677
Views
13
CrossRef citations to date
0
Altmetric
Review

Immunology of HPV-mediated cervical cancer: current understanding

, , &
Pages 359-378 | Received 07 May 2019, Accepted 29 Jul 2020, Published online: 27 Aug 2020

References

  • 2018. Global Health Observatory-International Agency for Research on Cancer. World Health Organization, Geneva. who.int/gho/database/en/. Accessed June 11, 2020.
  • Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–19. doi:10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.
  • Muñoz N, Bosch FX, de Sanjosé S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–527. doi:10.1056/NEJMoa021641.
  • de Sanjose S, Quint WG, Alemany L, Retrospective International Survey and HPV Time Trends Study Group, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–1056. doi:10.1016/S1470-2045(10)70230-8.
  • World Health Organization Human papillomavirus (HPV) vaccines: WHO position paper. Wkly Epidemiol Rec. 2017;19:241–268. May 2017.
  • Zur Hausen H. Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 2009;384(2):260–265. doi:10.1016/j.virol.2008.11.046.
  • Zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res. 1976;36(2 pt 2):794.
  • Zur Hausen H, de Villiers EM, Gissmann L. Papillomavirus infections and human genital cancer. Gynecol Oncol. 1981;12(2 Pt 2):S124–S128. doi:10.1016/0090-8258(81)90067-6.
  • Boshart M, Gissmann L, Ikenberg H, et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984;3(5):1151–1157.
  • Gertig DM, Brotherton JM, Budd AC, et al. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Med. 2013;11:227. doi:10.1186/1741-7015-11-227.
  • Powell SE, Hariri S, Steinau M, et al. Impact of human papillomavirus (HPV) vaccination on HPV 16/18-related prevalence in precancerous cervical lesions. Vaccine. 2012;31(1):109–113. doi:10.1016/j.vaccine.2012.10.092.
  • Cuschieri K, Kavanagh K, Cameron R, et al. 2017. The massive decline of clinically relevant Human Papillomavirus (HPV) 16 and 18 infection in Scotland. Presented at Microbiology Society Annual Conference 2017. Edinburgh, UK, April 03-06, 2017.
  • Tabrizi SN, Brotherton JM, Kaldor JM, et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. Lancet Infect Dis. 2014;14(10):958–966. doi:10.1016/S1473-3099(14)70841-2.
  • Favre M. Structural polypeptides of rabbit, bovine, and human papillomaviruses. J Virol. 1975;15(5):1239–1247. doi:10.1128/JVI.15.5.1239-1247.1975.
  • Baker TS, Newcomb WW, Olson NH, et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J. 1991;60(6):1445–1456. doi:10.1016/S0006-3495(91)82181-6.
  • Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17. doi:10.1128/cmr.16.1.1-17.2003.
  • International Human Papillomavirus Reference Center. Human papillomavirus reference clones. http://www.nordicehealth.se/hpvcenter/reference_clones/., accessed June 11, 2020.
  • Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol. 2014;4:24–31. doi:10.1016/j.coviro.2013.11.002.
  • Evander M, Frazer IH, Payne E, et al. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol. 1997;71(3):2449–2456. doi:10.1128/JVI.71.3.2449-2456.1997.
  • Giroglou T, Florin L, Schäfer F, et al. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75(3):1565–1570. doi:10.1128/JVI.75.3.1565-1570.2001.
  • Gilbert DM, Cohen SN. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell. 1987;50(1):59–68. doi:10.1016/0092-8674(87)90662-3.
  • Flores ER, Lambert PF. Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol. 1997;71(10):7167–7179. doi:10.1128/JVI.71.10.7167-7179.1997.
  • Flores ER, Allen-Hoffmann BL, Lee D, et al. Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology. 1999;262(2):344–354. doi:10.1006/viro.1999.9868.
  • Porter SS, Stepp WH, Stamos JD, et al. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res. 2017;231:10–20. doi:10.1016/j.virusres.2016.11.014.
  • Spriggs CC, Laimins LA. Human Papillomavirus and the DNA damage response: exploiting host repair pathways for viral replication. Viruses. 2017;9(8):232. doi:10.3390/v9080232.
  • Mohr IJ, Clark R, Sun S, et al. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science. 1990;250(4988):1694–1699. doi:10.1126/science.2176744.
  • Frattini MG, Laimins LA. Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. Proc Natl Acad Sci USA. 1994;91(26):12398–12402. doi:10.1073/pnas.91.26.12398.
  • Sedman J, Stenlund A. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J. 1995;14(24):6218–6228. doi:10.1002/j.1460-2075.1995.tb00312.x.
  • Thomas JT, Hubert WG, Ruesch MN, et al. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA. 1999;96(15):8449–8454. doi:10.1073/pnas.96.15.8449.
  • Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37(6):319–324. doi:10.4143/crt.2005.37.6.319.
  • Thomas M, Pim D, Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene. 1999;18(53):7690–7700. doi:10.1038/sj.onc.1202953.
  • Syrjänen SM, Syrjänen KJ. New concepts on the role of human papillomavirus in cell cycle regulation. Ann Med. 1999;31(3):175–187. doi:10.3109/07853899909115976.
  • Jeon S, Allen-Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 1995;69(5):2989–2997. doi:10.1128/JVI.69.5.2989-2997.1995.
  • Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–560. doi:10.1038/nrc2886.
  • Schwarz E, Freese UK, Gissmann L, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314(6006):111–114. doi:10.1038/314111a0.
  • Baker CC, Phelps WC, Lindgren V, et al. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987;61(4):962–971. doi:10.1128/JVI.61.4.962-971.1987.
  • Zur Hausen H. Papillomaviruses-to vaccination and beyond. Biochemistry Mosc. 2008;73(5):498–503. doi:10.1134/s0006297908050027.
  • Zhou Q, Zhu K, Cheng H. Toll-like receptors in human papillomavirus infection. Arch Immunol Ther Exp (Warsz).). 2013;61(3):203–215. doi:10.1007/s00005-013-0220-7.
  • Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–518. doi:10.1038/nature07725.
  • Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011;9(5):363–375. doi:10.1016/j.chom.2011.04.008.
  • Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017;231:21–33. doi:10.1016/j.virusres.2016.11.023.
  • Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140(6):805–820. doi:10.1016/j.cell.2010.01.022.
  • Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32:7–S15. doi:10.1016/j.jcv.2004.12.006.
  • Chow LT, Broker TR, Steinberg BM. The natural history of human papillomavirus infections of the mucosal epithelia. Apmis. 2010;118(6-7):422–449. doi:10.1111/j.1600-0463.2010.02625.x.
  • Stanley MA, Pett M. Papillomaviruses. In: Mahy BWJ, ter Meulen V, eds. Wilson’s Microbiology & Microbial Infections. Topley & Virology. Vol. 2. 10th ed. Wiley-Blackwell. Hoboken, NJ; 2007: 448–472.
  • Ablasser A, Bauernfeind F, Hartmann G, et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol. 2009;10(10):1065–1072. doi:10.1038/ni.1779.
  • Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009;138(3):576–591. doi:10.1016/j.cell.2009.06.015.
  • Woodworth CD, Notario V, DiPaolo JA. Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J Virol. 1990;64(10):4767–4775. doi:10.1128/JVI.64.10.4767-4775.1990.
  • Braun L, Durst M, Mikumo R, Gruppuso P. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor β1. Cancer Res. 1990;50:7324–7332.
  • Kyo S, Inoue M, Hayasaka N, Inoue T, et al. Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology. 1994;200(1):130–139. doi:10.1006/viro.1994.1171.
  • Scott M, Stites DP, Moscicki AB. Th1 cytokine patterns in cervical human papillomavirus infection. Clin Diagn Lab Immunol. 1999;6(5):751–755.
  • Scott M, Nakagawa M, Moscicki AB. Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol. 2001;8(2):209–220. doi:10.1128/CDLI.8.2.209-220.2001.
  • LaFleur DW, Nardelli B, Tsareva T, et al. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem. 2001;276(43):39765–39771. doi:10.1074/jbc.M102502200.
  • Lembo D, Donalisio M, De Andrea M, et al. A cell-based high-throughput assay for screening inhibitors of human papillomavirus-16 long control region activity. Faseb J. 2006;20(1):148–150. doi:10.1096/fj.05-3904fje.
  • Song SH, Lee JK, Lee NW, et al. Interferon-gamma (IFN-gamma): a possible prognostic marker for clearance of high-risk human papillomavirus (HPV)). Gynecol Oncol. 2008;108(3):543–548. doi:10.1016/j.ygyno.2007.11.006.
  • Rincon-Orozco B, Halec G, Rosenberger S, et al. Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells. Cancer Res. 2009;69(22):8718–8725. doi:10.1158/0008-5472.CAN-09-0550.
  • Andersen JM, Al-Khairy D, Ingalls RR. Innate immunity at the mucosal surface: role of Toll-like receptor 3 and Toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens. Biol Reprod. 2006;74(5):824–831. doi:10.1095/biolreprod.105.048629.
  • Lebre MC, van der Aar AM, van Baarsen L, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127(2):331–341. doi:10.1038/sj.jid.5700530.
  • Karim R, Meyers C, Backendorf C, et al. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One. 2011;6(3):e17848 doi:10.1371/journal.pone.0017848.
  • Karim R, Tummers B, Meyers C, et al. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathog. 2013;9(5):e1003384 doi:10.1371/journal.ppat.1003384.
  • Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, et al. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol. 2001;75(9):4283–4296. doi:10.1128/JVI.75.9.4283-4296.2001.
  • Hong S, Mehta KP, Laimins LA. Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance. J Virol. 2011;85(18):9486–9494. doi:10.1128/JVI.05007-11.
  • Park JS, Kim EJ, Kwon HJ, et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem. 2000;275(10):6764–6769. doi:10.1074/jbc.275.10.6764.
  • Um SJ, Rhyu JW, Kim EJ, et al. Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo. Cancer Lett. 2002;179(2):205–212. doi:10.1016/s0304-3835(01)00871-0.
  • Antonsson A, Payne E, Hengst K, et al. The human papillomavirus type 16 E7 protein binds human interferon regulatory factor-9 via a novel PEST domain required for transformation. J Interferon Cytokine Res. 2006;26(7):455–461. doi:10.1089/jir.2006.26.455.
  • Sunthamala N, Thierry F, Teissier S, et al. E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-κ transcription in keratinocytes. PLoS One. 2014;9(3):e91473 doi:10.1371/journal.pone.0091473.
  • DeCarlo CA, Severini A, Edler L, et al. IFN-κ, a novel type I IFN, is undetectable in HPV-positive human cervical keratinocytes. Lab Invest. 2010;90(10):1482–1491. doi:10.1038/labinvest.2010.95.
  • Chang YE, Laimins LA. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol. 2000;74(9):4174–4182. doi:10.1128/jvi.74.9.4174-4182.2000.
  • Zhou F, Chen J, Zhao KN. Human papillomavirus 16-encoded E7 protein inhibits IFN-γ-mediated MHC class I antigen presentation and CTL-induced lysis by blocking IRF-1 expression in mouse keratinocytes. J Gen Virol. 2013;94(Pt 11):2504–2514. doi:10.1099/vir.0.054486-0.
  • Mota F, Rayment N, Kanan J, et al. Differential regulation of HLA-DQ expression by keratinocytes and Langerhans cells in normal and premalignant cervical epithelium. Tissue Antigens. 1998;52(3):286–293. doi:10.1111/j.1399-0039.1998.tb03046.x.
  • Mota F, Rayment N, Chong S, et al. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol. 1999;116(1):33–40. doi:10.1046/j.1365-2249.1999.00826.x.
  • Cromme FV, Meijer CJ, Snijders PJ, et al. Analysis of MHC class I and II expression in relation to presence of HPV genotypes in premalignant and malignant cervical lesions. Br J Cancer. 1993;67(6):1372–1380. doi:10.1038/bjc.1993.254.
  • Cromme FV, Snijders PJ, van den Brule AJ, et al. MHC class I expression in HPV 16 positive cervical carcinomas is post-transcriptionally controlled and independent from c-myc overexpression. Oncogene. 1993;8(11):2969–2975.
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–510. doi:10.1038/ni1582.
  • Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol. 2001;1(1):41–49. doi:10.1038/35095564.
  • Vitale M, Cantoni C, Pietra G, et al. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014;44(6):1582–1592. doi:10.1002/eji.201344272.
  • Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186. doi:10.1186/1471-2407-9-186.
  • Arreygue-Garcia NA, Daneri-Navarro A, Del Toro-Arreola A, et al. Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions. BMC Cancer. 2008;8:16doi:10.1186/1471-2407-8-16.
  • Kobayashi A, Greenblatt RM, Anastos K, et al. Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection. Cancer Res. 2004;64(18):6766–6774. doi:10.1158/0008-5472.CAN-04-1091.
  • Ferns DM, Heeren AM, Samuels S, et al. Classical and non-classical HLA class I aberrations in primary cervical squamous- and adenocarcinomas and paired lymph node metastases. J Immunother Cancer. 2016;4:78. doi:10.1186/s40425-016-0184-3.
  • Spaans VM, Peters AA, Fleuren GJ, Jordanova ES. HLA-E expression in cervical adenocarcinomas: association with improved long-term survival. J Transl Med. 2012;10:184doi:10.1186/1479-5876-10-184.
  • Gimenes F, Teixeira JJ, de Abreu AL, et al. Human leukocyte antigen (HLA)-G and cervical cancer immunoediting: a candidate molecule for therapeutic intervention and prognostic biomarker? Biochim Biophys Acta. 2014;1846(2):576–589. doi:10.1016/j.bbcan.2014.10.004.
  • Textor S, Dürst M, Jansen L, et al. Activating NK cell receptor ligands are differentially expressed during progression to cervical cancer. Int J Cancer. 2008;123(10):2343–2353. doi:10.1002/ijc.23733.
  • Cho H, Chung JY, Kim S, et al. MICA/B and ULBP1 NKG2D ligands are independent predictors of good prognosis in cervical cancer. BMC Cancer. 2014;14(1):957. doi:10.1186/1471-2407-14-957.
  • Sato N, Saga Y, Mizukami H, et al. Downregulation of indoleamine-2,3-dioxygenase in cervical cancer cells suppresses tumor growth by promoting natural killer cell killer cell accumulation. Oncol Rep. 2012;28(5):1574–1578. doi:10.3892/or.2012.1984.
  • Garzetti GG, Ciavattini A, Goteri G, et al. HPV DNA positivity and natural killer cell activity in the clinical outcome of mild cervical dysplasia: integration between virus and immune system. Gynecol Obstet Invest. 1995;39(2):130–135. doi:10.1159/000292394.
  • Georgopoulos NT, Proffitt JL, Blair GE. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene. 2000;19(42):4930–4935. doi:10.1038/sj.onc.1203860.
  • Li H, Ou X, Xiong J, Wang T. HPV16E7 mediates HADC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. Biochem Biophys Res Commun. 2006;349(4):1315–1321. doi:10.1016/j.bbrc.2006.08.182.
  • Ashrafi GH, Haghshenas MR, Marchetti B, et al. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer. 2005;113(2):276–283. doi:10.1002/ijc.20558.
  • Bottley G, Watherston OG, Hiew YL, et al. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. Oncogene. 2008;27(12):1794–1799. doi:10.1038/sj.onc.1210798.
  • Embgenbroich M, Burgdorf S. Current concepts of antigen cross-presentation. Front Immunol. 2018;9:1643doi:10.3389/fimmu.2018.01643.
  • Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20. doi:10.1111/imm.12888.
  • Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol. 2013;14(10):978–985. doi:10.1038/ni.2680.
  • Bashaw AA, Leggatt GR, Chandra J, et al. Modulation of antigen presenting cell functions during chronic HPV infection. Papillomavirus Res. 2017;4:58–65. doi:10.1016/j.pvr.2017.08.002.
  • Jimenez-Flores R, Mendez-Cruz R, Ojeda-Ortiz J, et al. High-risk human papilloma virus infection decreases the frequency of dendritic Langerhans' cells in the human female genital tract. Immunology. 2006;117(2):220–228. doi:10.1111/j.1365-2567.2005.02282.x.
  • Yang W, Song Y, Lu YL, et al. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology. 2013;139(4):513–522. doi:10.1111/imm.12101.
  • Song MY, Park SH, Nam HJ, et al. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J Immunother. 2011;34(3):297–306. doi:10.1097/CJI.0b013e318210ed0e.
  • Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–689. doi:10.4049/jimmunol.166.1.678.
  • Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6(5):1755–1766.
  • Tang A, Amagai M, Granger LG, et al. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature. 1993;361(6407):82–85. doi:10.1038/361082a0.]
  • Blauvelt A, Katz SI, Udey MC. Human Langerhans cells express E-cadherin. J Invest Dermatol. 1995;104(2):293–296. doi:10.1111/1523-1747.ep12612830.
  • Jakob T, Udey MC. Regulation of E-cadherin-mediated adhesion in Langerhans cell-like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo. J Immunol. 1998;160(8):4067–4073.
  • Schwarzenberger K, Udey MC. Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ. J Invest Dermatol. 1996;106(3):553–558. doi:10.1111/1523-1747.ep12344019.
  • Leong CM, Doorbar J, Nindl I, et al. Loss of epidermal Langerhans cells occurs in human papillomavirus alpha, gamma, and mu but not beta genus infections. J Invest Dermatol. 2010;130(2):472–480. doi:10.1038/jid.2009.266.
  • Shannon B, Yi TJ, Perusini S, et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017;10(5):1310–1319. doi:10.1038/mi.2016.129.
  • Jiang B, Xue M. Correlation of E6 and E7 levels in high-risk HPV16 type cervical lesions with CCL20 and Langerhans cells. Genet Mol Res. 2015;14(3):10473–10481. doi:10.4238/2015.September.8.8.
  • Medzhitov R, Janeway CA. Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300. doi:10.1126/science.1068883.
  • Yang X, Cheng Y, Li C. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduct Target Ther. 2017;2:17055doi:10.1038/sigtrans.2017.55.
  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–145. doi:10.1038/35100529.
  • El-Omar EM, Ng MT, Hold GL. Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene. 2008;27(2):244–252. doi:10.1038/sj.onc.1210912.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–650. doi:10.1016/j.immuni.2011.05.006.
  • Hasan UA, Bates E, Takeshita F, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. 2007;178(5):3186–3197. doi:10.4049/jimmunol.178.5.3186.
  • Kalali BN, Köllisch G, Mages J, et al. Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. J Immunol. 2008;181(4):2694–2704. doi:10.4049/jimmunol.181.4.2694.
  • Daud II, Scott ME, Ma Y, et al. Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer. 2011;128(4):879–886. doi:10.1002/ijc.25400.
  • Kelly MG, Alvero AB, Chen R, et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66(7):3859–3868. doi:10.1158/0008-5472.CAN-05-3948.
  • de Matos LG, Candido EB, Vidigal PV, et al. Association between Toll-like receptor and tumor necrosis factor immunological pathways in uterine cervical neoplasms. Tumori. 2017;103(1):81–86. doi:10.5301/tj.5000576.
  • Hasimu A, Ge L, Li QZ, et al. Expressions of Toll-like receptors 3, 4, 7, and 9 in cervical lesions and their correlation with HPV16 infection in Uighur women. Chin J Cancer. 2011;30(5):344–350. doi:10.5732/cjc.010.10456.
  • Rahkola P, Mikkola TS, Ylikorkala O, et al. Association between high risk papillomavirus DNA and nitric oxide release in the human uterine cervix. Gynecol Oncol. 2009;114(2):323–326. doi:10.1016/j.ygyno.2009.05.003.
  • Dong J, Cheng M, Sun H. Function of inducible nitric oxide synthase in the regulation of cervical cancer cell proliferation and the expression of vascular endothelial growth factor. Mol Med Rep. 2014;9(2):583–589. doi:10.3892/mmr.2013.1838.
  • Ludlow LE, Johnstone RW, Clarke CJ. The HIN-200 family: more than interferon-inducible genes?. Exp Cell Res. 2005;308(1):1–17. doi:10.1016/j.yexcr.2005.03.032.
  • Reinholz M, Kawakami Y, Salzer S, et al. HPV16 activates the AIM2 inflammasome in keratinocytes. Arch Dermatol Res. 2013;305(8):723–732. doi:10.1007/s00403-013-1375-0.
  • Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004. doi:10.1038/ni.1932.
  • Jakobsen MR, Bak RO, Andersen A, et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci Usa. 2013;110(48):E4571–4580. doi:10.1073/pnas.1311669110.
  • Lo Cigno I, De Andrea M, Borgogna C, et al. The nuclear DNA sensor IFI16 acts as a restriction factor for human papillomavirus replication through epigenetic modifications of the viral promoters. J Virol. 2015;89(15):7506–7520. doi:10.1128/JVI.00013-15.
  • Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491–496. doi:10.1038/ni921.
  • Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal. 2012;5(214):ra20doi:10.1126/scisignal.2002521.
  • Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380–384. doi:10.1038/nature12306.
  • Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity. 2006;25(3):373–381. doi:10.1016/j.immuni.2006.08.007.
  • Fensterl V, Sen GC. Interferons and viral infections. Biofactors. 2009;35(1):14–20. doi:10.1002/biof.6.
  • Stadnyk AW. Cytokine production by epithelial cells. FASEB J. 1994;8(13):1041–1047. doi:10.1096/fasebj.8.13.7926369.
  • Woodworth CD, Simpson S. Comparative lymphokine secretion by cultured normal human cervical keratinocytes, papillomavirus-immortalized, and carcinoma cell lines. Am J Pathol. 1993;142(5):1544–1555.
  • Scott ME, Ma Y, Kuzmich L, Moscicki AB. Diminished IFN-gamma and IL-10 and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3. Int J Cancer. 2009;124(6):1379–1383. doi:10.1002/ijc.24117.
  • Reiser J, Hurst J, Voges M, et al. High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J Virol. 2011;85(21):11372–11380. doi:10.1128/JVI.05279-11.
  • Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84(3):431–442. doi:10.1016/s0092-8674(00)81288-x.
  • Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 1998;12(13):2061–2072. doi:10.1101/gad.12.13.2061.
  • Li S, Labrecque S, Gauzzi MC, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene. 1999;18(42):5727–5737. doi:10.1038/sj.onc.1202960.
  • Arany I, Goel A, Tyring SK. Interferon response depends on viral transcription in human papillomavirus-containing lesions. Anticancer Res. 1995;15(6B):2865–2869.
  • Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171(3):715–727. doi:10.2353/ajpath.2007.070166.
  • Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi:10.1038/ni.1923.
  • Markiewski MM, DeAngelis RA, Benencia F, et al. Modulation of the antitumor immune response by complement. Nat Immunol. 2008;9(11):1225–1235. doi:10.1038/ni.1655.
  • Canales NA, Marina VM, Castro JS, et al. A1BG and C3 are overexpressed in patients with cervical intraepithelial neoplasia III. Oncol Lett. 2014;8(2):939–947. doi:10.3892/ol.2014.2195.
  • Verhaegen H, De Cock W, De Cree J, Verbruggen F. Increase of serum complement levels in cancer patients with progressing tumors. Cancer. 1976;38(4):1608–1613. doi:10.1002/1097-0142(197610)38:4<1608::AID-CNCR2820380427>3.0.CO;2-6.
  • Corrales L, Ajona D, Rafail S, et al. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J Immunol. 2012;189(9):4674–4683. doi:10.4049/jimmunol.1201654.
  • de Visser KE, Korets LV, Coussens LM. Early neoplastic progression is complement independent. Neoplasia. 2004;6(6):768–776. doi:10.1593/neo.04250.
  • Stanley M. Immune responses to human papillomavirus. Vaccine. 2006;24:S16–S22. doi:10.1016/j.vaccine.2005.09.002.
  • Moerman-Herzog A, Nakagawa M. Early defensive mechanisms against human papillomavirus infection. Clin Vaccine Immunol. 2015;22(8):850–857. doi:10.1128/CVI.00223-15.
  • Azar KK, Tani M, Yasuda H, et al. Increased secretion patterns of interleukin-10 and tumor necrosis factor-alpha in cervical squamous intraepithelial lesions. Hum Pathol. 2004;35(11):1376–1384. doi:10.1016/j.humpath.2004.08.012.
  • Alves JJP, De Medeiros Fernandes TAA, De Araújo JMG, et al. Th17 response in patients with cervical cancer. Oncol Lett. 2018;16(5):6215–6227. doi:10.3892/ol.2018.9481.
  • Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–118. doi:10.1038/cr.2016.151.
  • van der Burg SH, Piersma SJ, de Jong A, et al. Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci USA. 2007;104(29):12087–12092. doi:10.1073/pnas.0704672104.
  • Loddenkemper C, Hoffmann C, Stanke J, et al. Regulatory (FOXP3+) T cells as target for immune therapy of cervical intraepithelial neoplasia and cervical l cancer. Cancer Sci. 2009;100(6):1112–1117. doi:10.1111/j.1349-7006.2009.01153.x.
  • Stone SC, Rossetti RA, Lima AM, Lepique AP. HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models. Immun Inflamm Dis. 2014;2(2):63–75. doi:10.1002/iid3.21.
  • Prata TT, Bonin CM, Ferreira AM, et al. Local immunosuppression induced by high viral load of human papillomavirus: characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology. 2015;146(1):113–121. doi:10.1111/imm.12487.
  • Bhairavabhotla RK, Verm V, Tongaonkar H, et al. Role of IL-10 in immune suppression in cervical cancer. Indian J Biochem Biophys. 2007;44(5):350–356.
  • Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol. 2009;9(4):235–245. doi:10.1038/nri2524.
  • Dörner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11(5):247doi:10.1186/ar2780.
  • Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol. 2017;14(8):662–674. doi:10.1038/cmi.2017.35.
  • Tang A, Dadaglio G, Oberkampf M, et al. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer. 2016;139(6):1358–1371. doi:10.1002/ijc.30169.
  • Kim SS, Shen S, Miyauchi S, et al. B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade. Clin Cancer Res. 2020;26(13):3345–3359. doi:10.1158/1078-0432.CCR-19-3211.
  • Chen Z, Zhu Y, Du R, et al. Role of regulatory B cells in the progression of cervical cancer. Mediators Inflamm. 2019;2019:1–8. doi:10.1155/2019/6519427.
  • Rodriguez AC, Schiffman M, Herrero R, et al. Low risk of type-specific carcinogenic HPV re-appearance with subsequent cervical intraepithelial neoplasia grade 2/3. Int J Cancer. 2012;131(8):1874–1881. doi:10.1002/ijc.27418.
  • Beachler DC, Jenkins G, Safaeian M, et al. Natural acquired immunity against subsequent genital human papillomavirus infection: a systematic review and meta-analysis. J Infect Dis. 2016;213(9):1444–1454. doi:10.1093/infdis/jiv753.
  • Coseo SE, Porras C, Dodd LE, et al. Evaluation of the polyclonal ELISA HPV serology assay as a biomarker for human papillomavirus exposure. Sex Transm Dis. 2011;38:976–982.
  • Combes JD, Pawlita M, Waterboer T, et al. Antibodies against high-risk human papillomavirus proteins as markers for invasive cervical cancer. Int J Cancer. 2014;135(10):2453–2461. doi:10.1002/ijc.28888.
  • Kirnbauer R, Taub J, Greenstone H, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993;67(12):6929–6936. doi:10.1128/JVI.67.12.6929-6936.1993.
  • Rocha-Zavaleta L, Ambrosio JP, Mora-Garcia ML, et al. Detection of antibodies against a human papillomavirus (HPV) type 16 peptide that differentiate high-risk from low-risk HPV-associated low-grade squamous intraepithelial lesions. J Gen Virol. 2004;85(9):2643–2650. doi:10.1099/vir.0.80077-0.
  • Heino P, Skyldberg B, Lehtinen M, et al. Human papillomavirus type 16 capsids expose multiple type-restricted and type-common antigenic epitopes. J Gen Virol. 1995;76(5):1141–1153. doi:10.1099/0022-1317-76-5-1141.
  • Le Cann P, Chabaud M, Leboulleux D, et al. Detection of antibodies to L1, L2, and E4 proteins of human papillomavirus types 6, 11, and 16 by ELISA using synthetic peptides. J Med Virol. 1995;45(4):410–414. doi:10.1002/jmv.1890450410.
  • Zumbach K, Kisseljov F, Sacharova O, et al. Antibodies against oncoproteins E6 and E7 of human papillomavirus types 16 and 18 in cervical-carcinoma patients from Russia. Int J Cancer. 2000;85(3):313–318. doi:10.1002/(SICI)1097-0215(20000201)85:3<313::AID-IJC3>3.0.CO;2-W.
  • Meschede W, Zumbach K, Braspenning J, et al. Antibodies against early proteins of human papillomaviruses as diagnostic markers for invasive cervical cancer. J Clin Microbiol. 1998;36(2):475–480. doi:10.1128/JCM.36.2.475-480.1998.
  • Nindl I, Zumbach K, Pawlita M, et al. Absence of antibody against human papillomavirus type 16 E6 and E7 in patients with cervical cancer is independent of sequence variations. J Infect Dis. 2000;181(5):1764–1767. doi:10.1086/315451.
  • Ramezani A, Aghakhani A, Soleymani S, et al. Significance of serum antibodies against HPV E7, Hsp27, Hsp20 and Hp91 in Iranian HPV-exposed women. BMC Infect Dis. 2019;19(1):142. doi:10.1186/s12879-019-3780-2.
  • Maciag PC, Villa LL. Genetic susceptibility to HPV infection and cervical cancer. Braz J Med Biol Res. 1999;32(7):915–922. doi:10.1590/s0100-879x1999000700017.
  • Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review. Virus Res. 2002;89(2):229–240. doi:10.1016/s0168-1702(02)00191-0.
  • The MHC sequencing consortium Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999;401:921–923.
  • Gameiro SF, Zhang A, Ghasemi F, et al. Analysis of class I major histocompatibility complex gene transcription in human tumors caused by human papillomavirus infection. Viruses. 2017;9(9):252. doi:10.3390/v9090252.
  • Cicchini L, Blumhagen RZ, Westrich JA, et al. High-risk human papillomavirus E7 alters host DNA methylome and represses HLA-E expression in human keratinocytes. Sci Rep. 2017;7(1):3633doi:10.1038/s41598-017-03295-7.
  • Isaacson Wechsler E, Wang Q, Roberts I, et al. Reconstruction of human papillomavirus type 16-mediated early-stage neoplasia implicates E6/E7 deregulation and the loss of contact inhibition in neoplastic progression. J Virol. 2012;86(11):6358–6364. doi:10.1128/JVI.07069-11.
  • McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13(4):e1006211doi:10.1371/journal.ppat.1006211.
  • Burgers WA, Blanchon L, Pradhan S, et al. Viral oncoproteins target the DNA methyltransferases. Oncogene. 2007;26(11):1650–1655. doi:10.1038/sj.onc.1209950.
  • Laurson J, Khan S, Chung R, et al. Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis. 2010;31(5):918–926. doi:10.1093/carcin/bgq027.
  • Hasan UA, Zannetti C, Parroche P, et al. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J Exp Med. 2013;210(7):1369–1387. doi:10.1084/jem.20122394.
  • Pacini L, Savini C, Ghittoni R, et al. Downregulation of toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control. J Virol. 2015;89(22):11396–11405. doi:10.1128/JVI.02151-15.
  • Cicchini L, Westrich JA, Xu T, et al. Suppression of antitumor immune responses by human papillomavirus through epigenetic downregulation of CXCL14. mBio. 2016;7(3): e00270–16. doi:10.1128/mBio.00270-16.
  • Senba M, Buziba N, Mori N, et al. Human papillomavirus infection induces NF-κB activation in cervical cancer: A comparison with penile cancer. Oncol Lett. 2011;2(1):65–68. doi:10.3892/ol.2010.207.
  • Leone P, Shin EC, Perosa F, et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105(16):1172–1187. doi:10.1093/jnci/djt184.
  • Evans M, Borysiewicz LK, Evans AS, et al. Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J Immunol. 2001;167(9):5420–5428. doi:10.4049/jimmunol.167.9.5420.
  • Hasim A, Abudula M, Aimiduo R, et al. Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One. 2012;7(9):e44952 doi:10.1371/journal.pone.0044952.
  • Mehta AM, Jordanova ES, Kenter GG, et al. Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother. 2007;57(2):197–206. doi:10.1007/s00262-007-0362-8.
  • Mehta AM, Jordanova ES, Corver WE, et al. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosomes Cancer. 2009;48(5):410–418. doi:10.1002/gcc.20648.
  • Steinbach A, Winter J, Reuschenbach M, et al. ERAP1 overexpression in HPV-induced malignancies: a possible novel immune evasion mechanism. Oncoimmunology. 2017;6(7):e1336594. doi:10.1080/2162402X.2017.1336594.
  • Gruener M, Bravo IG, Momburg F, et al. The E5 protein of the human papillomavirus type 16 down-regulates HLA-I surface expression in calnexin-expressing but not in calnexin-deficient cells. Virol J. 2007;4:116. doi:10.1186/1743-422X-4-116.
  • de Boer MA, Jordanova ES, van Poelgeest MI, et al. Circulating human papillomavirus type 16 specific T-cells are associated with HLA Class I expression on tumor cells, but not related to the amount of viral oncogene transcripts. Int J Cancer. 2007;121(12):2711–2715. doi:10.1002/ijc.23035.
  • World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Human Papillomaviruses. Vol. 90. Lyon, International Agency for Research on Cancer, 2007. Available at https://monographs.iarc.fr/wp-content/uploads/2018/06/mono90.pdf. Accessed June 14, 2020.
  • Naud PS, Roteli-Martins CM, De Carvalho NS, et al. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum Vaccin Immunother. 2014;10(8):2147–2162. doi:10.4161/hv.29532.
  • Schwarz TF, Huang LM, Valencia A, et al. A ten-year study of immunogenicity and safety of the AS04-HPV-16/18 vaccine in adolescent girls aged 10-14 years. Hum Vaccin Immunother. 2019;15(7-8):1970–1979. ‐doi:10.1080/21645515.2019.1625644.
  • World Health Organization. HPV Vaccine Background Document. 2020. Available at https://www.who.int/immunization/sage/meetings/2016/october/1_HPV_vaccine_background_document_27Sept2016.pdf?ua=1. Accessed June 14, 2020.
  • Nygård M, Saah A, Munk C, et al. Evaluation of the long-term anti-human papillomavirus 6 (HPV6), 11, 16, and 18 immune responses generated by the quadrivalent HPV vaccine. Clin Vaccine Immunol. 2015;22(8):943–948. doi:10.1128/CVI.00133-15.
  • Guevara A, Cabello R, Woelber L, et al. Antibody persistence and evidence of immune memory at 5years following administration of the 9-valent HPV vaccine. Vaccine. 2017;35(37):5050–5057. ‐doi:10.1016/j.vaccine.2017.07.017.
  • Pattyn J, Van Keer S, Tjalma W, et al. Infection and vaccine-induced HPV-specific antibodies in cervicovaginal secretions. A review of the literature. Papillomavirus Res. 2019;8:100185doi:10.1016/j.pvr.2019.100185.
  • Noronha AS, Markowitz LE, Dunne EF. Systematic review of human papillomavirus vaccine coadministration. Vaccine. 2014;32(23):2670–2674. doi:10.1016/j.vaccine.2013.12.037.
  • Dauner JG, Pan Y, Hildesheim A, et al. Characterization of the HPV-specific memory B cell and systemic antibody responses in women receiving an unadjuvanted HPV16 L1 VLP vaccine. Vaccine. 2010;28(33):5407–5413. doi:10.1016/j.vaccine.2010.06.018.
  • Nicoli F, Mantelli B, Gallerani E, et al. HPV-specific systemic antibody responses and memory B cells are independently maintained up to 6 years and in a vaccine-specific manner following immunization with Cervarix and Gardasil in adolescent and young adult women in vaccination programs in Italy. Vaccines (Basel). 2020;8(1):26. doi:10.3390/vaccines8010026.
  • Giannini SL, Hanon E, Moris P, et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine. 2006;24(33-34):5937–5949. doi:10.1016/j.vaccine.2006.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.