1,095
Views
14
CrossRef citations to date
0
Altmetric
Review

Pregnancy immune tolerance at the maternal-fetal interface

, , ORCID Icon &
Pages 247-263 | Received 25 Feb 2020, Accepted 18 May 2020, Published online: 12 Jun 2020

References

  • Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–606. doi:10.1038/172603a0.
  • Areia AL, Rodrigues P, Alarcao A, et al. Is preterm labor influenced by the maternal-fetal interface? Fetal Pediatr Pathol. 2017;36(2):89–105. doi:10.1080/15513815.2016.1242674.
  • Doyle RM, Alber DG, Jones HE, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta. 2014;35(12):1099–1101. doi:10.1016/j.placenta.2014.10.007.
  • Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod. 2005;11(12):865–870. doi:10.1093/molehr/gah246.
  • Sharma S. Natural killer cells and regulatory T cells in early pregnancy loss. Int J Dev Biol. 2014;58(2–4):219–229. doi:10.1387/ijdb.140109ss.
  • Lynch AM, Salmon JE. Dysregulated complement activation as a common pathway of injury in preeclampsia and other pregnancy complications. Placenta. 2010;31(7):561–567. doi:10.1016/j.placenta.2010.03.010.
  • Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med. 2013;19(5):548–556. doi:10.1038/nm.3160.
  • Wolfe B, Wiepz GJ, Schotzko M, et al. Acute fetal demise with first trimester maternal infection resulting from Listeria monocytogenes in a Nonhuman Primate Model. MBio. 2017;8(1):e01938–16. doi:10.1128/mBio.01938-16.
  • Chamley LW, Holland OJ, Chen Q, et al. Review: where is the maternofetal interface? Placenta. 2014;35(Suppl):S74–S80. doi:10.1016/j.placenta.2013.10.014.
  • Bulmer JN, Sunderland CA. Immunohistological characterization of lymphoid cell populations in the early human placental bed. Immunology. 1984;52(2):349–357.
  • Tafuri A, Alferink J, Moller P, et al. T cell awareness of paternal alloantigens during pregnancy. Science. 1995;270(5236):630–633. doi:10.1126/science.270.5236.630.
  • Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12(9):1065–1074. doi:10.1038/nm1452.
  • Williams PJ, Searle RF, Robson SC, et al. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol. 2009;82(1):24–31. doi:10.1016/j.jri.2009.08.001.
  • Amodio G, Mugione A, Sanchez AM, et al. HLA-G expressing DC-10 and CD4(+) T cells accumulate in human decidua during pregnancy. Hum Immunol. 2013;74(4):406–411. doi:10.1016/j.humimm.2012.11.031.
  • Rouas-Freiss N, Marchal RE, Kirszenbaum M, et al. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA. 1997;94(10):5249–5254. doi:10.1073/pnas.94.10.5249.
  • Moreau P, Paul P, Rouas-Freiss N, et al. Molecular and immunologic aspects of the nonclassical HLA class I antigen HLA-G: evidence for an important role in the maternal tolerance of the fetal allograft. Am J Reprod Immunol. 1998;40(3):136–144. doi:10.1111/j.1600-0897.1998.tb00405.x.
  • Apps R, Gardner L, Sharkey AM, et al. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol. 2007;37(7):1924–1937. doi:10.1002/eji.200737089.
  • Rajagopalan S. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol. 2014;11(5):460–466. doi:10.1038/cmi.2014.53.
  • Mellor AL, Munn D. Policing pregnancy: Tregs help keep the peace. Trends Immunol. 2004;25(11):563–565. doi:10.1016/j.it.2004.09.001.
  • Zenclussen AC. Regulatory T cells in pregnancy. Springer Semin Immunopathol. 2006;28(1):31–39. doi:10.1007/s00281-006-0023-6.
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3):266–271. doi:10.1038/ni1037.
  • Zhang YH, He M, Wang Y, et al. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front Immunol. 2017; 8:120. doi:10.3389/fimmu.2017.00120.
  • Tsao FY, Wu MY, Chang YL, et al. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions. J Formos Med Assoc. 2018;117(3):204–211. doi:10.1016/j.jfma.2017.03.011.
  • Wegmann TG, Lin H, Guilbert L, et al. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353–356. doi:10.1016/0167-5699(93)90235-D.
  • Ghasemnejad-Berenji H, Ghaffari Novin M, Hajshafiha M, et al. Immunomodulatory effects of hydroxychloroquine on Th1/Th2 balance in women with repeated implantation failure. Biomed Pharmacother. 2018;107:1277–1285. doi:10.1016/j.biopha.2018.08.027.
  • Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J Reprod Immunol. 2003;59(2):161–173. doi:10.1016/S0165-0378(03)00045-7.
  • Sifnaios E, Mastorakos G, Psarra K, et al. Gestational diabetes and T-cell (Th1/Th2/Th17/Treg) immune profile. In Vivo. 2019;33(1):31–40. doi:10.21873/invivo.11435.
  • Baban B, Chandler P, McCool D, et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol. 2004;61(2):67–77. doi:10.1016/j.jri.2003.11.003.
  • Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies. Am J Reprod Immunol. 2018;79(4):e12786. doi:10.1111/aji.12786.
  • Hunt JS, Vassmer D, Ferguson TA, et al. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol. 1997;158(9):4122–4128.
  • Cheng S-B, Sharma S. Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reprod Immunol. 2015;73(6):487–500. doi:10.1111/aji.12329.
  • Zhang Y, Wang Y, Li MQ, et al. IL-25 promotes Th2 bias by upregulating IL-4 and IL-10 expression of decidual γδT cells in early pregnancy. Exp Ther Med. 2018;15(2):1855–1862. doi:10.3892/etm.2017.5638.
  • Yang L, Wang Y, Li S, et al. Differential expression of interferon-gamma, IL-4 and IL-10 in peripheral blood mononuclear cells during early pregnancy of the bovine. Reprod Biol. 2018;18(3):312–315. doi:10.1016/j.repbio.2018.06.005.
  • Logiodice F, Lombardelli L, Kullolli O, et al. Decidual Interleukin-22-Producing CD4+ T Cells (Th17/Th0/IL-22+ and Th17/Th2/IL-22+, Th2/IL-22+, Th0/IL-22+), which also produce IL-4, are involved in the success of pregnancy. Int J Mol Sci. 2019;20(2):428. doi:10.3390/ijms20020428.
  • Keskin DB, Allan DS, Rybalov B, et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA. 2007;104(9):3378–3383. doi:10.1073/pnas.0611098104.
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–510. doi:10.1038/ni1582.
  • Wallace AE, Whitley GS, Thilaganathan B, et al. Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J Leukoc Biol. 2015;97(1):79–86. doi:10.1189/jlb.2A0614-282R.
  • Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2(9):656–663. doi:10.1038/nri886.
  • Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–640. doi:10.1016/S1471-4906(01)02060-9.
  • Nagler A, Lanier LL, Cwirla S, et al. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989;143(10):3183–3191.
  • Hanna J, Bechtel P, Zhai Y, et al. Novel insights on human NK cells' immunological modalities revealed by gene expression profiling. J Immunol. 2004;173(11):6547–6563. doi:10.4049/jimmunol.173.11.6547.
  • Manaster I, Mandelboim O. The unique properties of uterine NK cells. Am J Reprod Immunol. 2010;63(6):434–444. doi:10.1111/j.1600-0897.2009.00794.x.
  • Saito S, Nishikawa K, Morii T, et al. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua. Int Immunol. 1993;5(5):559–563. doi:10.1093/intimm/5.5.559.
  • Kalkunte SS, Mselle TF, Norris WE, et al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol. 2009;182(7):4085–4092. doi:10.4049/jimmunol.0803769.
  • Donadi EA, Castelli EC, Arnaiz-Villena A, et al. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci. 2011;68(3):369–395. doi:10.1007/s00018-010-0580-7.
  • Geraghty DE, Koller BH, Orr HT. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci USA. 1987;84(24):9145–9149. doi:10.1073/pnas.84.24.9145.
  • Arjmand F, Ghasemi N, Mirghanizadeh SA, et al. The balance of the immune system between HLA-G and NK cells in unexplained recurrent spontaneous abortion and polymorphisms analysis. Immunol Res. 2016;64(3):785–790. doi:10.1007/s12026-015-8771-9.
  • Kalotra V, Lall M, Verma IC, et al. The HLA-G 14 bp insertion/deletion polymorphism and its association with soluble HLA-G levels in women with recurrent miscarriages. HLA. 2018;91(3):167–174. doi:10.1111/tan.13198.
  • Bhalla A, Stone PR, Liddell HS, et al. Comparison of the expression of human leukocyte antigen (HLA)-G and HLA-E in women with normal pregnancy and those with recurrent miscarriage. Reproduction. 2006;131(3):583–589. doi:10.1530/rep.1.00892.
  • Poehlmann TG, Schaumann A, Busch S, et al. Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol. 2006;56(5–6):275–285. doi:10.1111/j.1600-0897.2006.00420.x.
  • King A, Allan DS, Bowen M, et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30(6):1623–1631. doi:10.1002/1521-4141(200006)30:6 < 1623::aid-immu1623 > 3.0.co;2-m.
  • Colonna M, Borsellino G, Falco M, et al. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci USA. 1993;90(24):12000–12004. doi:10.1073/pnas.90.24.12000.
  • Huang Q, Ding J, Gong M, et al. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1. Biomed Pharmacother. 2019;109:1478–1487. doi:10.1016/j.biopha.2018.09.172.
  • Della Chiesa M, Carlomagno S, Frumento G, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006;108(13):4118–4125. doi:10.1182/blood-2006-03-006700.
  • Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–1193. doi:10.1126/science.281.5380.1191.
  • Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196(4):447–457. doi:10.1084/jem.20020052.
  • Li Y, Li D, Du M. TIM-3: a crucial regulator of NK cells in pregnancy. Cell Mol Immunol. 2017;14(11):948–950. doi:10.1038/cmi.2017.85.
  • Siewiera J, El Costa H, Tabiasco J, et al. Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog. 2013;9(4):e1003257. doi:10.1371/journal.ppat.1003257.
  • Veljkovic Vujaklija D, Dominovic M, Gulic T, et al. Granulysin expression and the interplay of granulysin and perforin at the maternal-fetal interface. J Reprod Immunol. 2013;97(2):186–196. doi:10.1016/j.jri.2012.11.003.
  • Hata A, Zerboni L, Sommer M, et al. Granulysin blocks replication of varicella-zoster virus and triggers apoptosis of infected cells. Viral Immunol. 2001;14(2):125–133. doi:10.1089/088282401750234501.
  • Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–1066. doi:10.1016/j.cell.2018.07.017.
  • Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457(7230):722–725. doi:10.1038/nature07537.
  • Vacca P, Montaldo E, Croxatto D, et al. Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol. 2015;8(2):254–264. doi:10.1038/mi.2014.63.
  • Vacca P, Vitale C, Munari E, et al. Human innate lymphoid cells: their functional and cellular interactions in Decidua. Front Immunol. 2018;9:1897. doi:10.3389/fimmu.2018.01897.
  • Croxatto D, Micheletti A, Montaldo E, et al. Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunol. 2016;9(6):1372–1383. doi:10.1038/mi.2016.10.
  • Jessmon P, Leach RE, Armant DR. Diverse functions of HBEGF during pregnancy. Mol Reprod Dev. 2009;76(12):1116–1127. doi:10.1002/mrd.21066.
  • Librach CL, Feigenbaum SL, Bass KE, et al. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J Biol Chem. 1994;269(25):17125–17131.
  • Zheng J, Xiao XH, Zhang Q, et al. Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget. 2017;8(47):82314–82325. doi:10.18632/oncotarget.19319.
  • Zhang Y, Ma L, Hu X, et al. The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy. Hum Reprod. 2019;34(1):25–36. doi:10.1093/humrep/dey347.
  • Chabtini L, Mfarrej B, Mounayar M, et al. TIM-3 regulates innate immune cells to induce fetomaternal tolerance. J Immunol. 2013;190(1):88–96. doi:10.4049/jimmunol.1202176.
  • Gershon RK, Kondo K. Infectious immunological tolerance. Immunology. 1971;21(6):903–914.
  • Somerset DA, Zheng Y, Kilby MD, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004;112(1):38–43. doi:10.1111/j.1365-2567.2004.01869.x.
  • Sasaki Y, Sakai M, Miyazaki S, et al. Decidual and peripheral blood CD4 + CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10(5):347–353. doi:10.1093/molehr/gah044.
  • Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–336. doi:10.1111/j.1365-3083.2009.02308.x.
  • Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–310. doi:10.1084/jem.192.2.303.
  • Chambers CA, Kuhns MS, Egen JG, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–594. doi:10.1146/annurev.immunol.19.1.565.
  • Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–1212. doi:10.1038/ni1003.
  • Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3(11):1097–1101. doi:10.1038/ni846.
  • Jin LP, Chen QY, Zhang T, et al. The CD4 + CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol. 2009;133(3):402–410. doi:10.1016/j.clim.2009.08.009.
  • Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol. 2001;166(6):3789–3796. doi:10.4049/jimmunol.166.6.3789.
  • Heikkinen J, Mottonen M, Komi J, et al. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol. 2003;131(3):498–505. doi:10.1046/j.1365-2249.2003.02092.x.
  • Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. 2003;69(4):1438–1446. doi:10.1095/biolreprod.103.017574.
  • Henderson DJ, Bennett PR, Moore GE. Expression of human chorionic gonadotrophin alpha and beta subunits is depressed in trophoblast from pregnancies with early embryonic failure. Hum Reprod. 1992;7(10):1474–1478. doi:10.1093/oxfordjournals.humrep.a137597.
  • Schumacher A, Brachwitz N, Sohr S, et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol. 2009;182(9):5488–5497. doi:10.4049/jimmunol.0803177.
  • Zenclussen AC, Gerlof K, Zenclussen ML, et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal-maternal interface. Eur J Immunol. 2006;36(1):82–94. doi:10.1002/eji.200535428.
  • Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–79. doi:10.1038/359076a0.
  • Sollwedel A, Bertoja AZ, Zenclussen ML, et al. Protection from abortion by heme oxygenase-1 up-regulation is associated with increased levels of Bag-1 and Neuropilin-1 at the fetal-maternal interface. J Immunol. 2005;175(8):4875–4885. doi:10.4049/jimmunol.175.8.4875.
  • Zenclussen AC, Fest S, Busse P, et al. Questioning the Th1/Th2 paradigm in reproduction: Peripheral Levels of IL-12 are down-regulated in miscarriage patients. Am J Reprod Immunol. 2002;48(4):245–251. doi:10.1034/j.1600-0897.2002.01136.x.
  • Qian J, Zhang N, Lin J, et al. Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion. Biosci Trends. 2018;12(2):157–167. doi:10.5582/bst.2018.01012.
  • Hosseini A, Dolati S, Hashemi V, et al. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol. 2018;233(9):6561–6573. doi:10.1002/jcp.26604.
  • Abdolmohammadi Vahid S, Ghaebi M, Ahmadi M, et al. Altered T-cell subpopulations in recurrent pregnancy loss patients with cellular immune abnormalities. J Cell Physiol. 2019;234(4):4924–4933. doi:10.1002/jcp.27290.
  • Korn T, Oukka M, Kuchroo V, et al. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19(6):362–371. doi:10.1016/j.smim.2007.10.007.
  • Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008;10(2):206–206. doi:10.1186/ar2392.
  • Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–476. doi:10.1016/j.immuni.2004.08.018.
  • Chung DR, Kasper DL, Panzo RJ, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol. 2003;170(4):1958–1963. doi:10.4049/jimmunol.170.4.1958.
  • Matsuzaki G, Umemura M. Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol Immunol. 2007;51(12):1139–1147. doi:10.1111/j.1348-0421.2007.tb04008.x.
  • Fu B, Li X, Sun R, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci USA. 2013;110(3):E231–E240. doi:10.1073/pnas.1206322110.
  • Osborne LM, Brar A, Klein SL. The role of Th17 cells in the pathophysiology of pregnancy and perinatal mood and anxiety disorders. Brain Behav Immun. 2019;76:7–16. doi:10.1016/j.bbi.2018.11.015.
  • Leff Gelman P, Mancilla-Herrera I, Flores-Ramos M, et al. The cytokine profile of women with severe anxiety and depression during pregnancy. BMC Psychiatry. 2019;19(1):104. doi:10.1186/s12888-019-2087-6.
  • Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology. 2016;148(1):13–21. doi:10.1111/imm.12595.
  • Raghupathy R. Th1-type immunity is incompatible with successful pregnancy. Immunol Today. 1997;18(10):478–482. doi:10.1016/S0167-5699(97)01127-4.
  • Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today. 1991;12(8):256–257. doi:10.1016/0167-5699(91)90120-I.
  • Azizi R, Ahmadi M, Danaii S, et al. Cyclosporine A improves pregnancy outcomes in women with recurrent pregnancy loss and elevated Th1/Th2 ratio. J Cell Physiol. 2019;234(10):19039–19047. doi:10.1002/jcp.28543.
  • Renaud SJ, Cotechini T, Quirt JS, et al. Spontaneous pregnancy loss mediated by abnormal maternal inflammation in rats is linked to deficient uteroplacental perfusion. J Immunol. 2011;186(3):1799–1808. doi:10.4049/jimmunol.1002679.
  • Matthiesen L, Kalkunte S, Sharma S. Multiple pregnancy failures: an immunological paradigm. Am J Reprod Immunol. 2012;67(4):334–340. doi:10.1111/j.1600-0897.2012.01121.x.
  • Wang S, Zhu X, Xu Y, et al. Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface. Hum Reprod. 2016;31(4):700–711. doi:10.1093/humrep/dew019.
  • Xu J, Gu Y, Sun J, et al. Reduced CD200 expression is associated with altered Th1/Th2 cytokine production in placental trophoblasts from preeclampsia. Am J Reprod Immunol. 2018;79(1):e12763. doi:10.1111/aji.12763.
  • Zeng W, Liu Z, Liu X, et al. Distinct transcriptional and alternative splicing signatures of decidual CD4+ T cells in early human pregnancy. Front Immunol. 2017; 8:682. doi:10.3389/fimmu.2017.00682.
  • Blois SM, Joachim R, Kandil J, et al. Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J Immunol. 2004;172(10):5893–5899. doi:10.4049/jimmunol.172.10.5893.
  • Le Gal FA, Riteau B, Sedlik C, et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol. 1999;11(8):1351–1356. doi:10.1093/intimm/11.8.1351.
  • Tilburgs T, Strominger JL. CD8+ effector T cells at the fetal-maternal interface, balancing fetal tolerance and antiviral immunity. Am J Reprod Immunol. 2013;69(4):395–407. doi:10.1111/aji.12094.
  • Constantin CM, Masopust D, Gourley T, et al. Normal establishment of virus-specific memory CD8 T cell pool following primary infection during pregnancy. J Immunol. 2007;179(7):4383–4389. doi:10.4049/jimmunol.179.7.4383.
  • Lissauer D, Choudhary M, Pachnio A, et al. Cytomegalovirus sero positivity dramatically alters the maternal CD8+ T cell repertoire and leads to the accumulation of highly differentiated memory cells during human pregnancy. Hum Reprod. 2011;26(12):3355–3365. doi:10.1093/humrep/der327.
  • Zenclussen AC, Gentile T, Kortebani G, et al. Asymmetric antibodies and pregnancy. Am J Reprod Immunol. 2001;45(5):289–294. doi:10.1111/j.8755-8920.2001.450504.x.
  • DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010;1183(1):38–57. doi:10.1111/j.1749-6632.2009.05137.x.
  • Fillatreau S, Sweenie CH, McGeachy MJ, et al. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–950. doi:10.1038/ni833.
  • Eblen AC, Gercel-Taylor C, Shields LBE, et al. Alterations in humoral immune responses associated with recurrent pregnancy loss. Fertil Steril. 2000;73(2):305–313. doi:10.1016/S0015-0282(99)00505-1.
  • Blair PA, Chavez-Rueda KA, Evans JG, et al. Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J Immunol. 2009;182(6):3492–3502. doi:10.4049/jimmunol.0803052.
  • Fettke F, Schumacher A, Costa S-D, et al. B cells: the old new players in reproductive immunology. Front Immunol. 2014;5:285–285. doi:10.3389/fimmu.2014.00285.
  • Rolle L, Memarzadeh Tehran M, Morell-García A, et al. Cutting Edge: IL-10-producing regulatory B cells in early human pregnancy. Am J Reprod Immunol. 2013;70(6):448–453. doi:10.1111/aji.12157.
  • Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31:387–411. doi:10.1146/annurev-immunol-032712-100003.
  • Co EC, Gormley M, Kapidzic M, et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol Reprod. 2013;88(6):155–155. doi:10.1095/biolreprod.112.099465.
  • Wang XQ, Zhou WJ, Hou XX, et al. Trophoblast-derived CXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal-fetal interface. Cell Mol Immunol. 2018;15(12):1038–1046. doi:10.1038/s41423-018-0019-x.
  • Lash GE, Pitman H, Morgan HL, et al. Decidual macrophages: key regulators of vascular remodeling in human pregnancy. J Leukoc Biol. 2016;100(2):315–325. doi:10.1189/jlb.1A0815-351R.
  • Shynlova O, Nedd-Roderique T, Li Y, et al. Myometrial immune cells contribute to term parturition, preterm labour and post-partum involution in mice. J Cell Mol Med. 2013;17(1):90–102. doi:10.1111/j.1582-4934.2012.01650.x.
  • Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80(6):1298–1307. doi:10.1189/jlb.0406249.
  • Gustafsson C, Mjosberg J, Matussek A, et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One. 2008;3(4):e2078. doi:10.1371/journal.pone.0002078.
  • Han G, Chen G, Shen B, et al. Tim-3: an activation marker and activation limiter of innate immune cells. Front Immunol. 2013;4:449. doi:10.3389/fimmu.2013.00449.
  • Ning F, Liu H, Lash GE. The role of decidual macrophages during normal and pathological pregnancy. Am J Reprod Immunol. 2016;75(3):298–309. doi:10.1111/aji.12477.
  • Xu Y, Romero R, Miller D, et al. An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment. J Immunol. 2016;196(6):2476–2491. doi:10.4049/jimmunol.1502055.
  • Li M, Piao L, Chen CP, et al. Modulation of decidual macrophage polarization by macrophage colony-stimulating factor derived from first-trimester decidual cells: Implication in Preeclampsia. Am J Pathol. 2016;186(5):1258–1266. doi:10.1016/j.ajpath.2015.12.021.
  • Li Y, Xie Z, Wang Y, et al. Macrophage M1/M2 polarization in patients with pregnancy-induced hypertension. Can J Physiol Pharmacol. 2018;96(9):922–928. doi:10.1139/cjpp-2017-0694.
  • Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004;101(13):4560–4565. doi:10.1073/pnas.0400983101.
  • Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–686. doi:10.1016/j.it.2004.09.015.
  • Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–6173. doi:10.4049/jimmunol.164.12.6166.
  • Vacca P, Cantoni C, Vitale M, et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci USA. 2010;107(26):11918–11923. doi:10.1073/pnas.1001749107.
  • Smith SD, Dunk CE, Aplin JD, et al. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009;174(5):1959–1971. doi:10.2353/ajpath.2009.080995.
  • Engert S, Rieger L, Kapp M, et al. Profiling chemokines, cytokines and growth factors in human early pregnancy decidua by protein array. Am J Reprod Immunol. 2007;58(2):129–137. doi:10.1111/j.1600-0897.2007.00498.x.
  • Lee CL, Guo Y, So KH, et al. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype. Hum Reprod. 2015;30(10):2263–2274. doi:10.1093/humrep/dev196.
  • Abumaree MH, Chamley LW, Badri M, et al. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J Reprod Immunol. 2012;94(2):131–141. doi:10.1016/j.jri.2012.03.488.
  • Tagliani E, Erlebacher A. Dendritic cell function at the maternal-fetal interface. Expert Rev Clin Immunol. 2011;7(5):593–602. doi:10.1586/eci.11.52.
  • Kammerer U, Schoppet M, McLellan AD, et al. Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol. 2000;157(1):159–169. doi:10.1016/S0002-9440(10)64527-0.
  • Kemp B, Schmitz S, Krusche CA, et al. Dendritic cells are equally distributed in intrauterine and tubal ectopic pregnancies. Fertil Steril. 2011;95(1):28–32. doi:10.1016/j.fertnstert.2010.05.045.
  • Rieger L, Honig A, Sutterlin M, et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig. 2004;11(7):488–493. doi:10.1016/j.jsgi.2004.05.007.
  • Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol. 2003;74(4):514–522. doi:10.1189/jlb.1102566.
  • Chen W, Liang X, Peterson AJ, et al. The Indoleamine 2,3-Dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 2008; 181(8):5396–5404. doi:10.9/jimmunol.181.8.5396.
  • Krey G, Frank P, Shaikly V, et al. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med. 2008;86(9):999–1011. doi:10.1007/s00109-008-0379-2.
  • Xu C, Mao D, Holers VM, et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287(5452):498–501. doi:10.1126/science.287.5452.498.
  • Girardi G, Bulla R, Salmon JE, et al. The complement system in the pathophysiology of pregnancy. Mol Immunol. 2006;43(1–2):68–77. doi:10.1016/j.molimm.2005.06.017.
  • Palomino WA, Argandona F, Azua R, et al. Complement C3 and decay-accelerating factor expression levels are modulated by human chorionic gonadotropin in endometrial compartments during the implantation window. Reprod Sci. 2013;20(9):1103–1110. doi:10.1177/1933719113477486.
  • Wilton A. Polymorphism of the human CD46 gene in normal individuals and in recurrent spontaneous abortion. Hum Immunol. 1992;33(1):65–66.
  • Morales Prieto DM, Markert UR. MicroRNAs in pregnancy. J Reprod Immunol. 2011;88(2):106–111. doi:10.1016/j.jri.2011.01.004.
  • Manaster I, Goldman-Wohl D, Greenfield C, et al. MiRNA-mediated control of HLA-G expression and function. PLoS One. 2012;7(3):e33395. doi:10.1371/journal.pone.0033395.
  • Mori A, Nishi H, Sasaki T, et al. HLA-G expression is regulated by miR-365 in trophoblasts under hypoxic conditions. Placenta. 2016;45:37–41. doi:10.1016/j.placenta.2016.07.004.
  • Chen J, Zhao L, Wang D, et al. Contribution of regulatory T cells to immune tolerance and association of microRNA‑210 and Foxp3 in preeclampsia. Mol Med Rep. 2019;19(2):1150–1158. doi:10.3892/mmr.2018.9733.
  • Mouillet JF, Ouyang Y, Coyne CB, et al. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015;213(4 Suppl):S163–S172. doi:10.1016/j.ajog.2015.05.057.
  • Bidarimath M, Khalaj K, Wessels JM, et al. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol. 2014;11(6):538–547. doi:10.1038/cmi.2014.45.
  • Xie L, Mouillet JF, Chu T, et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology. 2014;155(12):4975–4985. doi:10.1210/en.2014-1501.
  • Awamleh Z, Han V. Identification of miR-210-5p in human placentae from pregnancies complicated by preeclampsia and intrauterine growth restriction, and its potential role in the pregnancy complications. Pregnancy Hypertens. 2020;19:159–168. doi:10.1016/j.preghy.2020.01.002.
  • Yang X, Meng T. miR-215-5p decreases migration and invasion of trophoblast cells through regulating CDC6 in preeclampsia. Cell Biochem Funct. 2020:1–8. doi:10.1002/cbf.3492.
  • Hong F, Li Y, Xu Y. Decreased placental miR-126 expression and vascular endothelial growth factor levels in patients with pre-eclampsia. J Int Med Res. 2014;42(6):1243–1251. doi:10.1177/0300060514540627.
  • Hosseini MK, Gunel T, Gumusoglu E, et al. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep. 2018;17(4):4941–4952. doi:10.3892/mmr.2018.8530.
  • Zhao L, Li J, Huang S. Patients with unexplained recurrent spontaneous abortion show decreased levels of Microrna-146a-5p in the Deciduae. Ann Clin Lab Sci. 2018;48(2):177–182.
  • Tsai PY, Li SH, Chen WN, et al. Differential miR-346 and miR-582-3p expression in association with selected maternal and fetal complications. Int J Mol Sci. 2017;18(7):1570. doi:10.3390/ijms18071570.
  • Zhao C, Dong J, Jiang T, et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One. 2011;6(8):e23925. doi:10.1371/journal.pone.0023925.
  • Li L, Wang S, Li H, et al. microRNA-96 protects pancreatic β-cell function by targeting PAK1 in gestational diabetes mellitus. Biofactors. 2018;44(6):539–547. doi:10.1002/biof.1461.
  • Wander PL, Boyko EJ, Hevner K, et al. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract. 2017;132:1–9. doi:10.1016/j.diabres.2017.07.024.
  • Torloni MR, Betrán AP, Horta BL, et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev. 2009;10(2):194–203. doi:10.1111/j.1467-789X.2008.00541.x.
  • Van Lieshout RJ, Robinson M, Boyle MH. Maternal pre-pregnancy body mass index and internalizing and externalizing problems in offspring. Can J Psychiatry. 2013;58(3):151–159. doi:10.1177/070674371305800305.
  • Wang Z, Wang P, Liu H, et al. Maternal adiposity as an independent risk factor for pre-eclampsia: a meta-analysis of prospective cohort studies. Obes Rev. 2013;14(6):508–521. doi:10.1111/obr.12025.
  • Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29(3):274–281. doi:10.1016/j.placenta.2007.12.010.
  • Aye IL, Lager S, Ramirez VI, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90(6):129. doi:10.1095/biolreprod.113.116186.
  • Stewart FM, Freeman DJ, Ramsay JE, et al. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers. J Clin Endocrinol Metab. 2007;92(3):969–975. doi:10.1210/jc.2006-2083.
  • Perez-Perez A, Vilarino-Garcia T, Fernandez-Riejos P, et al. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017;35:71–84. doi:10.1016/j.cytogfr.2017.03.001.
  • Henson MC, Swan KF, O’Neil JS. Expression of placental leptin and leptin receptor transcripts in early pregnancy and at term. Obstet Gynecol. 1998;92(6):1020–1028. doi:10.1016/S0029-7844(98)00299-3.
  • Lam QL, Liu S, Cao X, et al. Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells. Eur J Immunol. 2006;36(12):3118–3130. doi:10.1002/eji.200636602.
  • Reis BS, Lee K, Fanok MH, et al. Leptin receptor signaling in T cells is required for Th17 differentiation. J Immunol. 2015;194(11):5253–5260. doi:10.4049/jimmunol.1402996.
  • Huh JY, Park YJ, Ham M, et al. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365–371. doi:10.14348/molcells.2014.0074.
  • Han JM, Patterson SJ, Speck M, et al. Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity. J Immunol. 2014;192(2):623–629. doi:10.4049/jimmunol.1302181.
  • Elhawary TM, Demerdash HD, Sweilam MA. Relationship between interleukin-10 polymorphism and maternal serum leptin level in preeclampsia. Clin Exp Hypertens. 2013;35(5):367–372. doi:10.3109/10641963.2012.732646.
  • Riley KL, Carmichael SL, Mayo JA, et al. Body mass index change between pregnancies and risk of spontaneous preterm birth. Am J Perinatol. 2016;33(10):1017–1022. doi:10.1055/s-0036-1572533.
  • Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–252. doi:10.1038/382250a0.
  • Perez-Perez A, Maymo J, Duenas JL, et al. Leptin prevents apoptosis of trophoblastic cells by activation of MAPK pathway. Arch Biochem Biophys. 2008;477(2):390–395. doi:10.1016/j.abb.2008.06.015.
  • Magarinos MP, Sanchez-Margalet V, Kotler M, et al. Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod. 2007;76(2):203–210. doi:10.1095/biolreprod.106.051391.
  • Barrientos G, Toro A, Moschansky P, et al. Leptin promotes HLA-G expression on placental trophoblasts via the MEK/Erk and PI3K signaling pathways. Placenta. 2015;36(4):419–426. doi:10.1016/j.placenta.2015.01.006.
  • Kratzsch J, Hockel M, Kiess W. Leptin and pregnancy outcome. Curr Opin Obstet Gynecol. 2000;12(6):501–505. doi:10.1097/00001703-200012000-00008.
  • Vahamiko S, Isolauri E, Laitinen K. Weight status and dietary intake determine serum leptin concentrations in pregnant and lactating women and their infants. Br J Nutr. 2013;110(6):1098–1106. doi:10.1017/s0007114513000214.
  • Barrera D, Díaz L, Noyola-Martínez N, et al. Vitamin D and inflammatory cytokines in healthy and preeclamptic pregnancies. Nutrients. 2015;7(8):6465–6490. doi:10.3390/nu7085293.
  • Sharif K, Sharif Y, Watad A, et al. Vitamin D, autoimmunity and recurrent pregnancy loss: More than an association. Am J Reprod Immunol. 2018;80(3):e12991. doi:10.1111/aji.12991.
  • Evans KN, Nguyen L, Chan J, et al. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod. 2006;75(6):816–822. doi:10.1095/biolreprod.106.054056.
  • Wang B, Cruz Ithier M, Parobchak N, et al. Vitamin D stimulates multiple microRNAs to inhibit CRH and other pro-labor genes in human placenta. Endocr Connect. 2018;7(12):1380–1388. doi:10.1530/ec-18-0345.
  • Wagner CL, McNeil RB, Johnson DD, et al. Health characteristics and outcomes of two randomized vitamin D supplementation trials during pregnancy: a combined analysis. J Steroid Biochem Mol Biol. 2013;136:313–320. doi:10.1016/j.jsbmb.2013.01.002.
  • Triggianese P, Perricone C, Chimenti MS, et al. Innate immune system at the maternal-fetal interface: Mechanisms of disease and targets of therapy in pregnancy syndromes. Am J Reprod Immunol. 2016;76(4):245–257. doi:10.1111/aji.12509.
  • Duca FA, Lam TK. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab. 2014;16(Suppl 1):68–76. doi:10.1111/dom.12340.
  • Koleva PT, Kim JS, Scott JA, et al. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015;105(4):265–277. doi:10.1002/bdrc.21117.
  • Nyangahu DD, Jaspan HB. Influence of maternal microbiota during pregnancy on infant immunity. Clin Exp Immunol. 2019;198(1):47–56. doi:10.1111/cei.13331.
  • Fettweis JM, Serrano MG, Brooks JP, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012–1021. doi:10.1038/s41591-019-0450-2.
  • Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. doi:10.1126/scitranslmed.3008599.
  • Buckley RJ, Whitley GS, Dumitriu IE, et al. Macrophage polarisation affects their regulation of trophoblast behaviour. Placenta. 2016;47:73–80. doi:10.1016/j.placenta.2016.09.004.
  • Alijotas-Reig J, Melnychuk T, Gris JM. Regulatory T cells, maternal-foetal immune tolerance and recurrent miscarriage: new therapeutic challenging opportunities. Med Clin (Barc). 2015;144(6):265–268. doi:10.1016/j.medcli.2014.01.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.