen J, Plantinga TS, Joosten LA, et al. TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukocyte Biol 2013;94:885–902. doi:10.1189/jlb.0113003.
  • Raby AC, Holst B, Le Bouder E, et al. Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Sci Translat Med 2013;5(185):185ra64. doi:10.1126/scitranslmed.3005544.
  • Silva Ta D, Zorzetto-Fernandes ALV, Cecílio NT, et al. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Scientific Rep 2017;7:7083. doi:10.1038/s41598-017-07397-0.
  • Tan Y, Zanoni I, Cullen TW, et al. Mechanisms of toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity 2015;43(5):909–922. doi:10.1016/j.immuni.2015.10.008.
  • Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-toll-like receptor crosstalk. Sci Signal 2010;3(109):ra11 doi:10.1126/scisignal.2000697.
  • Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 2008;39(2):127–132. doi:10.1165/rcmb.2008-0091TR.
  • Koleva M, Schlaf G, Landmann R, et al. Induction of anaphylatoxin C5a receptors in rat hepatocytes by lipopolysaccharide in vivo: mediation by interleukin-6 from Kupffer cells. Gastroenterology 2002;122(3):697–708.
  • Hawlisch H, Belkaid Y, Baelder R, et al. C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 2005;22(4):415–426. doi:10.1016/j.immuni.2005.02.006.
  • Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008;8(10):776–787. doi:10.1038/nri2402.
  • Chen N-J, Mirtsos C, Suh D, et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 2007;446(7132):203–207. doi:10.1038/nature05559.
  • Gerard NP, Lu B, Liu P, et al. An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem 2005;280(48):39677–39680. doi:10.1074/jbc.C500287200.
  • Kim T, Yoon J, Cho H, et al. Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-kappaB signaling modules. Nat Immunol 2005;6(2):211–218. doi:10.1038/ni1159.
  • Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene 2001;20(19):2390–2400. doi:10.1038/sj.onc.1204383.
  • Foletta VC, Segal DH, Cohen DR. Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukocyte Biol 1998;63(2):139–152.
  • Calao M, Burny A, Quivy V, et al. A pervasive role of histone acetyltransferases and deacetylases in an NF-kappaB-signaling code. Trends Biochem Sci 2008;33(7):339–349. doi:10.1016/j.tibs.2008.04.015.
  • Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol (Baltimore, Md: 1950) 2010;185(11):6413–6419. doi:10.4049/jimmunol.1001829.
  • Zhang Y, Wang X, Yang H, et al. Kinase AKT controls innate immune cell development and function. Immunology 2013;140(2):143–152. doi:10.1111/imm.12123.
  • Waggoner SN, Cruise MW, Kassel R, Hahn YS. gC1q receptor ligation selectively down-regulates human IL-12 production through activation of the phosphoinositide 3-kinase pathway. J Immunol (Baltimore, Md: 1950). 2005;175(7):4706–4714. doi:10.4049/jimmunol.175.7.4706.
  • Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol 2003;24(7):358–363.
  • Yamada M, Oritani K, Kaisho T, et al. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells. Eur J Immunol 2004;34(1):221–230. doi:10.1002/eji.200324026.
  • Waggoner SN, Hall CH, Hahn YS. HCV core protein interaction with gC1q receptor inhibits Th1 differentiation of CD4+ T cells via suppression of dendritic cell IL-12 production. J Leukoc Biol 2007;82(6):1407–1419. doi:10.1189/jlb.0507268.
  • Cummings KL, Waggoner SN, Tacke R, Hahn YS. Role of complement in immune regulation and its exploitation by virus. Viral Immunol 2007;20(4):505–524. doi:10.1089/vim.2007.0061.
  • Son M, Diamond B, Santiago-Schwarz F. Fundamental role of C1q in autoimmunity and inflammation. Immunol Res 2015;63(1–3):101–106. doi:10.1007/s12026-015-8705-6.
  • Ghebrehiwet B, Peerschke EI. Role of C1q and C1q receptors in the pathogenesis of systemic lupus erythematosus. Curr Direct Autoimmun 2004;7:87–97.
  • Kohl J. The role of complement in danger sensing and transmission. IR 2006;34(2):157–176. doi:10.1385/IR:34:2:157.
  • Ohno M, Hirata T, Enomoto M, et al. A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol Immunol 2000;37(8):407–412.
  • Strainic MG, Liu J, Huang D, et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 2008;28(3):425–435. doi:10.1016/j.immuni.2008.02.001.
  • Peng Q, Li K, Wang N, et al. Dendritic cell function in allostimulation is modulated by C5aR signaling. J Immunol 2009;183(10):6058–6068. doi:10.4049/jimmunol.0804186.
  • Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature 2009;458(7239):725–731. doi:10.1038/nature07782.
  • Li K, Fazekasova H, Wang N, et al. Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology 2012;217(1):65–73. doi:10.1016/j.imbio.2011.07.033.
  • Danial NN, Gramm CF, Scorrano L, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003;424(6951):952–956. doi:10.1038/nature01825.
  • Hess C, Kemper C. Complement-mediated regulation of metabolism and basic cellular processes. Immunity 2016;45(2):240–254. doi:10.1016/j.immuni.2016.08.003.
  • Vacaflores A, Chapman NM, Harty JT, et al. Exposure of human CD4 T Cells to IL-12 results in enhanced TCR-induced cytokine production, altered TCR signaling, and increased oxidative metabolism. PLoS One 2016;11(6):e0157175. doi:10.1371/journal.pone.0157175.
  • Henry CJ, Ornelles DA, Mitchell LM, et al. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol (Baltimore, Md: 1950) 2008;181(12):8576–8584. doi:10.4049/jimmunol.181.12.8576.
  • Starbeck-Miller GR, Xue H-H, Harty JT. IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J Exp Med 2014;211(1):105–120. doi:10.1084/jem.20130901.
  • Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013;118:97–398.
  • McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nat Immunol 2009;10(3):314. doi:10.1038/ni.1698.
  • Krausgruber T, Schiering C, Adelmann K, et al. T-bet is a key modulator of IL-23-driven pathogenic CD4+ T cell responses in the intestine. Nat Commun 2016;7:11627. doi:10.1038/ncomms11627.
  • Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201(2):233–240. doi:10.1084/jem.20041257.
  • Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar MJ, et al. Th17 cells in autoimmune and infectious diseases. Int J Inflammat 2014;2014:1. doi:10.1155/2014/651503.
  • Burkett PR, Meyer zu Horste G, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest 2015;125(6):2211–2219. doi:10.1172/JCI78085.
  • Henry CJ, Grayson JM, Brzoza-Lewis KL, et al. The roles of IL-12 and IL-23 in CD8+ T cell-mediated immunity against Listeria monocytogenes: insights from a DC vaccination model. Cell Immunol 2010;264(1):23–31. doi:10.1016/j.cellimm.2010.04.007.
  • Jones CL, Weiss DS. TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS One 2011;6(6):e20609. doi:10.1371/journal.pone.0020609.
  • He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016;41(12):1012–1021. doi:10.1016/j.tibs.2016.09.002.
  • Fuentes-Antrás J, Ioan AM, Tuñón J, et al. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol 2014;2014:1. doi:10.1155/2014/847827.
  • Hanamsagar R, Hanke ML, Kielian T. Toll-like receptor (TLR) and inflammasome actions in the central nervous system: new and emerging concepts. Trends Immunol 2012;33(7):333–342. doi:10.1016/j.it.2012.03.001.
  • He Y, Franchi L, Nunez G. TLR agonists stimulate Nlrp3-dependent IL-1beta production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol (Baltimore, Md: 1950) 2013;190(1):334–339. doi:10.4049/jimmunol.1202737.
  • Fernandes-Alnemri T, Kang S, Anderson C, et al. Toll-like receptor signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol (Baltimore, Md: 1950) 2013;191(8):3995–3999. doi:10.4049/jimmunol.1301681.
  • Vayttaden SJ, Smelkinson M, Ernst OR, et al. IRAK1 attenuates TLR signaling and activates the inflammasome in response to dual-TLR stimulation. J Immunol 2017;198:75.11–75.11.
  • Gurung P, Li B, Subbarao Malireddi RK, et al. Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation. Scientific Rep 2015;5:14488.
  • Zhao J, Kong HJ, Li H, et al. IRF-8/interferon (IFN) consensus sequence-binding protein is involved in Toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-gamma signaling pathways. J Biol Chem 2006;281(15):10073–10080. doi:10.1074/jbc.M507788200.
  • Karki R, Lee E, Place D, et al. IRF8 regulates transcription of naips for NLRC4 inflammasome activation. Cell 2018;173:920–933.e13.
  • Triantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 2013;126(Pt 13):2903–2913. doi:10.1242/jcs.124388.
  • Laudisi F, Spreafico R, Evrard M, et al. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol 2013;191(3):1006–1010. doi:10.4049/jimmunol.1300489.
  • Asgari E, Le Friec G, Yamamoto H, et al. C3a modulates IL-1beta secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 2013;122(20):3473–3481. doi:10.1182/blood-2013-05-502229.
  • Samstad EO, Niyonzima N, Nymo S, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol 2014;192(6):2837–2845. doi:10.4049/jimmunol.1302484.
  • Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010;464(7293):1357–1361. doi:10.1038/nature08938.
  • An LL, Mehta P, Xu L, et al. Complement C5a potentiates uric acid crystal-induced IL-1β production. Eur J Immunol 2014;44(12):3669–3679. doi:10.1002/eji.201444560.
  • Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science (New York, NY) 2016;352(6292):aad1210. doi:10.1126/science.aad1210.
  • Benoit ME, Clarke EV, Morgado P, et al. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol (Baltimore, Md: 1950) 2012;188(11):5682–5693. doi:10.4049/jimmunol.1103760.
  • Manughian-Peter A, Ho MM, Fraser DA. Complement protein C1q suppresses macrophage inflammasome activation during clearance of modified LDL. J Immunol 2017;198:64.5–65.
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011;469(7330):323–335. doi:10.1038/nature09782.
  • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013;13(10):722–737. doi:10.1038/nri3532.
  • Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Annu Rev Immunol 2012;30:611–646. doi:10.1146/annurev-immunol-020711-074948.
  • Bhattacharya A, Eissa NT. Autophagy as a stress response pathway in the immune system. Int Rev Immunol 2015;34(5):382–402. doi:10.3109/08830185.2014.999156.
  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451(7182):1069–1075. doi:10.1038/nature06639.
  • Shibutani ST, Saitoh T, Nowag H, et al. Autophagy and autophagy-related proteins in the immune system. Nat Immunol 2015;16(10):1014–1024. doi:10.1038/ni.3273.
  • Sanjuan MA, Green DR. Eating for good health: linking autophagy and phagocytosis in host defense. Autophagy 2008;4(5):607–611.
  • Ogawa M, Sasakawa C. Bacterial evasion of the autophagic defense system. Curr Opin Microbiol 2006;9(1):62–68. doi:10.1016/j.mib.2005.12.007.
  • Ogawa M, Mimuro H, Yoshikawa Y, et al. Manipulation of autophagy by bacteria for their own benefit. Microbiol Immunol 2011;55(7):459–471. doi:10.1111/j.1348-0421.2011.00343.x.
  • Ma J, Underhill DM. Beta-glucan signaling connects phagocytosis to autophagy. Glycobiology 2013;23(9):1047–1051. doi:10.1093/glycob/cwt046.
  • Ma J, Becker C, Lowell CA, Underhill DM. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 2012;287(41):34149–34156. doi:10.1074/jbc.M112.382812.
  • Romao S, Munz C. LC3-associated phagocytosis. Autophagy 2014;10(3):526–528. doi:10.4161/auto.27606.
  • Tam JM, Mansour MK, Khan NS, et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J Infect Dis 2014;210(11):1844–1854. doi:10.1093/infdis/jiu290.
  • Li YY, Ishihara S, Aziz MM, et al. Autophagy is required for toll-like receptor-mediated interleukin-8 production in intestinal epithelial cells. Int J Mol Med 2011;27:337–344.
  • Delgado MA, Elmaoued RA, Davis AS, et al. Toll-like receptors control autophagy. Embo J 2008;27(7):1110–1121. doi:10.1038/emboj.2008.31.
  • Pacquelet S, Johnson JL, Ellis BA, et al. Cross-talk between IRAK-4 and the NADPH oxidase. Biochem J 2007;403(3):451–461. doi:10.1042/BJ20061184.
  • Underhill DM. Toll-like receptors: networking for success. Eur J Immunol 2003;33(7):1767–1775. doi:10.1002/eji.200324037.
  • Delgado MA, Deretic V. Toll-like receptors in control of immunological autophagy. Cell Death Differ 2009;16(7):976–983. doi:10.1038/cdd.2009.40.
  • Shi C-S, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 2008;283(48):33175–33182. doi:10.1074/jbc.M804478200.
  • Nabar NR, Shi C-S, Kehrl JH. Chapter 6 – signaling by the toll-like receptors induces autophagy through modification of beclin 1: molecular mechanism. In: Hayat MA, editor. Immunology. Academic Press; 2018. pp 75–84.
  • Franco LH, Fleuri AKA, Pellison NC, et al. Autophagy downstream of endosomal toll-like receptors signaling in macrophages is a key mechanism for resistance to leishmania major infection. J Biol Chem 2017;292:13087–13096.
  • Oh JE, Lee HK. Pattern recognition receptors and autophagy. Front Immunol 2014;5:300. doi:10.3389/fimmu.2014.00300.
  • Gyorgyi M, Miklos C, Istvan F, et al. Interaction of autophagy and toll-like receptors: a regulatory cross-talk – even in cancer cells? Curr Drug Targets 2014;15:743–752.
  • Moreno-Gonzalo O, Ramírez-Huesca M, Blas-Rus N, et al. HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes. PLoS Pathog 2017;13(12):e1006799. doi:10.1371/journal.ppat.1006799.
  • Kang S-J, Tak J-H, Cho J-H, et al. Stimulation of the endosomal TLR pathway enhances autophagy-induced cell death in radiotherapy of breast cancer. Genes Genom 2010;32:599–606. doi:10.1007/s13258-010-0139-x.
  • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008;456(7219):264–268. doi:10.1038/nature07383.
  • Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011;469(7329):221–225. doi:10.1038/nature09663.
  • Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011;12(3):222–230. doi:10.1038/ni.1980.
  • Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36(3):401–414. doi:10.1016/j.immuni.2012.01.009.
  • Cruz CM, Rinna A, Forman HJ, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007;282(5):2871–2879. doi:10.1074/jbc.M608083200.
  • Simard JC, Cesaro A, Chapeton-Montes J, et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-kappaB(1.). PLoS One 2013;8(8):e72138. doi:10.1371/journal.pone.0072138.
  • Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 2014;5:352doi:10.3389/fphys.2014.00352.
  • Sun Q, Fan J, Billiar TR, Scott MJ. Inflammasome and autophagy regulation – a two-way street. Mol Med 2017;23(1):188–195. doi:10.2119/molmed.2017.00077.
  • Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010;11(2):136–140. doi:10.1038/ni.1831.
  • Harris J, Lang T, Thomas JPW, et al. Autophagy and inflammasomes. Mol Immunol 2017;86:10–15. doi:10.1016/j.molimm.2017.02.013.
  • Jounai N, Kobiyama K, Shiina M, et al. NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol (Baltimore, Md: 1950) 2011;186(3):1646–1655. doi:10.4049/jimmunol.1001654.
  • Zhang Y, Sauler M, Shinn AS, et al. Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J Immunol (Baltimore, Md: 1950) 2014;192(11):5296–5304. doi:10.4049/jimmunol.1400653.
  • Shi C-S, Shenderov K, Huang N-N, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 2012;13(3):255. doi:10.1038/ni.2215.
  • Vorhauer J, Alaoui-El-Azher M, Wells A, Ismail N. Autophagy and inflammasome activation triggered by LPS-negative Ehrlichia is dependent on both mTOR activation and MyD88 signaling. J Immunol 2016;196:62.12–62.12.
  • Lin L, Rodrigues F, Kary C, et al. Complement-related regulates autophagy in neighboring cells. Cell 2017;170(1):158–171.e8. doi:10.1016/j.cell.2017.06.018.
  • McPhee CK, Logan MA, Freeman MR, Baehrecke EH. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 2010;465(7301):1093–1096. doi:10.1038/nature09127.
  • MacDonald JM, Beach MG, Porpiglia E, et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 2006;50(6):869–881. doi:10.1016/j.neuron.2006.04.028.
  • Rogińska D, Kawa MP, Pius-Sadowska E, et al. Depletion of the third complement component ameliorates age-dependent oxidative stress and positively modulates autophagic activity in aged retinas in a mouse model. Oxidat Med Cell Longevity 2017;2017:1.
  • King BC, Kulak K, Krus U, et al. Complement component C3 is highly expressed in human pancreatic islets and prevents β cell death via ATG16L1 interaction and autophagy regulation. Cell Metabol 2019;29:202–210.e6. doi:10.1016/j.cmet.2018.09.009.
  • Sorbara MT, Foerster EG, Tsalikis J, et al. Complement C3 drives autophagy-dependent restriction of cyto-invasive bacteria. Cell Host Microbe 2018;23:644–652.e5. doi:10.1016/j.chom.2018.04.008.
  • Sancho-Shimizu V, Mostowy S. Bacterial autophagy: how to take a complement. Cell Host Microbe 2018;23(5):580–582. doi:10.1016/j.chom.2018.04.010.
  • Scanlon ST. Bacteria restricted via C3-mediated autophagy. Science (New York, NY) 2018;360:977–978. doi:10.1126/science.360.6392.977-d.
  • Tsai Y-G, Wen Y-S, Wang J-Y, et al. Complement regulatory protein CD46 induces autophagy against oxidative stress-mediated apoptosis in normal and asthmatic airway epithelium. Scientific Rep 2018;8:12973. doi:10.1038/s41598-018-31317-5..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.