798
Views
9
CrossRef citations to date
0
Altmetric
Reviews

CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases

CRISPR/Cas9 offers a simple and inexpensive method for disease modeling, genetic screening, and potentially for disease therapy

ORCID Icon, &
Pages 11-20 | Received 02 Aug 2019, Accepted 01 Oct 2019, Published online: 18 Oct 2019

References

  • Holland HD. The oxygenation of the atmosphere and oceans. Phil Trans R Soc B. 2006;361(1470):903–915. doi:10.1098/rstb.2006.1838.
  • Cantine MD, Fournier GP. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. Orig Life Evol Biosph. 2018;48(1):35–54. doi:10.1007/s11084-017-9542-5.
  • Joyce GF. The antiquity of RNA-based evolution. Nature. 2002;418(6894):214–221. doi:10.1038/418214a.
  • Olson SL, Schwieterman EW, Reinhard CT, et al. Earth: Atmospheric Evolution of a Habitable Planet. In Deeg H, Belmonte J (editors) Handbook of Exoplanets. Cham: Springer; 2018. pp 1–37. doi:10.1007/978-3-319-30648-3_189-1.
  • Planavsky NJ, Asael D, Hofmann A, et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geosci. 2014;7(4):283. doi:10.1038/ngeo2122.
  • Kasting JF, Siefert JL. Life and the evolution of Earth’s atmosphere. Science (80-). 2002;296(5570):1066–1068. doi:10.1126/science.1071184.
  • Knoll AH, Javaux EJ, Hewitt D, et al. Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc B. 2006;361(1470):1023–1038. doi:10.1098/rstb.2006.1843.
  • Sessions AL, Doughty DM, Welander PV, et al. The Continuing Puzzle of the Great Oxidation Event. Curr Biol. 2009;19(14):R567–74. doi:10.1016/j.cub.2009.05.054.
  • Gross J, Bhattacharya D. Uniting sex and eukaryote origin in an emerging oxygenic world. Biol Direct. 2010;5(1):53. doi:10.1186/1745-6150-5-53.
  • Cooper GJT, Surman AJ, McIver J, et al. Miller–Urey Spark-Discharge Experiments in the Deuterium World. Angew Chem Int Ed. 2017;56(28):8079–8082. doi:10.1002/anie.201610837.
  • Pennazio S. Alexandr Oparin and the origin of life on Earth. Riv Biol. 2009;102(1):95–118.
  • Miller SL. A Production of Amino Acids Under Possible Primitive Earth Conditions. Science (80-). 1953;117(3046):528–529. doi:10.1126/science.117.3046.528.
  • Gilbert W. Origin of life: The RNA world. Nature. 1986;319(6055):618. doi:10.1038/319618a0.
  • Joyce GF. RNA evolution and the origins of life. Nature. 1989;338(6212):217. doi:10.1038/338217a0.
  • Weiss MC, Sousa FL, Mrnjavac N, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1(9):16116. doi:10.1038/nmicrobiol.2016.116.
  • Cooper MD, Alder MN. The evolution of adaptive immune systems. Cell. 2006;124(4):815–822. doi:10.1016/j.cell.2006.02.001.
  • Bayersdorf R, Fruscalzo A, Catania F. Linking autoimmunity to the origin of the adaptive immune system. Evol Med Public Heal. 2018;2018(1):2–12. doi:10.1093/emph/eoy001.
  • Burnet M. The Clonal Selection Theory of Acquired Immunity. Yale J Biol Med. 1960;32(6): 480
  • Alder MN, Rogozin IB, Iyer LM, et al. Immunology: Diversity and function of adaptive immune receptors in a jawless vertebrate. Science. 2005;310(5756):1970–1973. 80-) doi:10.1126/science.1119420.
  • Pradeu T, Du Pasquier L. Immunological memory: What’s in a name?. Immunol Rev. 2018;283(1):7–20. doi:10.1111/imr.12652.
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–327. doi:10.1038/nrmicro2315.
  • Barrangou R, Marraffini LA. CRISPR-cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54(2):234–244. doi:10.1016/j.molcel.2014.03.011.
  • Xia A-L, He Q-F, Wang J-C, et al. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. J Med Genet. 2018;56:4–9. doi:10.1136/jmedgenet-2018-105422.
  • Mahmoudian-Sani MR, Farnoosh G, Mahdavinezhad A, et al. CRISPR genome editing and its medical applications. Biotechnol Biotechnol Equip. 2018;32(2):286–292. doi:10.1080/13102818.2017.1406823.
  • Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722–736. doi:10.1038/nrmicro3569.
  • Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–5433. doi:10.1128/jb.169.12.5429-5433.1987.
  • Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018;200(7): e00580–17 doi:10.1128/JB.00580-17.
  • Mojica FJ, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol. 1993;9(3):613–621. doi:10.1111/j.1365-2958.1993.tb01721.x.
  • She Q, Singh RK, Confalonieri F, et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci. 2001;98(14):7835–7840. doi:10.1073/pnas.141222098.
  • Jansen R, Embden JDA, van Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–1575. doi:10.1046/j.1365-2958.2002.02839.x.
  • Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, Engl.). 2005;151(Pt 8):2551–2561. doi:10.1099/mic.0.28048-0.
  • Belkum A, Van Scherer S, Alphen L, Van, et al. Short-Sequence DNA Repeats in Prokaryotic Genomes Short-Sequence DNA Repeats in. Prokaryotic Genomes. 1998;62:275–293.
  • Mojica FJM, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36(1):244–246. doi:10.1046/j.1365-2958.2000.01838.x.
  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–182., doi:10.1007/s00239-004-0046-3.
  • Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading, Engl)..). 2005;151(Pt 3):653–663. doi:10.1099/mic.0.27437-0.
  • Makarova KS, Koonin EV. Annotation and Classification of CRISPR-Cas Systems. Methods Mol Biol.. 2015;1311:47–75. doi:10.1007/978-1-4939-2687-9_4.
  • Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15(3):169–182. doi:10.1038/nrmicro.2016.184.
  • Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1(1):7. doi:10.1186/1745-6150-1-7.
  • Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11(3):181–190. doi:10.1038/nrg2749.
  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science. 2007;315(5819):1709–1712. 80-) doi:10.1126/science.1138140.
  • Alkhnbashi OS, Shah SA, Garrett RA, et al. Characterizing leader sequences of CRISPR loci. Bioinformatics. 2016;32(17):i576–85. doi:10.1093/bioinformatics/btw454.
  • Bult CJ, White O, Olsen GJ, et al. Complete genome sequence of the Methanogenic archaeon, Methanococcus jannaschii. Science. 1996;273(5278):1058–1073. 80-) doi:10.1126/science.273.5278.1058.
  • Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–964. doi:10.1126/science.1159689.
  • Díez-Villaseñor C, Guzmán NM, Almendros C, et al. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol. 2013;10(5):792–802. doi:10.4161/rna.24023.
  • Shah SA, Garrett RA. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol. 2011;162(1):27–38. doi:10.1016/j.resmic.2010.09.001.
  • Gudbergsdottir S, Deng L, Chen Z, et al. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol Microbiol. 2011;79(1):35–49. doi:10.1111/j.1365-2958.2010.07452.x.
  • Amitai G, Sorek R. CRISPR-Cas adaptation: Insights into the mechanism of action. Nat Rev Microbiol. 2016;14(2):67–76. doi:10.1038/nrmicro.2015.14.
  • Wiedenheft B, Zhou K, Jinek M, et al. Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense. Structure. 2009;17(6):904–912. doi:10.1016/j.str.2009.03.019.
  • van der Ploeg JR. Analysis of CRISPR in Streptocccus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology. 2009;155:1966–1976. doi:10.1099/mic.0.027508-0.
  • Barrangou R, Garneau JE, Labonte J, et al. Phage Response to CRISPR-Encoded Resistance in. J Bacteriol. 2008;190:1390–1369. doi:10.1128/JB.01412-07.
  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading, Engl.). 2009;155(Pt 3):733–740. doi:10.1099/mic.0.023960-0.
  • Leenay RT, Beisel CL. Deciphering, Communicating, and Engineering the CRISPR PAM. J Mol Biol. 2017;429(2):177–191. doi:10.1016/j.jmb.2016.11.024.
  • Hille F, Charpentier E. CRISPR-cas: Biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371(1707): 20150496. doi:10.1098/rstb.2015.0496.
  • Zhang J, Rouillon C, Kerou M, et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell. 2012;45(3):303–313. doi:10.1016/j.molcel.2011.12.013.
  • Hale CR, Zhao P, Olson S, et al. RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell. 2009;139(5):945–956. doi:10.1016/j.cell.2009.07.040.
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–1278. doi:10.1016/j.cell.2014.05.010.
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. 80-) doi:10.1126/science.1225829.
  • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. 80-) doi:10.1126/science.1232033.
  • Baylis F, McLeod M. First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready?. Curr Gene Ther. 2017;17(4):309–319. doi:10.2174/1566523217666171121165935.
  • Feng X, Zhao D, Zhang X, et al. CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli. Biotechnol J. 2018;13(9):1700604. doi:10.1002/biot.201700604.
  • Xie N, Zhou Y, Sun Q, et al. Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System. Stem Cells Int. 2018;2018:1–12. doi:10.1155/2018/7834175.
  • Yoshida M, Yokota E, Sakuma T, et al. Development of an integrated CRISPRi targeting Np63 for treatment of squamous cell carcinoma. Oncotarget. 2018;9(49):29220–29232. doi:10.18632/oncotarget.25678.
  • Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911. doi:10.1038/s41467-018-04252-2.
  • Simeonov DR, Marson A. CRISPR-Based Tools in Immunity. Annu Rev Immunol. 2019;37(1):571–597. doi:10.1146/annurev-immunol-042718-041522.
  • Parnas O, Jovanovic M, Eisenhaure TM, et al. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell. 2015;162:675–686. doi:10.1016/j.cell.2015.06.059.
  • Lin J-D, Cheng C-W. Causal variants in autoimmune disease: a commentary on a recent published fine-mapping algorithm analysis in genome-wide association studies study. Ann Transl Med. 2017;5(6):151–151. doi:10.21037/atm.2017.02.26.
  • Farh KKH, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–343. doi:10.1038/nature13835.
  • Sanjana NE, Wright J, Zheng K, et al. High-resolution interrogation of functional elements in the noncoding genome. Science. 2016;353(6307):1545–1549. doi:10.1126/science.aaf7613.
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253–257. 80-) doi:10.1126/science.1242088.
  • Simeonov DR, Gowen BG, Boontanrart M, Roth TL, et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature. 2017;549(7670):111–115. doi:10.1038/nature23875.
  • Huang H, Fang M, Jostins L, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547(7662):173–178. doi:10.1038/nature22969.
  • Burr ML, Sparbier CE, Chan YC, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-Tumour immunity. Nature. 2017;549(7670):101–105. doi:10.1038/nature23643.
  • Bray C, Wright D, Haupt S, et al. Crispr/Cas mediated deletion of PTPN22 in Jurkat T cells enhances TCR signaling and production of IL-2. Front Immunol. 2018;9:1–10. doi:10.3389/fimmu.2018.02595.
  • Sevim H, Kocaefe YÇ, Onur MA, et al. Bone marrow derived mesenchymal stem cells ameliorate inflammatory response in an in vitro model of familial hemophagocytic lymphohistiocytosis 2. Stem Cell Res Ther. 2018;9(1):1–10. doi:10.1186/s13287-018-0941-y.
  • Speck-Hernandez CA, Assis AF, Felicio RF, et al. Aire disruption influences the medullary thymic epithelial cell transcriptome and interaction with thymocytes. Front Immunol. 2018;9:1–15. doi:10.3389/fimmu.2018.00964.
  • Chang CW, Lai YS, Westin E, et al. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep. 2015;12(10):1668–1677. doi:10.1016/j.celrep.2015.08.013.
  • Roth TL, Puig-Saus C, Yu R, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559(7714):405–409. doi:10.1038/s41586-018-0326-5.
  • Huang X, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient ipscs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470–1479. doi:10.1002/stem.1969.
  • Miao Z, Li Q, Zhao J, et al. Stable expression of infliximab in CRISPR/Cas9-mediated BAK1-deficient CHO cells. Biotechnol Lett. 2018;40(8):1209–1218. doi:10.1007/s10529-018-2578-4.
  • Safari F, Farajnia S, Arya M, et al. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol. 2018;40(3):201–211. doi:10.1080/08923973.2018.1437625.
  • Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: How has epigenetics changed our understanding of disease and how can we expect the field to evolve?. Expert Rev Clin Immunol. 2015;11(1):45–58. doi:10.1586/1744666X.2015.994507.
  • Gibson GJ, Yang M. What rheumatologists need to know about CRISPR/Cas9. Nat Rev Rheumatol. 2017;13(4):205–216. doi:10.1038/nrrheum.2017.6.
  • Xu X, Qi LS. A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. J Mol Biol. 2019;431(1):34–47. doi:10.1016/j.jmb.2018.06.037.
  • Qi L, Lo A. Genetic and epigenetic control of gene expression by CRISPR-Cas systems. F1000Res. 2017;6:1–16. doi:10.12688/f1000research.11113.1.
  • Esensten JH, Wofsy D, Bluestone JA. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(10):560–565. doi:10.1038/nrrheum.2009.183.
  • Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 2015;45(2):344–355. doi:10.1002/eji.201344280.
  • Zheng Y, Josefowicz S, Chaudhry A, et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463(7282):808–812. doi:10.1038/nature08750.
  • Fletcher JM, Lonergan R, Costelloe L, et al. CD39 + Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis. J Immunol. 2009;183(11):7602–7610. doi:10.4049/jimmunol.0901881.
  • Jeffries MA. Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clin Immunol. 2018;196:49–58. doi:10.1016/j.clim.2018.02.001.
  • Okada M, Kanamori M, Someya K, et al. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin. 2017;10:24. doi:10.1186/s13072-017-0129-1.
  • Jing W, Zhang X, Sun W, et al. CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells. Biomed Res Int. 2015;2015:1–7. doi:10.1155/2015/326042.
  • Ewart DT, Peterson EJ, Steer CJ. Gene editing for inflammatory disorders. Ann Rheum Dis. 2019;78(1):6–15. doi:10.1136/annrheumdis-2018-213454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.