744
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Immunoinformatics: In Silico Approaches and Computational Design of a Multi-epitope, Immunogenic Protein

ORCID Icon, , , &
Pages 307-322 | Received 12 Jan 2019, Accepted 15 Aug 2019, Published online: 03 Sep 2019

References

  • Bansal AK. Bioinformatics in microbial biotechnology-a mini review. Microb Cell Fact 2005;4(1):19.doi:10.1186/1475-2859-4-19.
  • Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput Biol 2006;2(6):e71.doi:10.1371/journal.pcbi.0020071.
  • Davies MN, Flower DR. Harnessing bioinformatics to discover new vaccines. Drug Discov Today 2007;12(9-10):389–395. doi:10.1016/j.drudis.2007.03.010.
  • De Groot AS. Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 2006;11(5-6):203–209. doi:10.1016/S1359-6446(05)03720-7.
  • Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res 2016;44(Database issue):D7.
  • Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res 2018;46(Database issue):D8.
  • Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2018;46(5):2699.
  • Kleywegt GJ, Velankar S, Patwardhan A. Structural biology data archiving: where we are and what lies ahead. FEBS Lett 2018;592:2153. doi:10.1002/1873-3468.13086.
  • Lynn DJ, Winsor GL, Chan C, et al. InnateDB: facilitating systems‐level analyses of the mammalian innate immune response. Mol Syst Biol 2008;4(1):218. doi:10.1038/msb.2008.55.
  • Artimo P, Jonnalagedda M, Arnold K, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 2012;40(W1):W597–W603. doi:10.1093/nar/gks400.
  • Ciccotti G, Ferrario M, Schuette C. Molecular dynamics simulation. Entropy 2013;16(1):233.doi:10.3390/e16010233.
  • Moult J, Fidelis K, Kryshtafovych A, et al. Critical assessment of methods of protein structure prediction: progress and new directions in round XI. Proteins Struct Funct Bioinform 2016;84:4–14. doi:10.1002/prot.25064.
  • Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol 1982;162(3):705–708. doi:10.1016/0022-2836(82)90398-9.
  • Borovska P, Gancheva V, Tsvetanov S. Optimization and scaling of multiple sequence alignment software ClustalW on Intel Xeon Phi. Partnership Adv Comput Europe (PRACE) 2014;138:1–7.
  • Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 2014;15(7):469.doi:10.1038/nrg3681.
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31(13):3406–3415. doi:10.1093/nar/gkg595.
  • Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003;31(13):3429–3431. doi:10.1093/nar/gkg599.
  • Zuker M, Mathews DH, Turner DH. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide In: RNA biochemistry and biotechnology. Dordrecht: Springer; 1999. pp 11–43.
  • Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 2010;11(1):129. doi:10.1186/1471-2105-11-129.
  • Jossinet F, Ludwig TE, Westhof E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 2010;26(16):2057–2059. doi:10.1093/bioinformatics/btq321.
  • Puton T, Kozlowski LP, Rother KM, et al. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res 2013;41(7):4307–4323. doi:10.1093/nar/gkt101.
  • Zhao Q, Liu Y, Duan Y, et al. FledFold: a novel software for RNA secondary structure prediction. LOC 2017;14(9):714–716. doi:10.2174/1570178614666170419122621.
  • Shi J, Li X, Dong M, et al. JNSViewer—a JavaScript-based nucleotide sequence viewer for DNA/RNA secondary structures. PLoS One 2017;12(6):e0179040. doi:10.1371/journal.pone.0179040.
  • Bindewald E, Shapiro BA. RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. RNA 2006;12(3):342–352. doi:10.1261/rna.2164906.
  • Reeder J, Steffen P, Giegerich R. pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res 2007;35(suppl_2):W320–W324. doi:10.1093/nar/gkm258.
  • Andronescu M, Aguirre-Hernandez R, Condon A, et al. RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res 2003;31(13):3416–3422. doi:10.1093/nar/gkg612.
  • Yesselman JD, Das R. Modeling small noncanonical RNA motifs with the Rosetta FARFAR server In: RNA structure determination. New York: Springer; 2016. pp. 187–198.
  • Magnus M, Boniecki MJ, Dawson W, et al. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res 2016;44(W1):W315–W319. doi:10.1093/nar/gkw279.
  • Hertel J, Hofacker IL, Stadler PF. SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 2008;24(2):158–164. doi:10.1093/bioinformatics/btm464.
  • Xu X, Zhao P, Chen S-J. Vfold: a web server for RNA structure and folding thermodynamics prediction. PLoS One 2014;9(9):e107504. doi:10.1371/journal.pone.0107504.
  • Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server In: The proteomics protocols handbook. Totowa, NJ: Springer; 2005. pp. 571–607.
  • Ikeda M, Arai M, Lao DM, et al. Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol 2002;2(1):19–33.
  • Lo A, Chiu H-S, Sung T-Y, et al. Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function. J Proteome Res 2008;7(2):487–496. doi:10.1021/pr0702058.
  • Arai M, Mitsuke H, Ikeda M, et al. ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 2004;32(suppl_2):W390–W393. doi:10.1093/nar/gkh380.
  • Labarga A, Valentin F, Anderson M, et al. Web services at the European bioinformatics institute. Nucleic Acids Res 2007;35(suppl_2):W6–W11. doi:10.1093/nar/gkm291.
  • Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001;17(9):849–850. doi:10.1093/bioinformatics/17.9.849.
  • Nugent T, Ward S, Jones DT. The MEMPACK alpha-helical transmembrane protein structure prediction server. Bioinformatics 2011;27(10):1438–1439. doi:10.1093/bioinformatics/btr096.
  • Jones DT. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007;23(5):538–544. doi:10.1093/bioinformatics/btl677.
  • Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305(3):567–580. doi:10.1006/jmbi.2000.4315.
  • Bernsel A, Viklund H, Hennerdal A, et al. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 2009;37(suppl_2):W465–W468. doi:10.1093/nar/gkp363.
  • Ferron F, Longhi S, Canard B, et al. A practical overview of protein disorder prediction methods. Proteins Struct Funct Bioinform 2006;65(1):1–14. doi:10.1002/prot.21075.
  • Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009;4(3):363. doi:10.1038/nprot.2009.2.
  • Whitmore L, Wallace B. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 2004;32(suppl_2):W668–W673. doi:10.1093/nar/gkh371.
  • Sen TZ, Jernigan RL, Garnier J, et al. GOR V server for protein secondary structure prediction. Bioinformatics 2005;21(11):2787–2788. doi:10.1093/bioinformatics/bti408.
  • Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008;36(suppl_2):W197–W201. doi:10.1093/nar/gkn238.
  • Drozdetskiy A, Cole C, Procter J, et al. JPred4: a protein secondary structure prediction server. Nucleic Acids Res 2015;43(W1):W389–W394. doi:10.1093/nar/gkv332.
  • Fang C, Shang Y, Xu D. MUFOLD‐SS: New deep inception‐inside‐inception networks for protein secondary structure prediction. Proteins 2018;86(5):592–598. doi:10.1002/prot.25487.
  • Klausen MS, Jespersen MC, Nielsen H, et al. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. BioRxiv 2019;87(6):520–527.
  • Pollastri G, Mclysaght A. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 2005;21(8):1719–1720. doi:10.1093/bioinformatics/bti203.
  • Costantini S, Colonna G, Facchiano AM. PreSSAPro: a software for the prediction of secondary structure by amino acid properties. Comput Biol Chem 2007;31(5-6):389–392. doi:10.1016/j.compbiolchem.2007.08.010.
  • McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000;16(4):404–405. doi:10.1093/bioinformatics/16.4.404.
  • Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 1995;11(6):681–684. doi:10.1093/bioinformatics/11.6.681.
  • Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 2014;30(18):2592–2597. doi:10.1093/bioinformatics/btu352.
  • Chou K-C. Structural bioinformatics and its impact to biomedical science. CMC 2004;11(16):2105–2134. doi:10.2174/0929867043364667.
  • Kendrew JC, Bodo G, Dintzis HM, et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958;181(4610):662–666. doi:10.1038/181662a0.
  • Ponder JW, Richards FM. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 1987;193(4):775–791. doi:10.1016/0022-2836(87)90358-5.
  • Peitsch MC, Schwede T, Diemand A, Guex N. Protein homology modelling. Nature encyclopedia of the human genome. 2002;4.
  • Peng J, Xu J. A multiple‐template approach to protein threading. Proteins: Struct Funct Bioinform 2011;79(6):1930–1939. doi:10.1002/prot.23016.
  • Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 2006;124(24):244704. doi:10.1063/1.2210932.
  • Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: a historical perspective. Electrophoresis 2009;30(S1):S162–S173. doi:10.1002/elps.200900140.
  • Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 2007;35(10):3375–3382. doi:10.1093/nar/gkm251.
  • Chen C-C, Hwang J-K, Yang J-M. 2-v2: template-based protein structure prediction server. BMC Bioinform 2009;10(1):366. doi:10.1186/1471-2105-10-366.
  • Yang J, Yan R, Roy A, et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015;12(1):7. doi:10.1038/nmeth.3213.
  • Wu Y, Dousis AD, Chen M, et al. OPUS-Dom: applying the folding-based method VECFOLD to determine protein domain boundaries. J Mol Biol 2009;385(4):1314–1329. doi:10.1016/j.jmb.2008.10.093.
  • Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10(6):845. doi:10.1038/nprot.2015.053.
  • Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004;32(suppl_2):W526–W531. doi:10.1093/nar/gkh468.
  • Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003;31(13):3381–3385. doi:10.1093/nar/gkg520.
  • Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins Struct Funct Bioinform 2004;57(4):702–710. doi:10.1002/prot.20264.
  • Zhang Y. Progress and challenges in protein structure prediction. Curr Opin Struct Biol 2008;18(3):342–348. doi:10.1016/j.sbi.2008.02.004.
  • Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci 1997;13(4):425–430.
  • Ko J, Park H, Heo L, et al. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 2012;40(W1):W294–W297. doi:10.1093/nar/gks493.
  • Rodrigues JP, Levitt M, Chopra G. KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 2012;40(W1):W323–W328. doi:10.1093/nar/gks376.
  • Gopalakrishnan K, Sowmiya G, Sheik S, et al. Ramachandran plot on the web (2.0). Protein Pept Lett 2007;14(7):669–671.
  • Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res 2009;37(suppl_2):W510–W514. doi:10.1093/nar/gkp322.
  • Cao R, Adhikari B, Bhattacharya D, et al. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics 2017;33(4):586–588.
  • Maghrabi AH, McGuffin LJ. ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models. Nucleic Acids Res 2017;45(W1):W416–W421. doi:10.1093/nar/gkx332.
  • Young JY, Westbrook JD, Feng Z, et al. OneDep: unified wwPDB system for deposition, biocuration, and validation of macromolecular structures in the PDB archive. Structure 2017;25(3):536–545. doi:10.1016/j.str.2017.01.004.
  • Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 2011;101(10):2525–2534. doi:10.1016/j.bpj.2011.10.024.
  • Uchôa HB, Jorge GE, Da Silveira NJF, et al. Parmodel: a web server for automated comparative modeling of proteins. Biochem Biophys Res Commun 2004;325(4):1481–1486. doi:10.1016/j.bbrc.2004.10.192.
  • Willard L, Ranjan A, Zhang H, et al. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 2003;31(13):3316–3319. doi:10.1093/nar/gkg565.
  • Russell-Jones GJ, Geczy AF. T-cell epitopes In: Google patents; 1999.
  • Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol 2013;3(1):120–139. doi:10.1098/rsob.120139.
  • Tomar N, De RK. Immunoinformatics: an integrated scenario. Immunology 2010;131(2):153–168. doi:10.1111/j.1365-2567.2010.03330.x.
  • Engler OB, Dai WJ, Sette A, et al. Peptide vaccines against hepatitis B virus: from animal model to human studies. Mol Immunol 2001;38(6):457–465.
  • Flower DR. Towards in silico prediction of immunogenic epitopes. Trends Immunol 2003;24(12):667–674.
  • Gonzalez-Galarza FF, Christmas S, Middleton D, et al. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 2011;39(suppl_1):D913–D919. doi:10.1093/nar/gkq1128.
  • Guan P, Doytchinova IA, Zygouri C, et al. MHCPred: a server for quantitative prediction of peptide–MHC binding. Nucleic Acids Res 2003;31(13):3621–3624. doi:10.1093/nar/gkg510.
  • Bhasin M, Raghava G. Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridom 2003;22(4):229–234. doi:10.1089/153685903322328956.
  • Heiny A, Miotto O, Srinivasan KN, et al. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS One 2007;2(11):e1190. doi:10.1371/journal.pone.0001190.
  • Lundegaard C, Lamberth K, Harndahl M, et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 2008;36(suppl_2):W509–W512. doi:10.1093/nar/gkn202.
  • Nielsen M, Lundegaard C, Lund O, et al. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005;57(1-2):33–41. doi:10.1007/s00251-005-0781-7.
  • Bhasin M, Raghava G. Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 2004;13(3):596–607. doi:10.1110/ps.03373104.
  • Bhasin M, Raghava G. Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 2005;33(suppl_2):W202–W207. doi:10.1093/nar/gki587.
  • Singh H, Raghava G. ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001;17(12):1236–1237. doi:10.1093/bioinformatics/17.12.1236.
  • Ponomarenko J, Bui H-H, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 2008;9(1):514. doi:10.1186/1471-2105-9-514.
  • Feldhahn M, Thiel P, Schuler MM, et al. EpiToolKit—a web server for computational immunomics. Nucleic Acids Res 2008;36(suppl_2):W519–W522. doi:10.1093/nar/gkn229.
  • Sidney J, Sette A, Berzofsky JA, Anne S. De Groo. New Generation Vaccines. 2004:344.
  • Saxová P, Buus S, Brunak S, et al. Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 2003;15(7):781–787. doi:10.1093/intimm/dxg084.
  • Rammensee H-G, Bachmann J, Emmerich NPN, et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999;50(3-4):213–219.
  • Lefranc M-P, Giudicelli V, Ginestoux C, et al. IMGT®, the international ImMunoGeneTics information system®. Nucleic Acids Res 2009;37(suppl_1):D1006–D1012. doi:10.1093/nar/gkn838.
  • Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res 2010;38(suppl_1):D854–D862. doi:10.1093/nar/gkp1004.
  • Doytchinova IA, Guan P, Flower DR. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinform 2006;7(1):131. doi:10.1186/1471-2105-7-131.
  • Lin HH, Ray S, Tongchusak S, et al. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 2008;9(1):8. doi:10.1186/1471-2172-9-8.
  • Bhasin M, Raghava G. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004;22(23-24):3195–3204. doi:10.1016/j.vaccine.2004.02.005.
  • McSparron H, Blythe MJ, Zygouri C, et al. JenPep: a novel computational information resource for immunobiology and vaccinology. J Chem Inf Comput Sci 2003;43(4):1276–1287. doi:10.1021/ci030461e.
  • Lundegaard C, Lund O, Buus S, et al. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 2010;130(3):309–318. doi:10.1111/j.1365-2567.2010.03300.x.
  • Berman H, Henrick K, Nakamura H, et al. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 2007;35(suppl_1):D301–D303. doi:10.1093/nar/gkl971.
  • Bian H, Hammer J. Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE. Methods 2004;34(4):468–475. doi:10.1016/j.ymeth.2004.06.002.
  • Blythe MJ, Flower DR. Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 2009;14(1):246–248. doi:10.1110/ps.041059505.
  • Ramanathan B, Poh CL, Kirk K, et al. Synthetic B-Cell epitopes eliciting cross-neutralizing antibodies: strategies for future dengue vaccine. PLoS One 2016;11(5):e0155900. doi:10.1371/journal.pone.0155900.
  • Yang X, Yu X. An introduction to epitope prediction methods and software. Rev Med Virol 2009;19(2):77–96. doi:10.1002/rmv.602.
  • Saha S, Raghava G. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Bioinform 2006;65(1):40–48. doi:10.1002/prot.21078.
  • Chen J, Liu H, Yang J, et al. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 2007;33(3):423–428. doi:10.1007/s00726-006-0485-9.
  • Manavalan B, Govindaraj RG, Shin TH, et al. iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction. Front Immunol 2018;9:1695. doi:10.3389/fimmu.2018.01695.
  • Sher Y. Data representation in machine learning methods with its application to compilation optimization and epitope prediction. Electronic Theses and Dissertations 5608. University of Central Florida. 2017.
  • Sun P, Ju H, Liu Z, et al. Bioinformatics resources and tools for conformational B-cell epitope prediction. Comput Math Methods Med 2013;2013:1. doi:10.1155/2013/943636.
  • Saha S, Bhasin M, Raghava GP. Bcipep: a database of B-cell epitopes. BMC Genomics 2005;6(1):79. doi:10.1186/1471-2164-6-79.
  • Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res 2006;2(1):2. doi:10.1186/1745-7580-2-2.
  • Saha S, Raghava G. BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Paper Presented at: International Conference on Artificial Immune Systems. 2004.
  • Odorico M, Pellequer JL. BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recogn 2003;16(1):20–22. doi:10.1002/jmr.602.
  • Haste Andersen P, Nielsen M, Lund O. Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures. Protein Sci 2006;15(11):2558–2567. doi:10.1110/ps.062405906.
  • Sweredoski MJ, Baldi P. COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Design Select 2008;22(3):113–120. doi:10.1093/protein/gzn075.
  • Kulkarni-Kale U, Bhosle S, Kolaskar AS. CEP: a conformational epitope prediction server. Nucleic Acids Res 2005;33(suppl_2):W168–W171. doi:10.1093/nar/gki460.
  • Ghate A, Bhagwat B, Bhosle S, et al. Characterization of antibody-binding sites on proteins: development of a knowledgebase and its applications in improving epitope prediction. Protein Peptide Lett 2007;14(6):531–535.
  • Moreau V, Granier C, Villard S, et al. Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 2006;22(9):1088–1095. doi:10.1093/bioinformatics/btl012.
  • Huang J, Gutteridge A, Honda W, et al. MIMOX: a web tool for phage display based epitope mapping. BMC Bioinform 2006;7(1):451 .doi:10.1186/1471-2105-7-451.
  • Mayrose I, Penn O, Erez E, et al. Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 2007;23(23):3244–3246. doi:10.1093/bioinformatics/btm493.
  • Schreiber A, Humbert M, Benz A, et al. 3D‐Epitope‐Explorer (3DEX): Localization of conformational epitopes within three‐dimensional structures of proteins. J Comput Chem 2005;26(9):879–887. doi:10.1002/jcc.20229.
  • Toseland CP, Clayton DJ, McSparron H, et al. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 2005;1(1):4.
  • Huang J, Honda W. CED: a conformational epitope database. BMC Immunol 2006;7(1):7. doi:10.1186/1471-2172-7-7.
  • Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 2013;65(10):1357–1369. doi:10.1016/j.addr.2012.09.039.
  • Chung S, Parker JB, Bianchet M, et al. Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat Chem Biol 2009;5(6):407. doi:10.1038/nchembio.163.
  • Schmidt SR. Fusion-proteins as biopharmaceuticals–applications and challenges. Curr Opin Drug Discov Dev 2009;12(2):284–295.
  • Chen X, Zaro JL, Shen W-C. Pharmacokinetics of recombinant bifunctional fusion proteins. Expert Opin Drug Metab Toxicol 2012;8(5):581–595. doi:10.1517/17425255.2012.673585.
  • George RA, Heringa J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng Design Select 2002;15(11):871–879. doi:10.1093/protein/15.11.871.
  • Kim C, Kwon S, Lee G, et al. A database for allergenic proteins and tools for allergenicity prediction. Bioinformation 2009;3(8):344. doi:10.6026/97320630003344.
  • Mari A, Mari V, Ronconi A. Allergome—A database of allergenic molecules: Structure and data implementations of a web-based resource. J Allergy Clin Immunol 2005;115(2):S87. doi:10.1016/j.jaci.2004.12.359.
  • Saha S, Raghava G. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 2006;34(suppl_2):W202–W209. doi:10.1093/nar/gkl343.
  • Fiers MW, Kleter GA, Nijland H, et al. Allermatch™, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. Bmc Bioinform 2004;5(1):133.
  • Dimitrov I, Bangov I, Flower DR, et al. AllerTOP v.2-a server for in silico prediction of allergens. J Mol Model 2014;20(6):2278 .doi:10.1007/s00894-014-2278-5.
  • Nezafat N, Ghasemi Y, Javadi G, et al. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol 2014;349:121–134. doi:10.1016/j.jtbi.2014.01.018.
  • Cui J, Han LY, Li H, et al. Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties. Mol Immunol 2007;44(4):514–520. doi:10.1016/j.molimm.2006.02.010.
  • Ogata N, Funada H, Aoyagi Y. Indications and efficacy of hepatitis B vaccines (HB vaccines) and hepatitis B immune globulin (HBIG): current situations and problems of hepatitis B virus (HBV) infection-preventing strategies in Japan. Nihon rinsho Jpn J Clin Med 2011;69:408.
  • Okuse C, Yotsuyanagi H. Protection from HBV infection in medical institution. Nihon rinsho Jpn J Clin Med 2011;69:402.
  • Ivanciuc O, Schein CH, Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 2003;31(1):359–362. doi:10.1093/nar/gkg010.
  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 2007;8(1):4. doi:10.1186/1471-2105-8-4.
  • Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res 1998;26:334.doi:10.1093/nar/26.1.334.
  • Chin JX, Chung B-S, Lee D-Y. Codon Optimization OnLine (COOL): a web-based multi-objective optimization platform for synthetic gene design. Bioinformatics 2014;30(15):2210–2212. doi:10.1093/bioinformatics/btu192.
  • GenScript C. Real-time PCR primer design. GenScript Corporation, USA. 2006.
  • Alameda C. Integrated DNA technologies Inc. IDTDNA.com.
  • Grote A, Hiller K, Scheer M, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 2005;33(suppl_2):W526–W531. doi:10.1093/nar/gki376.
  • Puigbo P, Guzman E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 2007;35(suppl_2):W126–W131. doi:10.1093/nar/gkm219.
  • Lienert F, Lohmueller JJ, Garg A, et al. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 2014;15(2):95. doi:10.1038/nrm3738.
  • Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol 2017;18(7):725. doi:10.1038/ni.3768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.