438
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression

, , &
Pages 101-112 | Received 11 Nov 2020, Accepted 10 May 2021, Published online: 20 Sep 2021

References

  • Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. J Mol Biol. 2020;432(12):3639–3660. doi:10.1016/j.jmb.2020.01.019.
  • Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet. 2018;14(1):e1007156. doi:10.1371/journal.pgen.1007156.
  • Tongyu L, Wei S, Shuyan L, et al. H. pylori infection induced BMAL1 expression and rhythm disorder aggravate gastric inflammation. EBioMedicine. 2019; 39:301–314. doi:10.1016/j.ebiom.2018.11.043.
  • Geiger SS, Curtis AM, O’Neill LAJ, Siegel RM. Daily variation in macrophage phagocytosis is clock-independent and dispensable for cytokine production. Immunology. 2019;157(2):122–136. doi:10.1111/imm.13053.
  • Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LA. Circadian clock proteins and immunity. Immunity. 2014;40(2):178–186. doi:10.1016/j.immuni.2014.02.002.
  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–1066. doi:10.1016/j.cell.2020.02.041.
  • Curtis AM, Fagundes CT, Yang G, et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci USA. 2015;112(23):7231–7236. doi:10.1073/pnas.1501327112.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–384. doi:10.1038/ni.1863.
  • Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol. 2020;64:61–82. doi:10.1016/j.semcancer.2019.05.002.
  • Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009;10(3):199–210. doi:10.1038/nrn2576.
  • Cavadini G, Petrzilka S, Kohler P, et al. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci USA. 2007;104(31):12843–12848. doi:10.1073/pnas.0701466104.
  • Silver AC. Pathogen-associated molecular patterns alter molecular clock gene expression in mouse splenocytes. PLoS One. 2017;12(12):e0189949. doi:10.1371/journal.pone.0189949.
  • Rosensweig C, Green CB. Periodicity, repression, and the molecular architecture of the mammalian circadian clock. Eur J Neurosci. 2020;51(1):139–165. doi:10.1111/ejn.14254.
  • Sanchez JA, Madrid JA, Sanchez-Vazquez FJ. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax). Chronobiol Int. 2010;27(1):19–33. doi:10.3109/07420520903398633.
  • Verlande A, Masri S. Circadian clocks and cancer: timekeeping governs cellular metabolism. Trends Endocrinol Metab. 2019;30(7):445–458. doi:10.1016/j.tem.2019.05.001.
  • Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564–1569. doi:10.1126/science.280.5369.1564.
  • Huang N, Chelliah Y, Shan Y, et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science. 2012;337(6091):189–194. doi:10.1126/science.1222804.
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–179. doi:10.1038/nrg.2016.150.
  • Crumbley C, Burris TP. Direct regulation of CLOCK expression by REV-ERB. PLoS One. 2011;6(3):e17290. doi:10.1371/journal.pone.0017290.
  • Zhang Y, Fang B, Emmett MJ, et al. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science. 2015;348(6242):1488–1492. doi:10.1126/science.aab3021.
  • Sato TK, Panda S, Miraglia LJ, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43(4):527–537. doi:10.1016/j.neuron.2004.07.018.
  • Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251–260. doi:10.1016/S0092-8674(02)00825-5.
  • Lee J, Lee S, Chung S, et al. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem Biophys Res Commun. 2016;469(3):580–586. doi:10.1016/j.bbrc.2015.12.030.
  • Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013;153(4):812–827. doi:10.1016/j.cell.2013.04.020.
  • Shostak A. Circadian clock, cell division, and cancer: from molecules to organism. Int J Mol Sci. 2017;18(4):873. doi:10.3390/ijms18040873.
  • Aguilar-Arnal L, Sassone-Corsi P. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol. 2013;25(2):170–176. doi:10.1016/j.ceb.2013.01.003.
  • Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–462. doi:10.1146/annurev-neuro-060909-153128.
  • Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci. 2009;34(10):483–490. doi:10.1016/j.tibs.2009.06.006.
  • Wang J, Zhang Z, Liu J, Zhao J, Yin D. Ectodomain architecture affects sequence and functional evolution of vertebrate toll-like receptors. Sci Rep. 2016;6:26705. doi:10.1038/srep26705.
  • Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014;7(1):a016246. doi:10.1101/cshperspect.a016246.
  • Vidya MK, Kumar VG, Sejian V, Bagath M, Krishnan G, Bhatta R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol. 2018;37(1):20–36. doi:10.1080/08830185.2017.1380200.
  • Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol. 2019;332:16–30. doi:10.1016/j.jneuroim.2019.03.012.
  • Luo L, Lucas RM, Liu L, Stow JL. Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci. 2019;133(5):jcs239194. doi:10.1242/jcs.239194.
  • Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388(4):621–625. doi:10.1016/j.bbrc.2009.08.062.
  • Abdul-Cader MS, Amarasinghe A, Abdul-Careem MF. Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses. Arch Virol. 2016;161(8):2075–2086. doi:10.1007/s00705-016-2904-x.
  • Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014;8:388. doi:10.3389/fncel.2014.00388.
  • Reuven EM, Fink A, Shai Y. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochim Biophys Acta. 2014;1838(6):1586–1593. doi:10.1016/j.bbamem.2014.01.020.
  • Zhang P, Moye LS, Southey BR, et al. Opioid-induced hyperalgesia is associated with dysregulation of circadian rhythm and adaptive immune pathways in the mouse trigeminal ganglia and nucleus accumbens. Mol Neurobiol. 2019;56(12):7929–7949. doi:10.1007/s12035-019-01650-5.
  • McGettrick AF, O’Neill LA. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol. 2010;22(1):20–27. doi:10.1016/j.coi.2009.12.002.
  • Du M, Yuan L, Tan X, et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat Commun. 2017;8(1):2049. doi:10.1038/s41467-017-02229-1.
  • Noh JY, Yoon SR, Kim TD, Choi I, Jung H. Toll-like receptors in natural killer cells and their application for immunotherapy. J Immunol Res. 2020;2020:1–9. doi:10.1155/2020/2045860.
  • Liu S, Cai X, Wu J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):aaa2630. doi:10.1126/science.aaa2630.
  • Tan Y, Kagan JC. Innate immune signaling organelles display natural and programmable signaling flexibility. Cell. 2019;177(2):384–398.e311. doi:10.1016/j.cell.2019.01.039.
  • Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: Shaping the landscape of host immunity. Int Rev Immunol. 2018;37(1):3–19. doi:10.1080/08830185.2017.1397656.
  • Spengler ML, Kuropatwinski KK, Comas M, et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc Natl Acad Sci USA. 2012;109(37):E2457–2465. doi:10.1073/pnas.1206274109.
  • Pan X, Jiang XC, Hussain MM. Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice. Circulation. 2013;128(16):1758–1769. doi:10.1161/CIRCULATIONAHA.113.002885.
  • Zhou LL, Cao XX, Fang J, Li YH, Fan MW. Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines. Int J Clin Exp Pathol. 2015;8(9):10964–10974.
  • Chen S, Fuller KK, Dunlap JC, Loros JJ. A pro- and anti-inflammatory axis modulates the macrophage circadian clock. Front Immunol. 2020;11:867. doi:10.3389/fimmu.2020.00867.
  • Taira G, Onoue T, Hikima JI, Sakai M, Kono T. Circadian clock components Bmal1 and Clock1 regulate tlr9 gene expression in the Japanese medaka (Oryzias latipes). Fish Shellfish Immunol. 2020;105:438–445. doi:10.1016/j.fsi.2020.07.009.
  • Silver AC. The use of mouse splenocytes to assess pathogen-associated molecular pattern influence on clock gene expression. J Vis Exp. 2018;(137):58022. doi:10.3791/58022.
  • Wang Y, Pati P, Xu Y, et al. Endotoxin disrupts circadian rhythms in macrophages via reactive oxygen species. PLoS ONE. 2016;11(5):e0155075. doi:10.1371/journal.pone.0155075.
  • Oishi Y, Hayashi S, Isagawa T, et al. Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci Rep. 2017;7(1):7086. doi:10.1038/s41598-017-07100-3.
  • Glass CK, Natoli G. Molecular control of activation and priming in macrophages. Nat Immunol. 2016;17(1):26–33. doi:10.1038/ni.3306.
  • Xiaohua Y, Maricela H, Patricia G, Judi M, Cp M, Sylvie H-dM. Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts. Human Reproduction. 2015;30(9):2152–2159. doi:10.1093/humrep/dev173.
  • Min Z, Yinyi Y, Li H. Oridonin ameliorates lipopolysaccharide-induced endometritis in mice via inhibition of the TLR-4/NF-κBpathway. Inflammation. 2019;42(1):81–90. doi:10.1007/s10753-018-0874-8.
  • Griffin P, Dimitry JM, Sheehan PW, et al. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc Natl Acad Sci USA. 2019;116(11):5102–5107. doi:10.1073/pnas.1812405116.
  • Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–589. doi:10.1016/j.molcel.2010.05.004.
  • Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015;16(3):144–154. doi:10.1038/nrm3949.
  • Ghisletti S, Barozzi I, Mietton F, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32(3):317–328. doi:10.1016/j.immuni.2010.02.008.
  • Zhao W, Cui L, Huang X, et al. Activation of Rev-erbα attenuates lipopolysaccharide-induced inflammatory reactions in human endometrial stroma cells via suppressing TLR4-regulated NF-κB activation. Acta Biochim Biophys Sin (Shanghai). 2019;51(9):908–914. doi:10.1093/abbs/gmz078.
  • Yang L, Chu Y, Wang L, et al. Overexpression of CRY1 protects against the development of atherosclerosis via the TLR/NF-κB pathway. Int Immunopharmacol. 2015;28(1):525–530. doi:10.1016/j.intimp.2015.07.001.
  • Bellet MM, Deriu E, Liu JZ, et al. Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci USA. 2013;110(24):9897–9902. doi:10.1073/pnas.1120636110.
  • Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA. 2012;109(31):12662–12667. doi:10.1073/pnas.1209965109.
  • Labrecque N, Cermakian N. Circadian clocks in the immune system. J Biol Rhythms. 2015;30(4):277–290. doi:10.1177/0748730415577723.
  • Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA. 2012;109(42):17129–17134. doi:10.1073/pnas.1209148109.
  • Xie MR, Tang QM, Nie JM, et al. BMAL1-downregulation aggravates porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress. Circ Res. 2020;126(6):e15–e29. doi:10.1161/CIRCRESAHA.119.315502.
  • Yang B-Y, Cheng Y-G, Liu Y, et al. Datura Metel L. Ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8-MyD88-NF-B-NLRP3 inflammasome pathway. Molecules. 2019;24(11):2157. doi:10.3390/molecules24112157.
  • Hemmi H, Kaisho T, Takeuchi O, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200. doi:10.1038/ni758.
  • Heib V, Becker M, Warger T, et al. Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice. Blood. 2007;110(3):946–953. doi:10.1182/blood-2006-07-036889.
  • Hornung V, Rothenfusser S, Britsch S, et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168(9):4531–4537. doi:10.4049/jimmunol.168.9.4531.
  • Huang S-W, Chen Y-J, Wang S-T, et al. Azithromycin impairs TLR7 signaling in dendritic cells and improves the severity of imiquimod-induced psoriasis-like skin inflammation in mice. J Dermatol Sci. 2016;84(1):59–70. doi:10.1016/j.jdermsci.2016.07.007.
  • Guiducci C, Ghirelli C, Marloie-Provost M-A, et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med. 2008;205(2):315–322. doi:10.1084/jem.20070763.
  • Weindel CG, Richey LJ, Bolland S, Mehta AJ, Kearney JF, Huber BT. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11(7):1010–1024. doi:10.1080/15548627.2015.1052206.
  • Hou J, Groothuismink ZM, Koning L, et al. Analysis of the transcriptome and immune function of monocytes during IFNα-based therapy in chronic HCV revealed induction of TLR7 responsiveness. Antiviral Res. 2014;109:116–124. doi:10.1016/j.antiviral.2014.06.020.
  • Wohn C, Ober-Blobaum JL, Haak S, et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci USA. 2013;110(26):10723–10728. doi:10.1073/pnas.1307569110.
  • Greenberg EN, Marshall ME, Jin S, et al. Circadian control of interferon-sensitive gene expression in murine skin. Proc Natl Acad Sci USA. 2020;117(11):5761–5771. doi:10.1073/pnas.1915773117.
  • Ando N, Nakamura Y, Aoki R, et al. Circadian gene clock regulates psoriasis-like skin inflammation in mice. J Invest Dermatol. 2015;135(12):3001–3008. doi:10.1038/jid.2015.316.
  • Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. Immunostimulatory activities of CpG-oligodeoxynucleotides in teleosts: toll-like receptors 9 and 21. Front Immunol. 2019;10:179. doi:10.3389/fimmu.2019.00179.
  • Lai S-L, Marin-Juez R, Moura PL, et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the mmune response promotes cardiac regeneration. Elife. 2017;6:e25605. doi:10.7554/eLife.25605.
  • Onoue T, Nishi G, Hikima JI, Sakai M, Kono T. Circadian oscillation of TNF-α gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol. 2019;70:362–371. doi:10.1016/j.intimp.2019.02.004.
  • Takano T, Hwang SD, Kondo H, Hirono I, Aoki T, Sano M. Evidence of molecular toll-like receptor mechanisms in teleosts. Fish Pathol. 2010;45(1):1–16. doi:10.3147/jsfp.45.1.
  • Rauta PR, Samanta M, Dash HR, Nayak B, Das S. Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses. Immunol Lett. 2014;158(1–2):14–24. doi:10.1016/j.imlet.2013.11.013.
  • Chuanjie Q, Jiaxian S, Yang H, et al. Diurnal rhythm and pathogens induced expression of toll-like receptor 9 (TLR9) in Pelteobagrus vachellii. Fish Shellfish Immunol. 2019;87:879–885. doi:10.1016/j.fsi.2019.02.038.
  • A TC, Maayan L, Chronobiomics EE. The biological clock as a new principle in host-microbial interactions. PLoS Pathog. 2015;11(10):e1005113. doi:10.1371/journal.ppat.1005113.
  • Obermann HL, Bauer S. Toll-like receptor 9, what o’clock is it? Immunity. 2012;36(2):159–161. doi:10.1016/j.immuni.2012.02.003.
  • Froy O, Chapnik N. Circadian oscillation of innate immunity components in mouse small intestine. Mol Immunol. 2007;44(8):1954–1960. doi:10.1016/j.molimm.2006.09.026.
  • Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745. doi:10.1038/35047123.
  • Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev. 2007;220:251–269. doi:10.1111/j.1600-065X.2007.00572.x.
  • Clancy RM, Markham AJ, Buyon JP. Endosomal Toll-like receptors in clinically overt and silent autoimmunity. Immunol Rev. 2016;269(1):76–84. doi:10.1111/imr.12383.
  • Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe?Front Cell Infect Microbiol. 2013;3:37. doi:10.3389/fcimb.2013.00037.
  • Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity. 2012;36(2):251–261. doi:10.1016/j.immuni.2011.12.017.
  • Heipertz EL, Harper J, Lopez CA, Fikrig E, Hughes ME, Walker WE. Circadian rhythms influence the severity of sepsis in mice via a TLR2-dependent, leukocyte-intrinsic mechanism. J Immunol. 2018;201(1):193–201. doi:10.4049/jimmunol.1701677.
  • DeKorver NW, Chaudoin TR, Bonasera SJ. Toll-like receptor 2 is a regulator of circadian active and inactive state consolidation in C57BL/6 Mice. Front Aging Neurosci. 2017;9:219. doi:10.3389/fnagi.2017.00219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.