220
Views
1
CrossRef citations to date
0
Altmetric
Review

Chemokines as the critical factors during bladder cancer progression: an overview

, , , , & ORCID Icon
Pages 344-358 | Received 10 Oct 2020, Accepted 11 Jan 2021, Published online: 16 Feb 2021

References

  • Masson-Lecomte A, Rava M, Real FX, Hartmann A, Allory Y, Malats N. Inflammatory biomarkers and bladder cancer prognosis: a systematic review. Eur Urol. 2014;66(6):1078–1091. doi:10.1016/j.eururo.2014.07.033.
  • DeGeorge KC, Holt HR, Hodges S. Bladder cancer: diagnosis and treatment. Am Fam Physician. 2017;96(8):507–514.
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492.
  • Lombard AP, Mudryj M-r. The emerging role of the androgen receptor in bladder cancer. Endocr Relat Cancer. 2015;22(5):R265–R77. doi:10.1530/ERC-15-0209.
  • Taylor JA, Kuchel G. Bladder cancer in the elderly: clinical outcomes, basic mechanisms, and future research direction. Nat Clin Pract Urol. 2009;6(3):135–144. doi:10.1038/ncpuro1315.
  • Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, Zoumpourlis VJTl. Environmental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett. 2010;193(2):131–137. doi:10.1016/j.toxlet.2009.12.018.
  • Mojarrad M, Moghbeli MJMG, Medicine G. Genetic and molecular biology of bladder cancer among Iranian patients. 2020;8(6):e1233.
  • Silverman D, Devesa S, Moore L, Rothman NJBC. Cancer epidemiology and prevention. Bladder Cancer. 2006;2:1156–1179.
  • Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CCJJ. Association between smoking and risk of bladder cancer among men and women. JAMA. 2011;306(7):737–745. doi:10.1001/jama.2011.1142.
  • Ferrís J, Berbel O, Alonso-López J, Garcia J, Ortega J. Environmental non-occupational risk factors associated with bladder cancer. Actas Urol Esp. 2013;37(9):579–586. doi:10.1016/j.acuroe.2013.02.008.
  • Kaufman DS, Shipley WU, Feldman A. Bladder cancer. Lancet. 2009;374(9685):239–249. doi:10.1016/S0140-6736(09)60491-8.
  • Sanli O, Dobruch J, Knowles MA, et al. Bladder cancer. Nature reviews Disease primers. 2017;3(1):1–19.
  • Balkwill F, Mantovani AJTl. Inflammation and cancer: back to Virchow?Lancet. 2001;357(9255):539–545. doi:10.1016/S0140-6736(00)04046-0.
  • Teng MW, Galon J, Fridman W-H, Smyth M. From mice to humans: developments in cancer immunoediting. J Clin Invest. 2015;125(9):3338–3346. doi:10.1172/JCI80004.
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber R. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–998. doi:10.1038/ni1102-991.
  • Pandya PH, Murray ME, Pollok KE, Renbarger J. The immune system in cancer pathogenesis: potential therapeutic approaches. J Immunol Res. 2016;2016:1–13. doi:10.1155/2016/4273943.
  • Joseph M, Enting D. Immune responses in bladder cancer-role of immune cell populations, prognostic factors and therapeutic implications. Front Oncol. 2019;9:1270. doi:10.3389/fonc.2019.01270.
  • Sallusto F, Baggiolini MJNi. Chemokines and leukocyte traffic. Nat Immunol. 2008;9(9):949–952. doi:10.1038/ni.f.214.
  • Miller MC, Mayo K. Chemokines from a structural perspective. Int J Mol Sci. 2017;18(10):2088. doi:10.3390/ijms18102088.
  • Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MPJC. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005;16(6):593–609. doi:10.1016/j.cytogfr.2005.04.007.
  • Youn BS, Mantel C, Broxmeyer HE. Chemokines, chemokine receptors and hematopoiesis. Immunol Rev. 2000;177(1):150–174. doi:10.1034/j.1600-065x.2000.17701.x.
  • Mackay C. Chemokines: immunology’s high impact factors. Nat Immunol. 2001;2(2):95–101. doi:10.1038/84298.
  • Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol. 2002;42(1):469–499. doi:10.1146/annurev.pharmtox.42.091901.115838.
  • Griffith JW, Sokol CL, Luster A. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702. doi:10.1146/annurev-immunol-032713-120145.
  • Jacquelot N, Duong CP, Belz GT, Zitvogel L. Targeting chemokines and chemokine receptors in melanoma and other cancers. Front Immunol. 2018;9:2480. doi:10.3389/fimmu.2018.02480.
  • Zlotnik A, Yoshie OJI. The chemokine superfamily revisited. Immunity. 2012;36(5):705–716. doi:10.1016/j.immuni.2012.05.008.
  • Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011;11(9):597–606. doi:10.1038/nri3049.
  • Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JMJC. Chemokines in homeostasis and diseases. Cell Mol Immunol. 2018;15(4):324–334. doi:10.1038/cmi.2017.134.
  • Graham G. D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory processes. Eur J Immunol. 2009;39(2):342–351. doi:10.1002/eji.200838858.
  • Zlotnik A, Yoshie O, Nomiyama HJGb. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 2006;7(12):243. doi:10.1186/gb-2006-7-12-243.
  • Roos RS, Loetscher M, Legler DF, Clark-Lewis I, Baggiolini M, Moser B. Identification of CCR8, the receptor for the human CC chemokine I-309. J Biol Chem. 1997;272(28):17251–17254. doi:10.1074/jbc.272.28.17251.
  • Svensson M, Agace W. Role of CCL25/CCR9 in immune homeostasis and disease. Expert Rev Clin Immunol. 2006;2(5):759–773. doi:10.1586/1744666X.2.5.759.
  • Homey B, Alenius H, Müller A, et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med. 2002;8(2):157–165. doi:10.1038/nm0202-157.
  • Ruiz EJ, Oeztuerk-Winder F, Ventura J-J. A paracrine network regulates the cross-talk between human lung stem cells and the stroma. Nat Commun. 2014;5:3175. doi:10.1038/ncomms4175.
  • Pease J. Targeting chemokine receptors in allergic disease. Biochem J. 2011;434(1):11–24. doi:10.1042/BJ20101132.
  • Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–550. doi:10.1038/nrc1388.
  • Charo IF, Ransohoff R. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–621. doi:10.1056/NEJMra052723.
  • Chen J, Yao Y, Gong C, et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011;19(4):541–555. doi:10.1016/j.ccr.2011.02.006.
  • Song JK, Park MH, Choi D-Y, et al. Deficiency of CC chemokine receptor 5 suppresses tumor development via inactivation of NF-κB and upregulation of IL-1Ra in melanoma model. 2012;7(5):e33747.
  • Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–56. doi:10.1038/35065016.
  • Bielenberg DR, Zetter B. The contribution of angiogenesis to the process of metastasis. Cancer J. 2015;21(4):267–273. doi:10.1097/PPO.0000000000000138.
  • Evans AJ, Russell RC, Roche O, et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 2007;27(1):157–169. doi:10.1128/MCB.00892-06.
  • Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J Leukoc Biol. 2000;68(1):1–8.
  • Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. 2016;4(14).
  • Pettenati C, Ingersoll M. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol. 2018;15(10):615–625. doi:10.1038/s41585-018-0055-4.
  • Chaudhuri D, Suriano R, Mittelman A, Tiwari R. Targeting the immune system in cancer. Curr Pharm Biotechnol. 2009;10(2):166–184. doi:10.2174/138920109787315114.
  • Lauring J, Abukhdeir AM, Konishi H, et al. The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood. 2008;111(2):856–864. doi:10.1182/blood-2007-05-088674.
  • Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. 2019;10:379. doi:10.3389/fimmu.2019.00379.
  • Kim S-J, Shin J-Y, Lee K-D, et al. MicroRNA let-7a suppresses breast cancer cell migration and invasion through downregulation of C-C chemokine receptor type 7. Breast Cancer Res. 2012;14(1):R14. doi:10.1186/bcr3098.
  • Nakashima M, Matsui Y, Kobayashi T, et al. Urine CXCL1 as a biomarker for tumor detection and outcome prediction in bladder cancer. Cancer Biomark. 2015;15(4):357–364. doi:10.3233/CBM-150472.
  • Shuyi Y, Juping D, Zhiqun Z, et al. A critical role of CCR7 in invasiveness and metastasis of SW620 colon cancer cell in vitro and in vivo. Cancer Biol Ther. 2008;7(7):1037–1043. doi:10.4161/cbt.7.7.6065.
  • Sharma B, Nawandar DM, Nannuru KC, Varney ML, Singh R. Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol Cancer Ther. 2013;12(5):799–808. doi:10.1158/1535-7163.MCT-12-0529.
  • Cho B-S, Zeng Z, Mu H, et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood. 2015;126(2):222–232. doi:10.1182/blood-2015-02-628677.
  • Miyake M, Hori S, Morizawa Y, et al. CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia. 2016;18(10):636–646. doi:10.1016/j.neo.2016.08.002.
  • Zhu Z, Shen Z, Xu C. Inflammatory pathways as promising targets to increase chemotherapy response in bladder cancer. Mediators Inflamm. 2012;2012:528690. doi:10.1155/2012/528690.
  • Zheng J, Zhu X, Zhang J. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration. Biochem Biophys Res Commun. 2014;446(1):18–24. doi:10.1016/j.bbrc.2014.01.172.
  • Wang C, Li A, Yang S, Qiao R, Zhu X, Zhang J. CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-κB pathway. Biochem Biophys Res Commun. 2018;498(4):862–868. doi:10.1016/j.bbrc.2018.03.071.
  • Gao Y, Guan Z, Chen J, et al. CXCL5/CXCR2 axis promotes bladder cancer cell migration and invasion by activating PI3K/AKT-induced upregulation of MMP2/MMP9. Int J Oncol. 2015;47(2):690–700. doi:10.3892/ijo.2015.3041.
  • Zhu X, Qiao Y, Liu W, et al. CXCL5 is a potential diagnostic and prognostic marker for bladder cancer patients. Tumor Biol. 2016;37(4):4569–4577. doi:10.1007/s13277-015-4275-4.
  • Chen L, Pan XW, Huang H, et al. Epithelial-mesenchymal transition induced by GRO-α-CXCR2 promotes bladder cancer recurrence after intravesical chemotherapy. Oncotarget. 2017;8(28):45274–45285. doi:10.18632/oncotarget.16786.
  • Zhang H, Ye YL, Li MX, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017;36(15):2095–2104. doi:10.1038/onc.2016.367.
  • Sheryka E, Wheeler MA, Hausladen DA, Weiss RM. Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology. 2003;62(1):162–166. doi:10.1016/s0090-4295(03)00134-1.
  • Ahirwar DK, Mandhani A, Mittal RD. IL-8 -251 T > A polymorphism is associated with bladder cancer susceptibility and outcome after BCG immunotherapy in a northern Indian cohort. Arch Med Res. 2010;41(2):97–103. doi:10.1016/j.arcmed.2010.03.005.
  • Feng C, Guan M, Ding Q, et al. Expression of pigment epithelium-derived factor in bladder tumour is correlated with interleukin-8 yet not with interleukin-1α. J Huazhong Univ Sci Technol Med Sci. 2011;31(1):21–25. doi:10.1007/s11596-011-0144-6.
  • Urquidi V, Chang M, Dai Y, et al. IL-8 as a urinary biomarker for the detection of bladder cancer. BMC Urol. 2012;12:12. doi:10.1186/1471-2490-12-12.
  • Chiu HY, Sun KH, Chen SY, et al. Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine. 2012;59(2):423–432. doi:10.1016/j.cyto.2012.04.017.
  • Rao Q, Chen Y, Yeh CR, et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals. Oncotarget. 2016;7(7):7842–7855. doi:10.18632/oncotarget.5467.
  • Singh V, Srivastava P, Srivastava N, Kapoor R, Mittal RD. Association of inflammatory chemokine gene CCL2I/D with bladder cancer risk in North Indian population. Mol Biol Rep. 2012;39(10):9827–9834. doi:10.1007/s11033-012-1849-8.
  • Narter KF, Agachan B, Sozen S, Cincin ZB, Isbir T. CCR2-64I is a risk factor for development of bladder cancer. Genet Mol Res. 2010;9(2):685–692. doi:10.4238/vol9-2gmr829.
  • Wang W, Shen F, Wang C, et al. MiR-1-3p inhibits the proliferation and invasion of bladder cancer cells by suppressing CCL2 expression. Tumour Biol. 2017;39(6):101042831769838. doi:10.1177/1010428317698383.
  • Zhao H, Bo Q, Wang W, et al. CCL17-CCR4 axis promotes metastasis via ERK/MMP13 pathway in bladder cancer. J Cell Biochem. 2019;120(2):1979–1989. doi:10.1002/jcb.27494.
  • Miyake M, Lawton A, Goodison S, et al. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer. 2013;13(1):322. doi:10.1186/1471-2407-13-322.
  • Burnier A, Shimizu Y, Dai Y, et al. CXCL1 is elevated in the urine of bladder cancer patients. Springerplus. 2015;4:610. doi:10.1186/s40064-015-1393-9.
  • Miyake M, Ross S, Lawton A, et al. Investigation of CCL18 and A1AT as potential urinary biomarkers for bladder cancer detection. BMC Urol. 2013;13(1):42. doi:10.1186/1471-2490-13-42.
  • Liu X, Xu X, Deng W, et al. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells. Mol Med Rep. 2019;19(3):1678–1686. doi:10.3892/mmr.2018.9791.
  • Urquidi V, Kim J, Chang M, Dai Y, Rosser CJ, Goodison S. CCL18 in a multiplex urine-based assay for the detection of bladder cancer. PLoS One. 2012;7(5):e37797. doi:10.1371/journal.pone.0037797.
  • Cao Q, Wang N, Qi J, Gu Z, Shen H. Long non‑coding RNA‑GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C‑C motif) ligand 1 expression. Mol Med Rep. 2016;13(1):27–34. doi:10.3892/mmr.2015.4503.
  • Xiong Y, Huang F, Li X, et al. CCL21/CCR7 interaction promotes cellular migration and invasion via modulation of the MEK/ERK1/2 signaling pathway and correlates with lymphatic metastatic spread and poor prognosis in urinary bladder cancer. Int J Oncol. 2017;51(1):75–90. doi:10.3892/ijo.2017.4003.
  • Mo M, Zhou M, Wang L, et al. CCL21/CCR7 enhances the proliferation, migration, and invasion of human bladder cancer T24 cells. PLoS One. 2015;10(3):e0119506. doi:10.1371/journal.pone.0119506.
  • Wang H, Yang D, Wang K, Wang J. Expression and potential role of chemokine receptor CXCR4 in human bladder carcinoma cell lines with different metastatic ability. Mol Med Rep. 2011;4(3):525–528. doi:10.3892/mmr.2011.440.
  • Gosalbez M, Hupe MC, Lokeshwar SD, et al. Differential expression of SDF-1 isoforms in bladder cancer. J Urol. 2014;191(6):1899–1905. doi:10.1016/j.juro.2013.11.053.
  • Retz MM, Sidhu SS, Blaveri E, et al. CXCR4 expression reflects tumor progression and regulates motility of bladder cancer cells. Int J Cancer. 2005;114(2):182–189. doi:10.1002/ijc.20729.
  • Singh V, Jaiswal PK, Kapoor R, Kapoor R, Mittal RD. Impact of chemokines CCR532, CXCL12G801A, and CXCR2C1208T on bladder cancer susceptibility in north Indian population. Tumor Biol. 2014;35(5):4765–4772. doi:10.1007/s13277-014-1624-7.
  • Zhang T, Yang F, Li W, et al. Suppression of the SDF‑1/CXCR4/β‑catenin axis contributes to bladder cancer cell growth inhibition in vitro and in vivo. Oncol Rep. 2018;40(3):1666–1674. doi:10.3892/or.2018.6546.
  • Hao M, Zheng J, Hou K, et al. Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem Pharmacol. 2012;84(2):204–214. doi:10.1016/j.bcp.2012.04.007.
  • Shen HB, Gu ZQ, Jian K, Qi J. CXCR4-mediated Stat3 activation is essential for CXCL12-induced cell invasion in bladder cancer. Tumour Biol. 2013;34(3):1839–1845. doi:10.1007/s13277-013-0725-z.
  • Yates TJ, Knapp J, Gosalbez M, et al. C-X-C chemokine receptor 7: a functionally associated molecular marker for bladder cancer. Cancer. 2013;119(1):61–71. doi:10.1002/cncr.27661.
  • Gao D, Hu H, Wang Y, et al. CMTM8 inhibits the carcinogenesis and progression of bladder cancer. Oncol Rep. 2015;34(6):2853–2863. doi:10.3892/or.2015.4310.
  • Zhang S, Pei X, Hu H, et al. Functional characterization of the tumor suppressor CMTM8 and its association with prognosis in bladder cancer. Tumour Biol. 2016;37(5):6217–6225. doi:10.1007/s13277-015-4508-6.
  • Lee JT, Lee SD, Lee JZ, Chung MK, Ha HK. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer. Oncol Lett. 2013;5(1):229–235. doi:10.3892/ol.2012.976.
  • Koch AE, Kunkel SL, Harlow LA, et al. Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis. J Clin Invest. 1994;94(3):1012–1018. doi:10.1172/JCI117414.
  • Qiu Y, Zhu J, Bandi V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(8):968–975. doi:10.1164/rccm.200208-794OC.
  • Walz A, Burgener R, Car B, Baggiolini M, Kunkel SL, Strieter RM. Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8. J Exp Med. 1991;174(6):1355–1362. doi:10.1084/jem.174.6.1355.
  • Persson T, Monsef N, Andersson P, et al. Expression of the neutrophil-activating CXC chemokine ENA-78/CXCL5 by human eosinophils. Clin Exp Allergy. 2003;33(4):531–537. doi:10.1046/j.1365-2222.2003.01609.x.
  • Lee PY, Kumagai Y, Xu Y, et al. IL-1α modulates neutrophil recruitment in chronic inflammation induced by hydrocarbon oil. J Immunol. 2011;186(3):1747–1754. doi:10.4049/jimmunol.1001328.
  • Liu S, Kumar SM, Lu H, et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma. J Pathol. 2012;226(1):61–72. doi:10.1002/path.2964.
  • Kanayama H. Matrix metalloproteinases and bladder cancer. J Med Invest. 2001;48(1-2):31–43.
  • Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13(8):781–792. doi:10.1096/fasebj.13.8.781.
  • Cheng JC, Chou CH, Kuo ML, Hsieh CY. Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene. 2006;25(53):7009–7018. doi:10.1038/sj.onc.1209706.
  • Sen M, Reifert J, Lauterbach K, et al. Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum. 2002;46(11):2867–2877. doi:10.1002/art.10593.
  • Jacobs JP, Ortiz-Lopez A, Campbell JJ, Gerard CJ, Mathis D, Benoist C. Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model. Arthritis Rheum. 2010;62(7):1921–1932. doi:10.1002/art.27470.
  • Hertzer KM, Donald GW, Hines OJ. CXCR2: a target for pancreatic cancer treatment?Expert Opin Ther Targets. 2013;17(6):667–680. doi:10.1517/14728222.2013.772137.
  • Jaffer T, Ma D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl Cancer Res. 2016;5(S4):S616–S28. doi:10.21037/tcr.2016.10.06.
  • Moghbeli M, Forghanifard MM, Sadrizadeh A, Mozaffari HM, Golmakani E, Abbaszadegan MR. Role of Msi1 and MAML1 in regulation of notch signaling pathway in patients with esophageal squamous cell carcinoma. J Gastrointest Cancer. 2015;46(4):365–369. doi:10.1007/s12029-015-9753-9.
  • Moghbeli M, Rad A, Farshchian M, Taghehchian N, Gholamin M, Abbaszadegan MR. Correlation between Meis1 and Msi1 in esophageal squamous cell carcinoma. J Gastrointest Cancer. 2016;47(3):273–277. doi:10.1007/s12029-016-9824-6.
  • Wang B, Hendricks DT, Wamunyokoli F, Parker MI. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res. 2006;66(6):3071–3077. doi:10.1158/0008-5472.CAN-05-2871.
  • Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A. Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci USA. 1989;86(2):612–616. doi:10.1073/pnas.86.2.612.
  • Jablonska J, Wu CF, Andzinski L, Leschner S, Weiss S. CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer. 2014;134(6):1346–1358. doi:10.1002/ijc.28551.
  • Crew JP, O’Brien T, Bicknell R, Fuggle S, Cranston D, Harris AL. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. J Urol. 1999;161(3):799–804. doi:10.1016/S0022-5347(01)61772-5.
  • O’Brien TS, Smith K, Cranston D, Fuggle S, Bicknell R, Harris AL. Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol. 1995;76(3):311–314. doi:10.1111/j.1464-410X.1995.tb07706.x.
  • Wheeler MA, Hausladen DA, Yoon JH, Weiss RM. Prostaglandin E2 production and cyclooxygenase-2 induction in human urinary tract infections and bladder cancer. J Urol. 2002;168(4 Pt 1):1568–1573. doi:10.1097/01.ju.0000030583.31299.80.
  • Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992;258(5089):1798–1801. doi:10.1126/science.1281554.
  • Mukaida N. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol. 2000;72(4):391–398.
  • Matsushima K, Baldwin ET, Mukaida N. Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines. Chem Immunol. 1992;51:236–265.
  • Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005;7(2):122–133. doi:10.1215/s1152851704001061.
  • Long X, Ye Y, Zhang L, et al. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (review). Int J Oncol. 2016;48(1):5–12. doi:10.3892/ijo.2015.3234.
  • Amann B, Perabo FG, Wirger A, Hugenschmidt H, Schultze-Seemann W. Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br J Urol. 1998;82(1):118–121. doi:10.1046/j.1464-410x.1998.00675.x.
  • Lamm DL. Long-term results of intravesical therapy for superficial bladder cancer. Urol Clin North Am. 1992;19(3):573–580.
  • Sumitomo M, Tachibana M, Ozu C, et al. Induction of apoptosis of cytokine-producing bladder cancer cells by adenovirus-mediated IkappaBalpha overexpression. Hum Gene Ther. 1999;10(1):37–47. doi:10.1089/10430349950019174.
  • Ma J, Sawai H, Matsuo Y, et al. Interleukin-1alpha enhances angiogenesis and is associated with liver metastatic potential in human gastric cancer cell lines. J Surg Res. 2008;148(2):197–204. doi:10.1016/j.jss.2007.08.014.
  • Tachibana M, Miyakawa A, Nakashima J, et al. Constitutive production of multiple cytokines and a human chorionic gonadotrophin beta-subunit by a human bladder cancer cell line (KU-19-19): possible demonstration of totipotential differentiation. Br J Cancer. 1997;76(2):163–174. doi:10.1038/bjc.1997.358.
  • Guan M, Jiang H, Xu C, Xu R, Chen Z, Lu Y. Adenovirus-mediated PEDF expression inhibits prostate cancer cell growth and results in augmented expression of PAI-2. Cancer Biol Ther. 2007;6(3):419–425. doi:10.4161/cbt.6.3.3757.
  • Cai J, Jiang WG, Grant MB, Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem. 2006;281(6):3604–3613. doi:10.1074/jbc.M507401200.
  • Guan M, Pang CP, Yam HF, Cheung KF, Liu WW, Lu Y. Inhibition of glioma invasion by overexpression of pigment epithelium-derived factor. Cancer Gene Ther. 2004;11(5):325–332. doi:10.1038/sj.cgt.7700675.
  • Hutchings H, Maitre-Boube M, Tombran-Tink J, Plouet J. Pigment epithelium-derived factor exerts opposite effects on endothelial cells of different phenotypes. Biochem Biophys Res Commun. 2002;294(4):764–769. doi:10.1016/s0006-291x(02)00548-x.
  • Reis ST, Leite KRM, Piovesan LF, et al. Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of Bladder Cancer. BMC Urol. 2012;12(1):18. doi:10.1186/1471-2490-12-18.
  • Qu K, Gu J, Ye Y, et al. High baseline levels of interleukin-8 in leukocytes and urine predict tumor recurrence in non-muscle invasive bladder cancer patients receiving bacillus Calmette-Guerin therapy: a long-term survival analysis. Oncoimmunology. 2017;6(2):e1265719. doi:10.1080/2162402X.2016.1265719.
  • Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–326. doi:10.1089/jir.2008.0027.
  • Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16(3):133–144. doi:10.1016/j.molmed.2010.01.003.
  • Selam B, Kayisli UA, Akbas GE, Basar M, Arici A. Regulation of FAS ligand expression by chemokine ligand 2 in human endometrial cells. Biol Reprod. 2006;75(2):203–209. doi:10.1095/biolreprod.105.045716.
  • Luo Y, Chen X, O’Donnell MA. Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces human CC- and CXC-chemokines in vitro and in vivo. Clin Exp Immunol. 2007;147(2):370–378. doi:10.1111/j.1365-2249.2006.03288.x.
  • Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19(4):833–842. doi:10.1210/me.2004-0486.
  • Xie M, Dart DA, Owen S, Wen X, Ji J, Jiang W. Insights into roles of the miR-1, -133 and -206 family in gastric cancer (review). Oncol Rep. 2016;36(3):1191–1198. doi:10.3892/or.2016.4908.
  • Zhang M, Zhuang Q, Cui L. MiR-194 inhibits cell proliferation and invasion via repression of RAP2B in bladder cancer. Biomed Pharmacother. 2016;80:268–275. doi:10.1016/j.biopha.2016.03.026.
  • Hojo S, Koizumi K, Tsuneyama K, et al. High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res. 2007;67(10):4725–4731. doi:10.1158/0008-5472.CAN-06-3424.
  • De Filippo K, Dudeck A, Hasenberg M, et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013;121(24):4930–4937. doi:10.1182/blood-2013-02-486217.
  • Omari KM, Lutz SE, Santambrogio L, Lira SA, Raine CS. Neuroprotection and remyelination after autoimmune demyelination in mice that inducibly overexpress CXCL1. Am J Pathol. 2009;174(1):164–176. doi:10.2353/ajpath.2009.080350.
  • Ridiandries A, Tan JTM, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19(10):3217. doi:10.3390/ijms19103217.
  • Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol. 2002;72(1):9–18.
  • Alafate W, Li X, Zuo J, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26(4):475–485. doi:10.1111/cns.13297.
  • Mishra P, Banerjee D, Ben-Baruch A. Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol. 2011;89(1):31–39. doi:10.1189/jlb.0310182.
  • Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 2010;15:166–179. doi:10.2741/3613.
  • Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. doi:10.1016/j.immuni.2014.06.010.
  • West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476–480. doi:10.1038/nature09973.
  • Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104(8):2224–2234. doi:10.1182/blood-2004-03-1109.
  • Sierra-Filardi E, Nieto C, Domínguez-Soto A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol. 2014;192(8):3858–3867. doi:10.4049/jimmunol.1302821.
  • Halama N, Zoernig I, Berthel A, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell. 2016;29(4):587–601. doi:10.1016/j.ccell.2016.03.005.
  • Fridlender ZG, Kapoor V, Buchlis G, et al. Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am J Respir Cell Mol Biol. 2011;44(2):230–237. doi:10.1165/rcmb.2010-0080OC.
  • Chenivesse C, Tsicopoulos A. CCL18 - Beyond chemotaxis. Cytokine. 2018;109:52–56. doi:10.1016/j.cyto.2018.01.023.
  • Schutyser E, Richmond A, Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol. 2005;78(1):14–26. doi:10.1189/jlb.1204712.
  • Schraufstatter IU, Zhao M, Khaldoyanidi SK, Discipio RG. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. Immunology. 2012;135(4):287–298. doi:10.1111/j.1365-2567.2011.03541.x.
  • D’Ambrosio D, Iellem A, Bonecchi R, et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol. 1998;161(10):5111–5115.
  • Villarreal DO, L’Huillier A, Armington S, et al. Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res. 2018;78(18):5340–5348. doi:10.1158/0008-5472.Can-18-1119.
  • Fox JM, Najarro P, Smith GL, Struyf S, Proost P, Pease JE. Structure/function relationships of CCR8 agonists and antagonists. Amino-terminal extension of CCL1 by a single amino acid generates a partial agonist. J Biol Chem. 2006;281(48):36652–36661. doi:10.1074/jbc.M605584200.
  • Ma C, Shi X, Zhu Q, et al. The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers. Tumour Biol. 2016;37(2):1437–1444. doi:10.1007/s13277-015-4521-9.
  • Yu X, Li Z. Long non-coding RNA growth arrest-specific transcript 5 in tumor biology. Oncol Lett. 2015;10(4):1953–1958. doi:10.3892/ol.2015.3553.
  • Liu Z, Wang W, Jiang J, et al. Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One. 2013;8(9):e73991. doi:10.1371/journal.pone.0073991.
  • Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8. doi:10.1126/scisignal.2000568.
  • Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–371. doi:10.1038/nri2297.
  • Lin Y, Sharma S, John MS. CCL21 cancer immunotherapy. Cancers (Basel). 2014;6(2):1098–1110. doi:10.3390/cancers6021098.
  • Sancho M, Vieira JM, Casalou C, et al. Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol. 2006;191(1):229–238. doi:10.1677/joe.1.06688.
  • Saban DR. The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul Surf. 2014;12(2):87–99. doi:10.1016/j.jtos.2013.10.007.
  • Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?Clin Cancer Res. 2011;17(8):2074–2080. doi:10.1158/1078-0432.CCR-10-2636.
  • Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008;267(2):226–244. doi:10.1016/j.canlet.2008.04.050.
  • Jo DY, Rafii S, Hamada T, Moore MA. Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest. 2000;105(1):101–111. doi:10.1172/JCI7954.
  • Tripathi V, Verma R, Dinda A, Malhotra N, Kaur J, Luthra K. Differential expression of RDC1/CXCR7 in the human placenta. J Clin Immunol. 2009;29(3):379–386. doi:10.1007/s10875-008-9258-4.
  • Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA. 2007;104(40):15735–15740. doi:10.1073/pnas.0610444104.
  • Raggo C, Ruhl R, McAllister S, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Cancer Res. 2005;65(12):5084–5095. doi:10.1158/0008-5472.CAN-04-2822.
  • Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–276. doi:10.1016/j.biopha.2006.06.004.
  • Both J, Krijgsman O, Bras J, et al. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosa­rcoma. PLoS One. 2014;9(12):e115835. doi:10.1371/journal.pone.0115835.
  • Zhang W, Mendoza MC, Pei X, et al. Down-regulation of CMTM8 induces epithelial-to-mesenchymal transition-like changes via c-MET/extracellular signal-regulated kinase (ERK) signaling. J Biol Chem. 2012;287(15):11850–11858. doi:10.1074/jbc.M111.258236.
  • Ashhurst AS, Flórido M, Lin LCW, et al. CXCR6-deficiency improves the control of pulmonary Mycobacterium tuberculosis and influenza infection independent of T-lymphocyte recruitment to the lungs. Front Immunol. 2019;10:339. doi:10.3389/fimmu.2019.00339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.