347
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Double-edged role of natural killer cells during RSV infection

, &
Pages 233-244 | Received 03 Mar 2020, Accepted 07 May 2020, Published online: 29 May 2020

References

  • Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi:10.1016/s0065-2776(08)60664-1.
  • Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17:189–220. doi:10.1146/annurev.immunol.17.1.189.
  • Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495–502. doi:10.1038/ni1581.
  • Moretta L, Bottino C, Pende D, et al. Surface NK receptors and their ligands on tumor cells. Semin Immunol. 2006;18(3):151–158. doi:10.1016/j.smim.2006.03.002.
  • Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol. 2003;3(5):361–370. doi:10.1038/nri1083.
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–510. doi:10.1038/ni1582.
  • Smyth MJ, Cretney E, Kelly JM, et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42(4):501–510. doi:10.1016/j.molimm.2004.07.034.
  • Moretta L, Biassoni R, Bottino C, et al. Human NK-cell receptors. Immunol Today. 2000;21(9):420–422. doi:10.1016/S0167-5699(00)01673-X.
  • Biassoni R, Cantoni C, Pende D, et al. Human natural killer cell receptors and co-receptors. Immunol Rev. 2001;181:203–214. doi:10.1034/j.1600-065x.2001.1810117.x.
  • Sivori S, Vitale M, Morelli L, et al. Nkp46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186(7):1129–1136. doi:10.1084/jem.186.7.1129.
  • Pessino A, Sivori S, Bottino C, et al. Molecular cloning of NKp46: A novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med. 1998;188(5):953–960. doi:10.1084/jem.188.5.953.
  • Pegram HJ, Andrews DM, Smyth MJ, et al. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89(2):216–224. doi:10.1038/icb.2010.78.
  • Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 1998;187(12):2065–2072. doi:10.1084/jem.187.12.2065.
  • Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999;190(10):1505–1516. doi:10.1084/jem.190.10.1505.
  • Fruh K, Gruhler A, Krishna RM, et al. A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol Rev. 1999;168:157–166. doi:10.1111/j.1600-065x.1999.tb01290.x.
  • Pende D, Rivera P, Marcenaro S, et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes. Cancer Res. 2002;62:6178–6186.
  • Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? An example of natural killer cells. Science. 2011;331(6013):44–49. doi:10.1126/science.1198687.
  • Huang YT, Wertz GW. The genome of respiratory syncytial virus is a negative stranded RNA that codes for at least seven mRNA species. J Virol. 1982;43(1):150–157.
  • Collins PL, Mottet G. Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: altered O-glycosylation in the presence of brefeldin A. J. Gen Virol. 1992;73(4):849–863. doi:10.1099/0022-1317-73-4-849.
  • Mufson MA, Orvell C, Rafnar B, Norrby E. Two distinct subtypes of human respiratory syncytial virus. J GenVirol. 1985;66(10):2111–2124. doi:10.1099/0022-1317-66-10-2111.
  • Bhella D, Ralph A, Murphy LB, Yeo RP. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J Gen Virol. 2002;83(Pt 8):1831–1839. doi:10.1099/0022-1317-83-8-1831.
  • Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545–1555. doi:10.1016/S0140-6736(10)60206-1.
  • Stier MT, Peebles RS. Jr. Host and Viral Determinants of Respiratory Syncytial Virus-induced Airway Mucus. Ann Am Thorac Soc. 2018;15(Suppl 3):S205–S9. doi:10.1513/AnnalsATS.201806-380AW.
  • Schmidt ME, Varga SM. Modulation of the host immune response by respiratory syncytial virus proteins. J Microbiol. 2017;55(3):161–171. doi:10.1007/s12275-017-7045-8.
  • Hurwitz JL. Respiratory syncytial virus vaccine development. Expert Rev Vaccines. 2011;10(10):1415–1433. doi:10.1586/erv.11.120.
  • Karron RA, Buchholz UJ, Collins PL. Live-attenuated respiratory syncytial virus vaccines. Curr Top Microbiol Immunol. 2013; 372:259–284. doi:10.1007/978-3-642-38919-1_13.
  • Bates JT, Keefer CJ, Slaughter JC, Kulp DW, Schief WR, Crowe JE. Jr. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology. 2014;454-455:139–144. doi:10.1016/j.virol.2014.02.010.
  • Jorquera PA, Tripp RA. Respiratory syncytial virus: prospects for new and emerging therapeutics. Expert Rev Respir Med. 2017;11(8):609–615. doi:10.1080/17476348.2017.1338567.
  • Farrag MA, Almajhdi FN. Human Respiratory Syncytial Virus: Role of Innate Immunity in Clearance and Disease Progression. Viral Immunol. 2016;29(1):11–26. doi:10.1089/vim.2015.0098.
  • Chin J, Magoffin RL, Shearer LA, et al. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am J Epidemiol. 1969;89(4):449–463. doi:10.1093/oxfordjournals.aje.a120957.
  • Van Erp EA, Feyaerts D, Duijst M, et al. Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function. J Infect Dis. 2019;219(5):723–733. doi:10.1093/infdis/jiy566.
  • Van Erp EA, van Kampen MR, van Kasteren PB, et al. Viral infection of human natural killer cells. Viruses. 2019;11(3):243. doi:10.3390/v11030243.
  • Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285(5428):727–729. doi:10.1126/science.285.5428.727.
  • Zdrenghea MT, Telcian AG, Laza-Stanca V, et al. RSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells. Eur Respir J. 2012;39(3):712–720. doi:10.1183/09031936.00099811.
  • Noyola DE, Juárez-Vega G, Monjarás-Ávila C, et al. NK cell immunophenotypic and genotypic analysis of infants with severe respiratory syncytial virus infection. Microbiol Immunol. 2015;59(7):389–397. doi:10.1111/1348-0421.12265.
  • Satkunanathan S, Kumar N, Bajorek M, et al. Respiratory syncytial virus infection, TLR3 ligands, and proinflammatory cytokines induce CD161 ligand LLT1 expression on the respiratory epithelium. J Virol. 2014;88(5):2366–2373. doi:10.1128/JVI.02789-13.
  • Taylor G. Animal models of respiratory syncytial virus infection. Vaccine. 2017;35(3):469–480. doi:10.1016/j.vaccine.2016.11.054.
  • Welliver TP, Garofalo RP, Hosakote Y, et al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis. 2007;195(8):1126–1136. doi:10.1086/512615.
  • Kerrin A, Fitch P, Errington C, et al. Differential lower airway dendritic cell patterns may reveal distinct endotypes of RSV bronchiolitis. Thorax. 2017;72(7):620–627. doi:10.1136/thoraxjnl-2015-207358.
  • Bem RA, Bos AP, Bots M, et al. Activation of the granzyme pathway in children with severe respiratory syncytial virus infection. Pediatr Res. 2008;63(6):650–655. doi:10.1203/PDR.0b013e31816fdc32.
  • Van Erp EA, van Kasteren PB, Guichelaar T, et al. In vitro enhancement of respiratory syncytial virus infection by maternal antibodies does not explain disease severity in infants. J Virol. 2017;91(21):e00851–17. doi:10.1128/JVI.00851-17.
  • Tregoning JS, Wang BL, McDonald JU, et al. Neonatal antibody responses are attenuated by interferon-γ produced by NK and T cells during RSV infection. Proc Natl Acad Sci Usa. 2013;110(14):5576–5581. doi:10.1073/pnas.1214247110.
  • Larrañaga CL, Ampuero SL, Luchsinger VF, et al. Impaired immune response in severe human lower tract respiratory infection by respiratory syncytial virus. Pediatr Infect Dis J. 2009;28(10):867–873. doi:10.1097/INF.0b013e3181a3ea71.
  • Harker JA, Yamaguchi Y, Culley FJ, et al. Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J Virol. 2014;88(1):604–611. doi:10.1128/JVI.02620-13.
  • Leahy TR, McManus R, Doherty DG, et al. Interleukin-15 is associated with disease severity in viral bronchiolitis. Eur Respir J. 2016;47(1):212–222. doi:10.1183/13993003.00642-2015.
  • Li F, Zhu H, Sun R, et al. Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol. 2012;86(4):2251–2258. doi:10.1128/JVI.06209-11.
  • Das S, Raundhal M, Chen J, et al. Respiratory syncytial virus infection of newborn CX3CR1-deficient mice induces a pathogenic pulmonary innate immune response. JCI Insight. 2017;2(17):e94605. doi:10.1172/jci.insight.94605.
  • Culley FJ. Natural killer cells in infection and inflammation of the lung. Immunology. 2009;128(2):151–163. doi:10.1111/j.1365-2567.2009.03167.x.
  • Long X, Xie J, Zhao K, et al. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice. Med Microbiol Immunol. 2016;205(5):459–470. doi:10.1007/s00430-016-0459-9.
  • Haynes LM, Moore DD, Kurt-Jones EA, et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol. 2001;75(22):10730–10737. doi:10.1128/JVI.75.22.10730-10737.2001.
  • Zhang T, de Waard AA, Wuhrer M, et al. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol. 2019;10:90doi:10.3389/fimmu.2019.00090.
  • Moore ML, Chi MH, Goleniewska K, et al. Differential regulation of GM1 and asialo-GM1 expression by T cells and natural killer (NK) cells in respiratory syncytial virus infection. Viral Immunol. 2008;21(3):327–339. doi:10.1089/vim.2008.0003.
  • Nishikado H, Mukai K, Kawano Y, et al. NK Cell-Depleting Anti-Asialo GM1 Antibody Exhibits a Lethal Off-Target Effect on Basophils In Vivo. J Immunol. 2011; 186 (10):5766–5771. doi:10.4049/jimmunol.1100370.
  • Openshaw PJ, Tregoning JS. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin Microbiol Rev. 2005;18(3):541–555. doi:10.1128/CMR.18.3.541-555.2005.
  • Kaiko GE, Phipps S, Angkasekwinai P, et al. NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. J Immunol. 2010;185(8):4681–4690. doi:10.4049/jimmunol.1001758.
  • Liu H, Osterburg AR, Flury J, et al. NKG2D regulation of lung pathology and dendritic cell function following respiratory syncytial virus infection. J Infect Dis. 2018;218(11):1822–1832. doi:10.1093/infdis/jiy151.
  • Malloy AM, Falsey AR, Ruckwardt TJ. Consequences of immature and senescent immune responses for infection with respiratory syncytial virus. Curr Top Microbiol Immunol. 2013;372:211–231. doi:10.1007/978-3-642-38919-1_11.
  • Glaser L, Coulter PJ, Shields M, et al. Airway epithelial derived cytokines and chemokines and their role in the immune response to respiratory syncytial virus infection. Pathogens. 2019;8:106. doi:10.3390/pathogens8030106.
  • Durbin JE, Durbin RK. Respiratory syncytial virus-induced immunoprotection and immunopathology. Viral Immunol. 2004;17(3):370–380. doi:10.1089/vim.2004.17.370.
  • Harker JA, Godlee A, Wahlsten JL, et al. Interleukin 18 coexpression during respiratory syncytial virus infection results in enhanced disease mediated by natural killer cells. J Virol. 2010;84(8):4073–4082. doi:10.1128/JVI.02014-09.
  • Hussell T, Openshaw PJ. IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions. J Immunol. 2000;165(12):7109–7115. doi:10.4049/jimmunol.165.12.7109.
  • Yamaguchi Y, Harker JA, Wang B, et al. Preexposure to CpG protects against the delayed effects of neonatal respiratory syncytial virus infection. J Virol. 2012;86(19):10456–10461. doi:10.1128/JVI.01082-12.
  • Lee Y-T, Ko E-J, Kim K-H, et al. Cellular Immune Correlates Preventing Disease Against Respiratory Syncytial Virus by Vaccination with Virus-Like Nanoparticles Carrying Fusion Proteins. J Biomed Nanotechnol. 2017;13(1):84–98. doi:10.1166/jbn.2017.2341.
  • Tripp RA, Moore D, Winter J, et al. Respiratory syncytial virus infection and G and/or SH protein expression contribute to substance P, which mediates inflammation and enhanced pulmonary disease in BALB/c mice. J Virol. 2000;74(4):1614–1622. doi:10.1128/jvi.74.4.1614-1622.2000.
  • Tripp RA, Moore D, Jones L, et al. Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. J Virol. 1999;73(9):7099–7107. doi:10.1128/JVI.73.9.7099-7107.1999.
  • Schnoeller C, Roux X, Sawant D, et al. Attenuated Bordetella pertussis Vaccine Protects against Respiratory Syncytial Virus Disease via an IL-17–Dependent Mechanism. Am J Respir Crit Care Med. 2013;15(2):131121120251000–131121120251202. 189 doi:10.1164/rccm.201307-1227OC.
  • Corbeil S, Seguin C, Trudel M. Involvement of the complement system in the protection of mice from challenge with respiratory syncytial virus Long strain following passive immunization with monoclonal antibody 18A2B2. Vaccine. 1996;14(6):521–525. doi:10.1016/0264-410X(95)00222-M.
  • Christiaansen AF, Syed MA, Ten Eyck PP, et al. Altered Treg and cytokine responses in RSV-infected infants. Pediatr Res. 2016; 80(5):702–709. doi:10.1038/pr.2016.130.
  • Fulton RB, Meyerholz DK, Varga SM. Foxp3+ CD4 Regulatory T Cells Limit Pulmonary Immunopathology by Modulating the CD8 T Cell Response during Respiratory Syncytial Virus Infection. J Immunol. 2010; 185(4):2382–2392. doi:10.4049/jimmunol.1000423.
  • Durant LR, Makris S, Voorburg CM, et al. Regulatory T Cells Prevent Th2 Immune Responses and Pulmonary Eosinophilia during Respiratory Syncytial Virus Infection in Mice. J Virol. 2013; 87(20):10946–10954. doi:10.1128/JVI.01295-13.
  • Lee S-H, Kim K-S, Fodil-Cornu N, et al. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J Exp Med. 2009;206(10):2235–2251. doi:10.1084/jem.20082387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.