966
Views
10
CrossRef citations to date
0
Altmetric
Reviews

BCG-induced trained immunity in macrophage: reprograming of glucose metabolism

BCG-induced trained immunity by enhanced glycolysis and glutamine-driven tricarboxylic acid cycle in macrophage

, , , , , , & ORCID Icon show all
Pages 83-96 | Received 05 Nov 2019, Accepted 01 Jan 2020, Published online: 14 Jan 2020

References

  • Wang A, Luan HH, Medzhitov R. An evolutionary perspective on immunometabolism. Science (New York, NY). 2019;6423:363. doi:10.1126/science.aar3932.
  • Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406. doi:10.1016/j.it.2017.03.001.
  • Reid MA, Dai Z, Locasale JW. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol. 2017;19(11):1298–1306. doi:10.1038/ncb3629.
  • Chester KS. The problem of acquired physiological immunity in plants. Quart Rev Biol. 1933;8(3):275–324. doi:10.1086/394440.
  • Kurtz J. Specific memory within innate immune systems. Trends Immunol. 2005;26(4):186–192. doi:10.1016/j.it.2005.02.001.
  • Wout JW, Poell R, Furth R. The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand J Immunol. 1992;36(5):713–719. doi:10.1111/j.1365-3083.1992.tb03132.x.
  • Garly M-L, Martins CL, Balé C, et al. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG? Vaccine. 2003;21(21-22):2782–2790. doi:10.1016/S0264-410X(03)00181-6.
  • Quintin J, Saeed S, Martens JHA. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–232. doi:10.1016/j.chom.2012.06.006.
  • Bistoni F, Vecchiarelli A, Cenci E, et al. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun. 1986;51(2):668–674. doi:10.1128/IAI.51.2.668-674.1986.
  • Bistoni F, Verducci G, Perito S, et al. Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. Med Mycol. 1988;26(5):285–299. doi:10.1080/02681218880000401.
  • Barton ES, White DW, Cathelyn JS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447(7142):326–329. doi:10.1038/nature05762.
  • van der Meer JW, Barza M, Wolff SM, et al. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal gram-negative infection. Proc Natl Acad Sci USA. 1988;85(5):1620–1623. doi:10.1073/pnas.85.5.1620.
  • Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355–361. doi:10.1016/j.chom.2011.04.006.
  • Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science (New York, NY). 2016;352(6284):aaf1098–aaf1098. doi:10.1126/science.aaf1098.
  • Koeken V, Verrall AJ, Netea MG, et al. Trained innate immunity and resistance to Mycobacterium tuberculosis infection. Clin Microbiol Infect. 2019;25(12):1468–1472. doi:10.1016/j.cmi.2019.02.015.
  • Netea MG, van Crevel R. BCG-induced protection: effects on innate immune memory. Semin Immunol. 2014;26(6):512–517. doi:10.1016/j.smim.2014.09.006.
  • Uthayakumar D, Paris S, Chapat L, et al. Non-specific effects of vaccines illustrated through the BCG example: from observations to demonstrations. Front Immunol. 2018;9:2869–2869. doi:10.3389/fimmu.2018.02869.
  • Aaby P, Roth A, Ravn H, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 2011;204(2):245–252. doi:10.1093/infdis/jir240.
  • Jensen KJ, Larsen N, Biering-Sørensen S, et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: a randomized-controlled trial. J Infect Dis. 2015;211(6):956–967. doi:10.1093/infdis/jiu508.
  • Biering-Sørensen S, Aaby P, Lund N, et al. Early BCG-Denmark and neonatal mortality among infants weighing <2500 g: a randomized controlled trial. Clin Infect Dis. 2017;65(7):1183–1190. doi:10.1093/cid/cix525.
  • de Bree LCJ, Koeken V, Joosten LAB, et al. Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol. 2018;39:35–43. doi:10.1016/j.smim.2018.06.002.
  • Walk J, de Bree LCJ, Graumans W, et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat Commun.. 2019;10(1):874. doi:10.1038/s41467-019-08659-3.
  • Convit J, Ulrich M, Polegre MA, et al. Therapy of Venezuelan patients with severe mucocutaneous or early lesions of diffuse cutaneous Leishmaniasis with a vaccine containing pasteurized Leishmania promastigotes and bacillus Calmette-Guerin: preliminary report. Mem Inst Oswaldo Cruz. 2004;99(1):57–62. doi:10.1590/S0074-02762004000100010.
  • Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, et al. β-Glucan-induced trained immunity protects against leishmania braziliensis infection: a crucial role for IL-32. Cell Rep. 2019;28(10):2659–2672.e2656. doi:10.1016/j.celrep.2019.08.004.
  • Dos Santos JC, Vilela Teodoro Silva M, Ribeiro-Dias F, et al. Non-specific effects of BCG in protozoal infections: tegumentary leishmaniasis and malaria. Clin Microbiol Infect. 2019;25(12):1479–1483. doi:10.1016/j.cmi.2019.06.002.
  • Martinez-Piñeiro JA, Muntañola P. Nonspecific immunotherapy with BCG vaccine in bladder tumors: a preliminary report. Eur Urol. 1977;3(1):11–22. doi:10.1159/000472047.
  • Bajic P, Wolfe AJ, Gupta GN. Old instillations and new implications for bladder cancer: the urinary microbiome and intravesical BCG. BJU Int. 2019;124(1):7–8. doi:10.1111/bju.14683.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA. 2012;109(43):17537–17542. doi:10.1073/pnas.1202870109.
  • Arts RJW, Moorlag S, Novakovic B, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89–100.e105. doi:10.1016/j.chom.2017.12.010.
  • Kaufmann E, Sanz J, Dunn JL, et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell. 2018;172(1-2):176–190.e119. doi:10.1016/j.cell.2017.12.031.
  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–566. doi:10.1146/annurev-physiol-022516-034339.
  • Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–430. doi:10.1016/j.immuni.2015.02.005.
  • Wang T, Liu H, Lian G, et al. HIF1alpha-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediat Inflamm. 2017;2017:1–10. doi:10.1155/2017/9029327.
  • Wang F, Zhang S, Vuckovic I, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab. 2018;28(3):463–475.e464. doi:10.1016/j.cmet.2018.08.012.
  • Mills KH. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol. 2011;11(12):807–822. doi:10.1038/nri3095.
  • Saeed S, Quintin J, Kerstens HH, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science (New York, NY). 2014;345(6204):1251086–1251086. doi:10.1126/science.1251086.
  • Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science (New York, NY). 2014;345(6204):1250684–1250684. doi:10.1126/science.1250684.
  • Mitroulis I, Ruppova K, Wang B, et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell. 2018;172(1-2):147–161.e112. doi:10.1016/j.cell.2017.11.034.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun. 2014;6(2):152–158. doi:10.1159/000355628.
  • Yao Y, Jeyanathan M, Haddadi S, et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell. 2018;175(6):1634–1650.e1617. doi:10.1016/j.cell.2018.09.042.
  • Penkov S, Mitroulis I, Hajishengallis G, et al. Immunometabolic crosstalk: an ancestral principle of trained immunity? Trends Immunol. 2019;40(1):1–11. doi:10.1016/j.it.2018.11.002.
  • Arts RJW, Carvalho A, La Rocca C, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016;17(10):2562–2571. doi:10.1016/j.celrep.2016.11.011.
  • Arts RJ, Novakovic B, Ter Horst R, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metabol. 2016;24(6):807–819. doi:10.1016/j.cmet.2016.10.008.
  • Warburg O. On the origin of cancer cells. Science (New York, NY). 1956;123(3191):309–314. doi:10.1126/science.123.3191.309.
  • Hard GC. Some biochemical aspects of the immune macrophage. Br J Exp Pathol. 1970;51(1):97–105.
  • Corcoran SE, O’Neill LAJ. HIF1α and metabolic reprogramming in inflammation. J Clin Invest. 2016;126(10):3699–3707. doi:10.1172/JCI84431.
  • Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–242. doi:10.1038/nature11986.
  • Arts RJ, Joosten LA, Netea MG. Immunometabolic circuits in trained immunity. Semin Immunol. 2016;28(5):425–430. doi:10.1016/j.smim.2016.09.002.
  • Cumming BM, Addicott KW, Adamson JH, et al. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. eLife. 2018;7. pii: e39169. doi:10.7554/eLife.39169.
  • van der Heijden C, Keating ST, Groh L, et al. Aldosterone induces trained immunity: the role of fatty acid synthesis. Cardiovascul Res. 2019; pii: cvz137. doi:10.1093/cvr/cvz137.
  • Freemerman AJ, Johnson AR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014;289(11):7884–7896. doi:10.1074/jbc.M113.522037.
  • Sen S, Kaminiski R, Deshmane S, et al. Role of hexokinase-1 in the survival of HIV-1-infected macrophages. Cell Cycle (Georgetown, TX). 2015;14(7):980–989. doi:10.1080/15384101.2015.1006971.
  • Wolf AJ, Reyes CN, Liang W, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016;166(3):624–636. doi:10.1016/j.cell.2016.05.076.
  • Yang Z, Goronzy JJ, Weyand CM. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy. 2014;10(2):382–383. doi:10.4161/auto.27345.
  • Jiang H, Shi H, Sun M, et al. PFKFB3-driven macrophage glycolytic metabolism is a crucial component of innate antiviral defense. JI. 2016;197(7):2880–2890. doi:10.4049/jimmunol.1600474.
  • Chen DP, Ning WR, Jiang ZZ, et al. Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. J Hepatol. 2019;71(2):333–343. doi:10.1016/j.jhep.2019.04.007.
  • Millet P, Vachharajani V, McPhail L, et al. GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism. JI. 2016;196(6):2541–2551. doi:10.4049/jimmunol.1501345.
  • Chauhan AS, Kumar M, Chaudhary S, et al. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. Faseb J. 2017;31(6):2638–2648. doi:10.1096/fj.201600982R.
  • Bae S, Kim H, Lee N, et al. α-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. JI. 2012;189(1):365–372. doi:10.4049/jimmunol.1102073.
  • Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 2015;21(1):65–80. doi:10.1016/j.cmet.2014.12.005.
  • Shirai T, Nazarewicz RR, Wallis BB, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213(3):337–354. doi:10.1084/jem.20150900.
  • Osada-Oka M, Goda N, Saiga H, et al. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int Immunol. 2019;31(12):781–793. doi:10.1093/intimm/dxz048.
  • Semba H, Takeda N, Isagawa T, et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7(1):11635. doi:10.1038/ncomms11635.
  • Meiser J, Krämer L, Sapcariu SC, et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem. 2016;291(8):3932–3946. doi:10.1074/jbc.M115.676817.
  • Tan Z, Xie N, Cui H, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. JI. 2015;194(12):6082–6089. doi:10.4049/jimmunol.1402469.
  • McCall CE, Zabalawi M, Liu T, et al. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI Insight. 2018;3(15). pii: 99292. doi:10.1172/jci.insight.99292.
  • Finucane OM, Sugrue J, Rubio-Araiz A, et al. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1beta-dependent manner in macrophages. Sci Rep. 2019;9(1):4034. doi:10.1038/s41598-019-40619-1.
  • Zhang Z, Deng X, Liu Y, et al. PKM2, function and expression and regulation. Cell Biosci. 2019;9:52. doi:10.1186/s13578-019-0317-8.
  • Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52. doi:10.1111/imr.12286.
  • Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun. 2016;7(1):13280. doi:10.1038/ncomms13280.
  • Yang L, Xie M, Yang M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5(1):4436. doi:10.1038/ncomms5436.
  • Moon JS, Hisata S, Park MA, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 2015;12(1):102–115. doi:10.1016/j.celrep.2015.05.046.
  • Nomura J, So A, Tamura M, et al. Intracellular ATP decrease mediates NLRP3 Inflammasome activation upon nigericin and crystal stimulation. JI. 2015;195(12):5718–5724. doi:10.4049/jimmunol.1402512.
  • Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(20):3589–3594. doi:10.1242/jcs.051011.
  • Wang L, Iorio C, Yan K, et al. A ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages. Faseb J. 2018;32(2):875–887. doi:10.1096/fj.201700672RR.
  • Wang S, Liu R, Yu Q, et al. Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett. 2019;452:14–22. doi:10.1016/j.canlet.2019.03.015.
  • Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–528. doi:10.1016/j.immuni.2014.09.008.
  • Braverman J, Sogi KM, Benjamin D, et al. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis. JI. 2016;197(4):1287–1297. doi:10.4049/jimmunol.1600266.
  • Frede S, Stockmann C, Freitag P, et al. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. 2006;396(3):517–527. doi:10.1042/BJ20051839.
  • Maxwell PH, Ratcliffe PJ. Oxygen sensors and angiogenesis. Semin Cell Dev Biol. 2002;13(1):29–37. doi:10.1006/scdb.2001.0287.
  • Liu PS, Wang H, Li X, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18(9):985–994. doi:10.1038/ni.3796.
  • Liu L, Lu Y, Martinez J, et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci USA. 2016;113(6):1564–1569. doi:10.1073/pnas.1518000113.
  • Le A, Lane AN, Hamaker M, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110–121. doi:10.1016/j.cmet.2011.12.009.
  • Iacobazzi V, Infantino V. Citrate–new functions for an old metabolite. Biol Chem. 2014;395(4):387–399. doi:10.1515/hsz-2013-0271.
  • Palmieri EM, Spera I, Menga A, et al. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. Biochim Biophys Acta. 2015;1847(8):729–738. doi:10.1016/j.bbabio.2015.04.009.
  • West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476–480. doi:10.1038/nature09973.
  • Bekkering S, Blok BA, Joosten LA, et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clin Vaccine Immunol.. 2016;23(12):926–933. doi:10.1128/CVI.00349-16.
  • Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. doi:10.1038/nature13909.
  • Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556(7699):113–117. doi:10.1038/nature25986.
  • Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–470.e413. doi:10.1016/j.cell.2016.08.064.
  • Bambouskova M, Gorvel L, Lampropoulou V, et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature. 2018;556(7702):501–504. doi:10.1038/s41586-018-0052-z.
  • Qin W, Qin K, Zhang Y, et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol. 2019;15(10):983–991. doi:10.1038/s41589-019-0323-5.
  • Domínguez-Andrés J, Novakovic B, Li Y, et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metabol. 2019;29(1):211–220.e215. doi:10.1016/j.cmet.2018.09.003.
  • Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227(9):3169–3177. doi:10.1002/jcp.24054.
  • Janke R, Dodson AE, Rine J. Metabolism and epigenetics. Annu Rev Cell Dev Biol. 2015;31(1):473–496. doi:10.1146/annurev-cellbio-100814-125544.
  • Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY). 2011;333(6047):1300–1303. doi:10.1126/science.1210597.
  • Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30. doi:10.1016/j.ccr.2010.12.014.
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science (New York, NY). 2009;324(5930):1076–1080. doi:10.1126/science.1164097.
  • Liu TF, Vachharajani VT, Yoza BK, et al. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem. 2012;287(31):25758–25769. doi:10.1074/jbc.M112.362343.
  • Wang F, Wang K, Xu W, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell reports. 2017;19(11):2331–2344. doi:10.1016/j.celrep.2017.05.065.
  • Liu TM, Shyh-Chang N. SIRT2 and glycolytic enzyme acetylation in pluripotent stem cells. Nat Cell Biol. 2017;19(5):412–414. doi:10.1038/ncb3522.
  • Jang SY, Kang HT, Hwang ES. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem. 2012;287(23):19304–19314. doi:10.1074/jbc.M112.363747.
  • Latham T, Mackay L, Sproul D, et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 2012;40(11):4794–4803. doi:10.1093/nar/gks066.
  • Fanucchi S, Mhlanga MM. Lnc-ing trained immunity to chromatin architecture. Front Cell Dev Biol. 2019;7:2. doi:10.3389/fcell.2019.00002.
  • Fanucchi S, Fok ET, Dalla E, et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet. 2019;51(1):138–150. doi:10.1038/s41588-018-0298-2.
  • Fok ET, Davignon L, Fanucchi S, et al. The lncRNA connection between cellular metabolism and epigenetics in trained immunity. Front Immunol.. 2019;9:3184. doi:10.3389/fimmu.2018.03184.
  • Alipoor SD, Mortaz E, Tabarsi P, et al. Bovis Bacillus Calmette-Guerin (BCG) infection induces exosomal miRNA release by human macrophages. J Transl Med. 2017;15(1):105. doi:10.1186/s12967-017-1205-9.
  • Kilpeläinen A, Maya-Hoyos M, Saubí N, et al. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines. 2018;17(11):1005–1020. doi:10.1080/14760584.2018.1534588.
  • Christ A, Gunther P, Lauterbach MAR, et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. 2018;172(1-2):162–175.e114. doi:10.1016/j.cell.2017.12.013.
  • Kühtreiber WM, Tran L, Kim T, et al. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines. 2018;3(1):23. doi:10.1038/s41541-018-0062-8.
  • Faustman DL, Wang L, Okubo Y, et al. Proof-of-concept, randomized, controlled clinical trial of Bacillus-Calmette-Guerin for treatment of long-term type 1 diabetes. PLoS ONE. 2012;7(8):e41756. doi:10.1371/journal.pone.0041756.
  • Ban L, Zhang J, Wang L, et al. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci USA. 2008;105(36):13644–13649. doi:10.1073/pnas.0803429105.
  • Ieronymaki E, Daskalaki MG, Lyroni K, et al. Insulin signaling and insulin resistance facilitate trained immunity in macrophages through metabolic and epigenetic changes. Front Immunol. 2019;10:1330. doi:10.3389/fimmu.2019.01330.
  • van Dam AD, Bekkering S, Crasborn M, et al. BCG lowers plasma cholesterol levels and delays atherosclerotic lesion progression in mice. Atherosclerosis. 2016;251:6–14. doi:10.1016/j.atherosclerosis.2016.05.031.
  • Ovchinnikova OA, Berge N, Kang C, et al. Mycobacterium bovis BCG killed by extended freeze-drying induces an immunoregulatory profile and protects against atherosclerosis. J Intern Med. 2014;275(1):49–58. doi:10.1111/joim.12127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.