533
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Reproductive immunomodulatory functions of B cells in pregnancy

B cells are critical players in pregnancy that fine-tune immune tolerance and response, by crosstalks with gestational hormones

ORCID Icon, ORCID Icon & ORCID Icon
Pages 53-66 | Received 06 Feb 2019, Accepted 24 Sep 2019, Published online: 14 Oct 2019

References

  • Dutta S, Sengupta P. Defining pregnancy phases with cytokine shift. J Preg Reprod 2017;1(4):1–3.
  • Dutta S, Sengupta P. Functions of follicular and marginal zone B cells in pregnancy. Asian Pac J Reprod 2018;7(4):191–192. doi:10.4103/2305-0500.237058.
  • Muzzio D, Zenclussen AC, Jensen F. The role of B cells in pregnancy: the good and the bad. Am J Reprod Immunol 2013;69(4):408–412. doi:10.1111/aji.12079.
  • Rolle L, Memarzadeh Tehran M, Morell-Garcia A, et al. Cutting edge: IL-10-producing regulatory B cells in early human pregnancy. Am J Reprod Immunol 2013;70(6):448–453. doi:10.1111/aji.12157.
  • Blair PA, Norena LY, Flores-Borja F, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 2010;32(1):129–140. doi:10.1016/j.immuni.2009.11.009.
  • Iwata Y, Matsushita T, Horikawa M, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011;117(2):530–541. doi:10.1182/blood-2010-07-294249.
  • Quách TD, Hopkins TJ, Holodick NE, et al. Human B-1 and B-2 B cells develop from Lin−CD34+CD38lo stem cells. J Immunol 2016;197(10):3950–3958. doi:10.4049/jimmunol.1600630.
  • LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood 2008;112(5):1570–1580. doi:10.1182/blood-2008-02-078071.
  • Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 2011;208(1):67–80. doi:10.1084/jem.20101499.
  • Perez-Andres M, Grosserichter-Wagener C, Teodosio C, et al. The nature of circulating CD27(+)CD43(+) B cells. J Exp Med 2011;208(13):2565–2566. doi:10.1084/jem.20112203.
  • Descatoire M, Weill J-C, Reynaud C-A, et al. A human equivalent of mouse B-1 cells? J Exp Med 2011;208(13):2563–2564. doi:10.1084/jem.20112232.
  • Griffin DO, Holodick NE, Rothstein TL. Human B1 cells are CD3(−): a reply to “A human equivalent of mouse B-1 cells?” and “the nature of circulating CD27(+)CD43(+) B cells. J Exp Med 2011;208(13):2566–2569. doi:10.1084/jem.20111761.
  • Reynaud C-A, Weill J-C. Gene profiling of CD11b(+) and CD11b(−) B1 cell subsets reveals potential cell sorting artifacts. J Exp Med 2012;209(3):433–434. doi:10.1084/jem.20120402.
  • Rothstein TL, Griffin DO, Holodick NE, et al. Human B-1 cells take the stage. Ann NY Acad Sci 2013;1285(1):97–114. doi:10.1111/nyas.12137.
  • Quach TD, Rodriguez-Zhurbenko N, Hopkins TJ, et al. Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J Immunol 2016;196(3):1060–1069. doi:10.4049/jimmunol.1501843.
  • Engelbertsen D, Vallejo J, Quach TD, et al. Low levels of IgM antibodies against an advanced glycation endproduct-modified apolipoprotein B100 peptide predict cardiovascular events in nondiabetic subjects. J Immunol 2015;195(7):3020–3025. doi:10.4049/jimmunol.1402869.
  • Fettke F, Schumacher A, Costa SD, et al. B cells: the old new players in reproductive immunology. Front Immunol 2014;5:285.
  • Monroe JG, Dorshkind K. Fate decisions regulating bone marrow and peripheral B lymphocyte development. Adv Immunol 2007;95:1–50. doi:10.1016/S0065-2776(07)95001-4.
  • Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol 2005;23(1):161–196. doi:10.1146/annurev.immunol.23.021704.115728.
  • William J, Euler C, Christensen S, et al. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 2002;297(5589):2066–2070. doi:10.1126/science.1073924.
  • Weller S, Braun MC, Tan BK, et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 2004;104(12):3647–3654. doi:10.1182/blood-2004-01-0346.
  • Toellner KM, Jenkinson WE, Taylor DR, et al. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med 2002;195(3):383–389. doi:10.1084/jem.20011112.
  • He B, Qiao X, Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 2004;173(7):4479–4491. doi:10.4049/jimmunol.173.7.4479.
  • Montecino-Rodriguez E, Dorshkind K. New perspectives in B-1 B cell development and function. Trends Immunol 2006;27(9):428–433. doi:10.1016/j.it.2006.07.005.
  • Griffin DO, Rothstein TL. A small CD11b(+) human B1 cell subpopulation stimulates T cells and is expanded in lupus. J Exp Med 2011;208(13):2591–2598. doi:10.1084/jem.20110978.
  • Birkeland SA, Kristoffersen K. Lymphocyte transformation with mitogens and antigens during normal human pregnancy: a longitudinal study. Scand J Immunol 1980;11(3):321–325. doi:10.1111/j.1365-3083.1980.tb00240.x.
  • Bhat NM, Mithal A, Bieber MM, et al. Human CD5+ B lymphocytes (B-1 cells) decrease in peripheral blood during pregnancy. J Reprod Immunol 1995;28(1):53–60. doi:10.1016/0165-0378(94)00907-O.
  • Christiansen JS, Andersen AR, Osther K, et al. The relationship between pregnancy, HCS and B lymphocytes. Acta Pathol Microbiol Scand C 1976;84(4):313–318. doi:10.1111/j.1699-0463.1976.tb00035.x.
  • Delgado I, Neubert R, Dudenhausen JW. Changes in white blood cells during parturition in mothers and newborn. Gynecol Obstet Invest 1994;38(4):227–235. doi:10.1159/000292487.
  • Iwatani Y, Amino N, Tachi J, et al. Changes of lymphocyte subsets in normal pregnant and postpartum women: postpartum increase in NK/K (Leu 7) cells. Am J Reprod Immunol Microbiol 1988;18(2):52–55. doi:10.1111/j.1600-0897.1988.tb00235.x.
  • Kraus TA, Engel SM, Sperling RS, et al. Characterizing the pregnancy immune phenotype: results of the viral immunity and pregnancy (VIP) study. J Clin Immunol 2012;32(2):300–311. doi:10.1007/s10875-011-9627-2.
  • Kuhnert M, Strohmeier R, Stegmuller M, et al. Changes in lymphocyte subsets during normal pregnancy. Eur J Obstet Gynecol Reprod Biol 1998;76(2):147–151. doi:10.1016/S0301-2115(97)00180-2.
  • Mahmoud F, Abul H, Omu A, et al. Pregnancy-associated changes in peripheral blood lymphocyte subpopulations in normal Kuwaiti women. Gynecol Obstet Invest 2001;52(4):232–236. doi:10.1159/000052981.
  • Moore MP, Carter NP, Redman CW. Lymphocyte subsets defined by monoclonal antibodies in human pregnancy. Am J Reprod Immunol 1983;3(4):161–164. doi:10.1111/j.1600-0897.1983.tb00239.x.
  • Valdimarsson H, Mulholland C, Fridriksdottir V, et al. A longitudinal study of leucocyte blood counts and lymphocyte responses in pregnancy: a marked early increase of monocyte-lymphocyte ratio. Clin Exp Immunol 1983;53(2):437–443.
  • Watanabe M, Iwatani Y, Kaneda T, et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am J Reprod Immunol 1997;37(5):368–377. doi:10.1111/j.1600-0897.1997.tb00246.x.
  • Medina KL, Smithson G, Kincade PW. Suppression of B lymphopoiesis during normal pregnancy. J Exp Med 1993;178(5):1507–1515. doi:10.1084/jem.178.5.1507.
  • Muzzio DO, Soldati R, Ehrhardt J, et al. B cell development undergoes profound modifications and adaptations during pregnancy in mice. Biol Reprod 2014;91(5):115.
  • Gomez-Lopez N, Tanaka S, Zaeem Z, et al. Maternal circulating leukocytes display early chemotactic responsiveness during late gestation. BMC Pregnancy Childbirth 2013;13 (1):S8. doi:10.1186/1471-2393-13-S1-S8.
  • Tessier DR, Raha S, Holloway AC, et al. Characterization of immune cells and cytokine localization in the rat utero-placental unit mid- to late gestation. J Reprod Immunol 2015;110:89–101. doi:10.1016/j.jri.2015.01.006.
  • Hussein MR, Abd-Elwahed AR, Abodeif ES, et al. Decidual immune cell infiltrate in hydatidiform mole. Cancer Invest 2009;27(1):60–66. doi:10.1080/07357900802161054.
  • Zhang L, Chang KK, Li MQ, et al. Mouse endometrial stromal cells and progesterone inhibit the activation and regulate the differentiation and antibody secretion of mouse B cells. Int J Clin Exp Pathol 2014;7(1):123–133.
  • Tongio MM, Berrebi A, Mayer S. A study of lymphocytotoxic antibodies in multiparous women having had at least four pregnancies. Tissue Antigens. 2008;2(6):378–388. doi:10.1111/j.1399-0039.1972.tb00057.x.
  • Gelabert A, Balasch J, Ercilla G, et al. Abortion may sensitize the mother to HLA antigens. Tissue Antigens 2008;17(4):353–356. doi:10.1111/j.1399-0039.1981.tb00714.x.
  • Vives J, Gelabert A, Castillo R. HLA antibodies and period of gestation: decline in frequency of positive sera during last trimester. Tissue Antigens 2008;7(4):209–212. doi:10.1111/j.1399-0039.1976.tb01056.x.
  • Taylor PV, Hancock KW. Antigenicity of trophoblast and possible antigen-masking effects during pregnancy. Immunology 1975;28(5):973–982.
  • Kolb JP, Chaouat G, Chassoux D. Immunoactive products of placenta. III. Suppression of natural killing activity. J Immunol 1984;132(5):2305–2310.
  • Margni RA, Paz CB, Cordal ME. Immunochemical behavior of sheep non-precipitating antibodies isolated by immunoadsorption. Immunochemistry 1976;13(3):209–214. doi:10.1016/0019-2791(76)90217-2.
  • Labeta MO, Margni RA, Leoni J, et al. Structure of asymmetric non-precipitating antibody: presence of a carbohydrate residue in only one Fab region of the molecule. Immunology 1986;57(2):311–317.
  • Margni RA, Borel IM. Malan Borel I. Paradoxical behavior of asymmetric IgG antibodies. Immunol Rev 1998;163(1):77–87. doi:10.1111/j.1600-065X.1998.tb01189.x.
  • Borel IM, Gentile T, Angelucci J, et al. IgG asymmetric molecules with antipaternal activity isolated from sera and placenta of pregnant human. J Reprod Immunol 1991;20(2):129–140. doi:10.1016/0165-0378(91)90029-P.
  • Zenclussen AC, Gentile T, Kortebani G, et al. Asymmetric antibodies and pregnancy. Am J Reprod Immunol 2001;45(5):289–294. doi:10.1111/j.8755-8920.2001.450504.x.
  • Canellada A, Farber A, Zenclussen AC, et al. Interleukin regulation of asymmetric antibody synthesized by isolated placental B cells. Am J Reprod Immunol 2002;48(4):275–282. doi:10.1034/j.1600-0897.2002.01125.x.
  • Kelemen K, Bognar I, Paal M, et al. A progesterone-induced protein increases the synthesis of asymmetric antibodies. Cell Immunol 1996;167(1):129–134. doi:10.1006/cimm.1996.0016.
  • Kaneko Y, Hirose S, Abe M, et al. CD40-mediated stimulation of B1 and B2 cells: implication in autoantibody production in murine lupus. Eur J Immunol 1996;26(12):3061–3065. doi:10.1002/eji.1830261236.
  • Kutteh WH. Antiphospholipid antibody syndrome and reproduction. Curr Opin Obstet Gynecol 2014;26(4):260–265. doi:10.1097/GCO.0000000000000086.
  • Triplett DA, Harris EN. Antiphospholipid antibodies and reproduction. Am J Reprod Immunol. 1989;21(3-4):123–131. doi:10.1111/j.1600-0897.1989.tb01016.x.
  • Reece EA, Gabrielli S, Cullen MT, et al. Recurrent adverse pregnancy outcome and antiphospholipid antibodies. Am J Obstet Gynecol 1990;163(1):162–169. doi:10.1016/S0002-9378(11)90692-9.
  • Knight CL, Nelson-Piercy C. Management of systemic lupus erythematosus during pregnancy: challenges and solutions. Open Access Rheumatol 2017;9:37–53. doi:10.2147/OARRR.S87828.
  • Velasquillo MC, Alcocer-Varela J, Alarcon-Segovia D, et al. Some patients with primary antiphospholipid syndrome have increased circulating CD5+ B cells that correlate with levels of IgM antiphospholipid antibodies. Clin Exp Rheumatol 1991;9(5):501–505.
  • Erez O, Romero R, Espinoza J, et al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med 2008;21(5):279–287. doi:10.1080/14767050802034545.
  • Robinson CJ, Johnson DD, Chang EY, et al. Evaluation of placenta growth factor and soluble Fms-like tyrosine kinase 1 receptor levels in mild and severe preeclampsia. Am J Obstet Gynecol 2006;195(1):255–259. doi:10.1016/j.ajog.2005.12.049.
  • Zhou CC, Zhang Y, Irani RA, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 2008;14(8):855–862. doi:10.1038/nm.1856.
  • Jensen F, Wallukat G, Herse F, et al. CD19 + CD5+ cells as indicators of preeclampsia. Hypertension 2012;59(4):861–868. doi:10.1161/HYPERTENSIONAHA.111.188276.
  • Das A, Ellis G, Pallant C, et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol 2012;189(8):3925–3935. doi:10.4049/jimmunol.1103139.
  • Bosma A, Abdel-Gadir A, Isenberg DA, et al. Lipid-antigen presentation by CD1d(+) B cells is essential for the maintenance of invariant natural killer T cells. Immunity 2012;36(3):477–490. doi:10.1016/j.immuni.2012.02.008.
  • Flores-Borja F, Bosma A, Ng D, et al. CD19 + CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 2013;5(173):173ra123.
  • Latorre I, Esteve-Sole A, Redondo D, et al. Calcineurin and mTOR inhibitors have opposing effects on regulatory T cells while reducing regulatory B cell populations in kidney transplant recipients. Transpl Immunol 2016;35:1–6. doi:10.1016/j.trim.2016.01.004.
  • Matsumoto M, Baba A, Yokota T, et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014;41(6):1040–1051. doi:10.1016/j.immuni.2014.10.016.
  • van de Veen W, Stanic B, Yaman G, et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol 2013;131(4):1204–1212. doi:10.1016/j.jaci.2013.01.014.
  • Wang X, Wei Y, Xiao H, et al. Pre-existing CD19-independent GL7(-) Breg cells are expanded during inflammation and in mice with lupus-like disease. Mol Immunol 2016;71:54–63. doi:10.1016/j.molimm.2016.01.011.
  • Horikawa M, Weimer ET, DiLillo DJ, et al. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J Immunol 2013;190(3):1158–1168. doi:10.4049/jimmunol.1201427.
  • Jensen F, Muzzio D, Soldati R, et al. Regulatory B10 cells restore pregnancy tolerance in a mouse model. Biol Reprod 2013;89(4):90.
  • Schumacher A, Costa SD, Zenclussen AC. Endocrine factors modulating immune responses in pregnancy. Front Immunol 2014;5:196.
  • Robertson SA, Care AS, Skinner RJ. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice. Biol Reprod 2007;76(5):738–748. doi:10.1095/biolreprod.106.056143.
  • Chaouat G, Assal Meliani A, Martal J, et al. IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. J Immunol 1995;154(9):4261–4268.
  • Murphy SP, Fast LD, Hanna NN, et al. Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J Immunol 2005;175(6):4084–4090. doi:10.4049/jimmunol.175.6.4084.
  • White CA, Johansson M, Roberts CT, et al. Effect of interleukin-10 null mutation on maternal immune response and reproductive outcome in mice. Biol Reprod 2004;70(1):123–131. doi:10.1095/biolreprod.103.018754.
  • Terrone DA, Rinehart BK, Granger JP, et al. Interleukin-10 administration and bacterial endotoxin-induced preterm birth in a rat model. Obstet Gynecol 2001;98(3):476–480. doi:10.1016/S0029-7844(01)01424-7.
  • Robertson SA, Skinner RJ, Care AS. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. J Immunol 2006;177(7):4888–4896. doi:10.4049/jimmunol.177.7.4888.
  • Huang B, Faucette AN, Pawlitz MD, et al. Interleukin-33-induced expression of PIBF1 by decidual B cells protects against preterm labor. Nat Med 2017;23(1):128–135. doi:10.1038/nm.4244.
  • Muzzio DO, Ziegler KB, Ehrhardt J, et al. Marginal zone B cells emerge as a critical component of pregnancy well-being. Reproduction 2016;151(1):29–37. doi:10.1530/REP-15-0274.
  • Lenert P, Brummel R, Field EH, et al. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol 2005;25(1):29–40. doi:10.1007/s10875-005-0355-6.
  • Lima J, Martins C, Leandro MJ, et al. Characterization of B cells in healthy pregnant women from late pregnancy to post-partum: a prospective observational study. BMC Pregnancy Childbirth 2016;16(1):139. doi:10.1186/s12884-016-0927-7.
  • Blois SM, Alba Soto CD, Tometten M, et al. Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 2004;70(4):1018–1023. doi:10.1095/biolreprod.103.022640.
  • Kallikourdis M, Betz AG. Periodic accumulation of regulatory T cells in the uterus: preparation for the implantation of a semi-allogeneic fetus? PLoS One 2007;2(4):e382. doi:10.1371/journal.pone.0000382.
  • Chen T, Darrasse-Jeze G, Bergot AS, et al. Self-specific memory regulatory T cells protect embryos at implantation in mice. J Immunol 2013;191(5):2273–2281. doi:10.4049/jimmunol.1202413.
  • Guzman-Genuino RM, Diener KR. Regulatory B cells in pregnancy: lessons from autoimmunity, graft tolerance, and cancer. Front Immunol 2017;8:172.
  • Ray A, Wang L, Dittel BN. IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol 2015;27(10):531–536. doi:10.1093/intimm/dxv033.
  • Fettke F, Schumacher A, Canellada A, et al. Maternal and fetal mechanisms of B cell regulation during pregnancy: human chorionic gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis. Front Immunol 2016;7:495.
  • Muzzio D, Zygmunt M, Jensen F. The role of pregnancy-associated hormones in the development and function of regulatory B cells. Front Endocrinol (Lausanne) 2014;5:39.
  • Ruocco MG, Chaouat G, Florez L, et al. Regulatory T-cells in pregnancy: historical perspective, state of the art, and burning questions. Front Immunol 2014;5:389.
  • Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta. 2014;35(4):241–248. doi:10.1016/j.placenta.2014.02.004.
  • Rutella S, Bonanno G, Procoli A, et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 2006;108(1):218–227. doi:10.1182/blood-2005-08-3141.
  • Khan AR, Hams E, Floudas A, et al. PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun 2015;6(1):5997. doi:10.1038/ncomms6997.
  • Lundy SK, Fox DA. Reduced Fas ligand-expressing splenic CD5+ B lymphocytes in severe collagen-induced arthritis. Arthritis Res Ther 2009;11(4):R128. doi:10.1186/ar2795.
  • Arredondo F, Noble LS. Endocrinology of recurrent pregnancy loss. Semin Reprod Med 2006;24(01):033–039. doi:10.1055/s-2006-931799.
  • Zygmunt M, Herr F, Keller-Schoenwetter S, et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab 2002;87(11):5290–5296. doi:10.1210/jc.2002-020642.
  • Zygmunt M, McKinnon T, Herr F, et al. HCG increases trophoblast migration in vitro via the insulin-like growth factor-II/mannose-6 phosphate receptor. Mol Hum Reprod 2005;11(4):261–267. doi:10.1093/molehr/gah160.
  • Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol 2003;38(1):13–22. doi:10.1016/S0928-8244(03)00202-5.
  • Jacobson DL, Gange SJ, Rose NR, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997;84(3):223–243. doi:10.1006/clin.1997.4412.
  • Gleicher N, Barad DH. Gender as risk factor for autoimmune diseases. J Autoimmun 2007;28(1):1–6. doi:10.1016/j.jaut.2006.12.004.
  • Zhao C, Zhao J, Huang Y, et al. New-onset systemic lupus erythematosus during pregnancy. Clin Rheumatol 2013;32(6):815–822. doi:10.1007/s10067-013-2180-z.
  • Wei Q, Ouyang Y, Zeng W, et al. Pregnancy complicating systemic lupus erythematosus: a series of 86 cases. Arch Gynecol Obstet 2011;284(5):1067–1071. doi:10.1007/s00404-010-1786-5.
  • Silman A, Kay A, Brennan P. Timing of pregnancy in relation to the onset of rheumatoid arthritis. Arthritis Rheum 1992;35(2):152–155. doi:10.1002/art.1780350205.
  • Hussain M, El-Hakim S, Cahill DJ. Progesterone supplementation in women with otherwise unexplained recurrent miscarriages. J Hum Reprod Sci 2012;5(3):248–251. doi:10.4103/0974-1208.106335.
  • Costea DM, Gunn LK, Hargreaves C, et al. Delayed luteo-placental shift of progesterone production in IVF pregnancy. Int J Gynaecol Obstet 2000;68(2):123–129. doi:10.1016/S0020-7292(99)00177-0.
  • Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol 2009;23(7):947–954. doi:10.1210/me.2009-0016.
  • Ramathal CY, Bagchi IC, Taylor RN, et al. Endometrial decidualization: of mice and men. Semin Reprod Med 2010;28(01):017–026. doi:10.1055/s-0029-1242989.
  • Kowalik MK, Rekawiecki R, Kotwica J. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod Biol 2013;13(4):279–289. doi:10.1016/j.repbio.2013.09.001.
  • Alok A, Mukhopadhyay D, Karande AA. Glycodelin A, an immunomodulatory protein in the endometrium, inhibits proliferation and induces apoptosis in monocytic cells. Int J Biochem Cell Biol 2009;41(5):1138–1147. doi:10.1016/j.biocel.2008.10.009.
  • Hodson LJ, Chua AC, Evdokiou A, et al. Macrophage phenotype in the mammary gland fluctuates over the course of the estrous cycle and is regulated by ovarian steroid hormones. Biol Reprod 2013;89(3):65.
  • Pasqualini JR. Enzymes involved in the formation and transformation of steroid hormones in the fetal and placental compartments. J Steroid Biochem Mol Biol 2005;97(5):401–415. doi:10.1016/j.jsbmb.2005.08.004.
  • Polanczyk M, Zamora A, Subramanian S, et al. The protective effect of 17beta-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-alpha. Am J Pathol 2003;163(4):1599–1605. doi:10.1016/S0002-9440(10)63516-X.
  • Levin ER. Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 2005;19(8):1951–1959. doi:10.1210/me.2004-0390.
  • Mao A, Paharkova-Vatchkova V, Hardy J, et al. Estrogen selectively promotes the differentiation of dendritic cells with characteristics of Langerhans cells. J Immunol 2005;175(8):5146–5151. doi:10.4049/jimmunol.175.8.5146.
  • Gonzalez DA, Diaz BB, Rodriguez Perez Mdel C, et al. Sex hormones and autoimmunity. Immunol Lett 2010;133(1):6–13.
  • Grimaldi CM, Michael DJ, Diamond B. Cutting edge: expansion and activation of a population of autoreactive marginal zone B cells in a model of estrogen-induced lupus. J Immunol 2001;167(4):1886–1890. doi:10.4049/jimmunol.167.4.1886.
  • Bodhankar S, Wang C, Vandenbark AA, et al. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur J Immunol 2011;41(4):1165–1175. doi:10.1002/eji.201040992.
  • Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol 2010;8(1):102. doi:10.1186/1477-7827-8-102.
  • Braunstein GD, Rasor J, Danzer H, et al. Serum human chorionic gonadotropin levels throughout normal pregnancy. Am J Obstet Gynecol 1976;126(6):678–681. doi:10.1016/0002-9378(76)90518-4.
  • Handschuh K, Guibourdenche J, Tsatsaris V, et al. Human chorionic gonadotropin expression in human trophoblasts from early placenta: comparative study between villous and extravillous trophoblastic cells. Placenta 2007;28(2–3):175–184. doi:10.1016/j.placenta.2006.01.019.
  • Fluhr H, Bischof-Islami D, Krenzer S, et al. Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertil Steril 2008;90(4):1390–1395. doi:10.1016/j.fertnstert.2007.08.023.
  • Kayisli UA, Selam B, Guzeloglu-Kayisli O, et al. Human chorionic gonadotropin contributes to maternal immunotolerance and endometrial apoptosis by regulating Fas-Fas ligand system. J Immunol 2003;171(5):2305–2313. doi:10.4049/jimmunol.171.5.2305.
  • Berndt S, d’Hauterive SP, Blacher S, et al. Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB J 2006;20(14):2630–2632. doi:10.1096/fj.06-5885fje.
  • Tsampalas M, Gridelet V, Berndt S, et al. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J Reprod Immunol 2010;85(1):93–98. doi:10.1016/j.jri.2009.11.008.
  • Dufau ML. The luteinizing hormone receptor. Annu Rev Physiol 1998;60(1):461–496. doi:10.1146/annurev.physiol.60.1.461.
  • Dong M, Ding G, Zhou J, et al. The effect of trophoblasts on T lymphocytes: possible regulatory effector molecules–a proteomic analysis. Cell Physiol Biochem 2008;21(5–6):463–472. doi:10.1159/000129639.
  • Kane N, Kelly R, Saunders PT, et al. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology 2009;150(6):2882–2888. doi:10.1210/en.2008-1309.
  • Wan H, Versnel MA, Leijten LM, et al. Chorionic gonadotropin induces dendritic cells to express a tolerogenic phenotype. J Leukoc Biol 2008;83(4):894–901. doi:10.1189/jlb.0407258.
  • Subramanian S, Yates M, Vandenbark AA, et al. Oestrogen-mediated protection of experimental autoimmune encephalomyelitis in the absence of Foxp3+ regulatory T cells implicates compensatory pathways including regulatory B cells. Immunology 2011;132(3):340–347. doi:10.1111/j.1365-2567.2010.03380.x.
  • Matsushita T, Yanaba K, Bouaziz JD, et al. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 2008;118(10):3420–3430. doi:10.1172/JCI36030.
  • Kyurkchiev D, Ivanova-Todorova E, Kyurkchiev SD. New target cells of the immunomodulatory effects of progesterone. Reprod Biomed Online 2010;21(3):304–311. doi:10.1016/j.rbmo.2010.04.014.
  • Yates MA, Li Y, Chlebeck P, et al. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J Neuroimmunol 2010;220(1–2):136–139. doi:10.1016/j.jneuroim.2010.01.013.
  • Duan B, Morel L. Role of B-1a cells in autoimmunity. Autoimmun Rev 2006;5(6):403–408. doi:10.1016/j.autrev.2005.10.007.
  • Nikolaevich KN, Ivanovich SJ, Victorovich SS. Major reproduction hormones as regulators of cell-to-cell interactions in humoral immune responses. Brain Behav Immun 1991;5(2):149–161. doi:10.1016/0889-1591(91)90013-Z.
  • Kincade PW, Medina KL, Smithson G. Sex hormones as negative regulators of lymphopoiesis. Immunol Rev 1994;137(1):119–134. doi:10.1111/j.1600-065X.1994.tb00661.x.
  • Beck D, Ginsburg H, Naot Y. The modulating effect of human chorionic gonadotropin on lymphocyte blastogenesis. Am J Obstet Gynecol 1977;129(1):14–20. doi:10.1016/0002-9378(77)90811-0.
  • Cocchiara R, Lorico A, Cefalu E, et al. Modulation of lymphocyte response by hormones. Acta Eur Fertil 1983;14(3):197–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.