823
Views
2
CrossRef citations to date
0
Altmetric
Reviews

The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 113-138 | Received 14 Jan 2021, Accepted 10 May 2021, Published online: 08 Sep 2021

References

  • Crocker PR, Varki A. Siglecs in the immune system. Immunology. 2001;103(2):137–145. doi:10.1046/j.0019-2805.2001.01241.x.
  • Zaccai NR, Maenaka K, Maenaka T, et al. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure. 2003;11(5):557–567. doi:10.1016/S0969-2126(03)00073-X.
  • Prather RS, Rowland RR, Ewen C, et al. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol. 2013;87(17):9538–9546. doi:10.1128/JVI.00177-13.
  • De Saint Jean A, Lucht F, Bourlet T, Delezay O, QAD Transforming growth factor beta 1 up-regulates CD169 (sia l oadhesin) expression on monocyte-derived dendritic cells: role in HIV sexual transmission. AIDS. 2014;28(16):2375–2380. doi:10.1097/QAD.0000000000000431.
  • Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood. 2001;97(1):288–296. doi:10.1182/blood.v97.1.288.
  • Eakin AJ, Bustard MJ, McGeough CM, Ahmed T, Bjourson AJ, Gibson DS. Siglec-1 and -2 as potential biomarkers in autoimmune disease. Proteomics Clin Appl. 2016;10(6):635–644. doi:10.1002/prca.201500069.
  • Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7(4):255–266. doi:10.1038/nri2056.
  • O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009;30(5):240–248. doi:10.1016/j.tips.2009.02.005.
  • Wohner M, Born S, Nitschke L. Human CD22 cannot fully substitute murine CD22 functions in vivo, as shown in a new knockin mouse model. Eur J Immunol. 2012;42(11):3009–3018. doi:10.1002/eji.201242629.
  • Bornhöfft KF, Goldammer T, Rebl A, Galuska SP. Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev Comp Immunol. 2018;86:219–231. doi:10.1016/j.dci.2018.05.008.
  • Chang YC, Nizet V. The interplay between Siglecs and sialylated pathogens. Glycobiology. 2014;24(9):818–825. doi:10.1093/glycob/cwu067.
  • van den Berg TK, Nath D, Ziltener HJ, et al. Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J Immunol. 2001;166(6):3637–3640. doi:10.4049/jimmunol.166.6.3637.
  • Wu Y, Lan C, Ren D, Chen GY. Induction of Siglec-1 by endotoxin tolerance suppresses the innate immune response by promoting TGF-β1 production. J Biol Chem. 2016;291(23):12370–12382. doi: 10.1074/jbc.M116.721258.
  • Liu Y, Li R, Qiao S, Chen XX, Deng R, Zhang G. Porcine sialoadhesin suppresses type I interferon production to support porcine reproductive and respiratory syndrome virus infection. Vet Res. 2020;51(1):18. doi:10.1186/s13567-020-00743-7.
  • Jans J, Unger WWJ, Vissers M, et al. Siglec-1 inhibits RSV-induced interferon gamma production by adult T cells in contrast to newborn T cells. Eur J Immunol. 2018;48(4):621–631. doi:10.1002/eji.201747161.
  • Rose T, Grutzkau A, Hirseland H, et al. IFNα and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2013;72(10):1639–1645. doi:10.1136/annrheumdis-2012-201586.
  • York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 2007;56(3):1010–1020. doi:10.1002/art.22382.
  • Ferreira RC, Guo H, Coulson RMR, et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 2014;63(7):2538–2550. doi:10.2337/db13-1777.
  • Xiong Y-S, Cheng Y, Lin Q-S, et al. Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology (Oxford). 2014;53(2):250–259. doi:10.1093/rheumatology/ket342.
  • Clancy RM, Halushka M, Rasmussen SE, Lhakhang T, Chang M, Buyon JP. Siglec-1 macrophages and the contribution of IFN to the development of autoimmune congenital heart block. J Immunol. 2019;202(1):48–55. doi:10.4049/jimmunol.1800357.
  • Bao G, Han Z, Yan Z, et al. Increased Siglec-1 expression in monocytes of patients with primary biliary cirrhosis. Immunol Invest. 2010;39(6):645–660. doi:10.3109/08820139.2010.485625.
  • Xiong YS, Yu J, Li C, Zhu L, Wu LJ, Zhong RQ. The role of Siglec-1 and SR-BI interaction in the phagocytosis of oxidized low density lipoprotein by macrophages. PLoS One. 2013;8(3):e58831. doi:10.1371/journal.pone.0058831.
  • Xiong Y-s, Zhou Y-h, Rong G-h, et al. Siglec-1 on monocytes is a potential risk marker for monitoring disease severity in coronary artery disease. Clin Biochem. 2009;42(10–11):1057–1063. doi:10.1016/j.clinbiochem.2009.02.026.
  • Tanno A, Fujino N, Yamada M, et al. Decreased expression of a phagocytic receptor Siglec-1 on alveolar macrophages in chronic obstructive pulmonary disease. Respir Res. 2020;21(1):30. doi:10.1186/s12931-020-1297-2.
  • Kirchberger S, Majdic O, Steinberger P, et al. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J Immunol. 2005;175(2):1145–1152. doi:10.4049/jimmunol.175.2.1145.
  • Puryear WB, Akiyama H, Geer SD, et al. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog. 2013;9(4):e1003291. doi:10.1371/journal.ppat.1003291.
  • Perez-Zsolt D, Erkizia I, Pino M, et al. Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nat Microbiol. 2019;4(9):1558–1570. doi:10.1038/s41564-019-0453-2.
  • Sewald X, Ladinsky MS, Uchil PD, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. 2015;350(6260):563–567. doi:10.1126/science.aab2749.
  • Uchil PD, Pi R, Haugh KA, et al. A protective role for the lectin CD169/Siglec-1 against a pathogenic murine retrovirus. Cell Host Microbe. 2019;25(1):87–100.e10. doi:10.1016/j.chom.2018.11.011.
  • Frederico B, Chao B, Lawler C, May JS, Stevenson PG. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol. 2015;96(8):2314–2327. doi:10.1099/vir.0.000140.
  • Xie J, Christiaens I, Yang B, et al. Preferential use of Siglec-1 or Siglec-10 by type 1 and type 2 PRRSV strains to infect PK15S1–CD163 and PK15S10–CD163 cells. Vet Res. 2018;49(1):49. doi:10.1186/s13567-018-0569-z.
  • Heikema A, Bergman MP, Richards H, et al. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni Lipooligosaccharides. Infect Immun. 2010;78(7):3237–3246. doi:10.1128/IAI.01273-09.
  • Lund SJ, Patras KA, Kimmey JM, et al. Developmental immaturity of siglec receptor expression on neonatal alveolar macrophages predisposes to severe group B streptococcal infection. iScience. 2020;23(6):101207. doi:10.1016/j.isci.2020.101207.
  • Jones C, Virji M, Crocker PR. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol. 2003;49(5):1213–1225. doi:10.1046/j.1365-2958.2003.03634.x.
  • Souriant S, Balboa L, Dupont M, et al. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-dependent tunneling nanotube formation in macrophages. Cell Rep. 2019;26(13):3586–3599.e7. doi:10.1016/j.celrep.2019.02.091.
  • Monteiro VG, Lobato CS, Silva AR, et al. Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res. 2005;97(5):380–385. doi:10.1007/s00436-005-1460-1.
  • Jacobs T, Erdmann H, Fleischer B. Molecular interaction of Siglecs (sialic acid-binding Ig-like lectins) with sialylated ligands on Trypanosoma cruzi. Eur J Cell Biol. 2010;89(1):113–116. doi:10.1016/j.ejcb.2009.10.006.
  • Martinez-Picado J, McLaren PJ, Erkizia I, et al. Identification of Siglec-1 null individuals infected with HIV-1. Nat Commun. 2016;7(1):12412. doi:10.1038/ncomms12412.
  • Soukup J, Becker S. Role of monocytes and eosinophils in human respiratory syncytial virus infection in vitro. Clin Immunol. 2003;107(3):178–185. doi:10.1016/S1521-6616(03)00038-X.
  • Jans J, El Moussaoui H, Groot R, Jonge M, Ferwerda G. Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus. Virol J. 2016;13(1):52. doi:10.1186/s12985-016-0506-6.
  • Braschi E, Shojania K, Allan GM. Anti-CCP: a truly helpful rheumatoid arthritis test?Can Fam Phys. 2016;62(3):234.
  • Lleo A, Invernizzi P, Mackay I-R, Prince H, Zhong R-Q, Gershwin M-E. Etiopathogenesis of primary biliary cirrhosis. World J Gastroenterol. 2008;14(21):3328–3337. doi:10.3748/wjg.14.3328.
  • Otto GP, Sossdorf M, Claus RA, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15(4):R183. doi:10.1186/cc10332.
  • Sundar KM, Sires M. Sepsis induced immunosuppression: Implications for secondary infections and complications. Indian J Crit Care Med. 2013;17(3):162–169. doi:10.4103/0972-5229.117054.
  • Xiong Y-S, Wu A-L, Mu D, et al. Inhibition of siglec-1 by lentivirus mediated small interfering RNA attenuates atherogenesis in apoE-deficient mice. Clin Immunol. 2017;174:32–40. doi:10.1016/j.clim.2016.11.005.clim.2016.11.005.
  • Xiong Y-s, Wu A-l, Lin Q-s, et al. Contribution of monocytes Siglec-1 in stimulating T cells proliferation and activation in atherosclerosis. Atherosclerosis. 2012;224(1):58–65. doi:10.1016/j.atherosclerosis.2012.06.063.
  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–1695. doi:10.1056/NEJMra043430.
  • Gijbels MJ, van der Cammen M, van der Laan LJ, et al. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice: an immunohistochemical study. Atherosclerosis. 1999;143(1):15–25. doi:10.1016/s0021-9150(98)00263-9.
  • Hussell T, Bell T. Alveolar macrophages: Plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93. doi:10.1038/nri3600.
  • Bharat A, Bhorade SM, Morales-Nebreda L, et al. Flow cytometry reveals similarities between lung macrophages in humans and mice. Am J Respir Cell Mol Biol. 2016;54(1):147–149. doi:10.1165/rcmb.2015-0147LE.
  • Yu Y-RA, Hotten DF, Malakhau Y, et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am J Respir Cell Mol Biol. 2016;54(1):13–24. doi:10.1165/rcmb.2015-0146OC.
  • Berenson CS, Garlipp MA, Grove LJ, Maloney J, Sethi S. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis. 2006;194(10):1375–1384. doi:10.1086/508428.
  • Taylor AE, Finney-Hayward TK, Quint JK, et al. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J. 2010;35(5):1039–1047. doi:10.1183/09031936.00036709.
  • Berenson CS, Kruzel RL, Eberhardt E, Sethi S. Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J Infect Dis. 2013;208(12):2036–2045. doi:10.1093/infdis/jit400.[Mismatch]infdis/.
  • Gern JE, Busse WW. Association of rhinovirus infections with asthma. Clin Microbiol Rev. 1999;12(1):9–18. doi:10.1128/CMR.12.1.9.
  • Shaabani N, Duhan V, Khairnar V, et al. CD169+ macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death Dis. 2016;7(11):e2446. doi:10.1038/cddis.2016.350.
  • Eloranta ML, Alm GV. Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-alpha/beta producers in mice upon intravenous challenge with herpes simplex virus. Scand J Immunol. 1999;49(4):391–394. doi:10.1046/j.1365-3083.1999.00514.x.
  • Louie DAP, Liao S. Lymph node subcapsular sinus macrophages as the frontline of lymphatic immune defense. Front Immunol. 2019;10:347.
  • Duhan V, Khairnar V, Friedrich S-K, et al. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci Rep. 2016;6:19191. doi:10.1038/srep19191.
  • Jobe O, Trinh HV, Kim J, et al. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region. J Leukoc Biol. 2016;99(6):1089–1106. doi:10.1189/jlb.2A0815-361R.
  • Izquierdo-Useros N, Lorizate M, Puertas MC, et al. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;10(12):e1001448. doi:10.1371/journal.pbio.1001448.
  • Puryear WB, Yu X, Ramirez NP, Reinhard BM, Gummuluru S. HIV-1 incorporation of host-cellderived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci USA. 2012;109(19):7475–7480. doi:10.1073/pnas.1201104109.
  • Shaw GM, Hunter E. HIV transmission. Cold Spring Harb Perspect Med. 2012;2(11):a006965. doi:10.1101/cshperspect.a006965.
  • Yu HJ, Reuter MA, McDonald D. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 2008;4(8):e1000134. doi:10.1371/journal.ppat.1000134.
  • McDonald D. Dendritic cells and HIV-1 trans-infection. Viruses. 2010;2(8):1704–1717. doi:10.3390/v2081704.
  • Jobe O, Kim J, Rao M. The role of Siglec-1 in HIV-1/macrophage interaction. Macrophage. 2016;3:e1435.
  • Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci USA. 2006;103(3):738–743. doi:10.1073/pnas.0507995103.
  • Ganor Y, Real F, Sennepin A, et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol. 2019;4(4):633–644. doi:10.1038/s41564-018-0335-z.
  • Perez-Zsolt D, Martinez-Picado J, Izquierdo-Useros N. When dendritic cells go viral: the role of Siglec-1 in host defense and dissemination of enveloped viruses. Viruses. 2019;12(1):8. doi:10.3390/v12010008.
  • Rempel H, Calosing C, Sun B, Pulliam L. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One. 2008;3(4):e1967. doi:10.1371/journal.pone.0001967.
  • Zou Z, Chastain A, Moir S, et al. Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One. 2011;6(9):e24559. doi:10.1371/journal.pone.0024559.
  • Pino M, Erkizia I, Benet S, et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology. 2015;12(1):37. doi:10.1186/s12977-015-0160-x.
  • Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–1371. doi:10.1038/nm1511.
  • Estes JD, Harris LD, Klatt NR, et al. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog. 2010;6(8):e1001052. doi:10.1371/journal.ppat.1001052.
  • Hensley-McBain T, Berard AR, Manuzak JA, et al. Intestinal damage precedes mucosal immune dysfunction in SIV infection. Mucosal Immunol. 2018;11(5):1429–1440. doi:10.1038/s41385-018-0032-5.
  • Beignon AS, McKenna K, Skoberne M, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest. 2005;115(11):3265–3275. doi:10.1172/JCI26032.
  • Mandl JN, Barry AP, Vanderford TH, et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and non-pathogenic AIDS virus infections. Nat Med. 2008;14(10):1077–1087. doi:10.1038/nm.1871.
  • Perez-Zsolt D, Cantero-Perez J, Erkizia I, et al. Dendritic cells from the cervical mucosa capture and transfer HIV-1 via Siglec-1. Front Immunol. 2019;10:825. doi:10.3389/fimmu.2019.00825.
  • Gautier G, Humbert M, Deauvieau F, et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med. 2005;201(9):1435–1446. doi:10.1084/jem.20041964.
  • Gummuluru S, Ramirez NG, Akiyama H. CD169-dependent cell-associated HIV-1 transmission: a driver of virus dissemination. J Infect Dis. 2014;210(Suppl3):S641–S647. doi:10.1093/infdis/jiu442.
  • Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich H-G, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog. 2014;10(7):e1004146. doi:10.1371/journal.ppat.1004146.
  • Kijewski SDG, Akiyama H, Feizpour A, et al. Access of HIV-2 to CD169-dependent dendritic cell-mediated trans infection pathway is attenuated. Virology. 2016;497:328–336. doi:10.1016/j.virol.2016.07.029.
  • Boggiano C, Manel N, Littman DR. Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol. 2007;81(5):2519–2523. doi:10.1128/JVI.01661-06.
  • Gummuluru S, Rogel M, Stamatatos L, Emerman M. Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol. 2003;77(23):12865–12874. doi:10.1128/JVI.77.23.12865-12874.2003.
  • Varchetta S, Lusso P, Hudspeth K, et al. Sialic acid-binding Ig-like lectin-7 interacts with HIV-1 gp120 and facilitates infection of CD4pos T cells and macrophages. Retrovirology. 2013;10:154. doi:10.1186/1742-4690-10-154
  • Kim W-K, McGary CM, Holder GE, et al. Increased expression of CD169 on blood monocytes and its regulation by virus and CD8 T cells in macaque models of HIV infection and AIDS. AIDS Res Hum Retroviruses. 2015;31(7):696–706. doi:10.1089/AID.2015.0003.
  • Stumptner-Cuvelette P, Morchoisne S, Dugast M, et al. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci USA. 2001;98(21):12144–12149. doi:10.1073/pnas.221256498.
  • Geisbert TW, Hensley LE, Larsen T, et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol. 2003;163(6):2347–2370. doi:10.1016/S0002-9440(10)63591-2
  • Alvarez CP, Lasala F, Carrillo J, Muñiz O, Corbí AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol. 2002;76(13):6841–6844. doi:10.1128/jvi.76.13.6841-6844.2002.
  • Moller-Tank S, Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology. 2014;468–470:565–580. doi:10.1016/j.virol.2014.09.009.
  • Gramberg T, Hofmann H, Möller P, et al. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology. 2005;340(2):224–236. doi:10.1016/j.virol.2005.06.026.
  • Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science. 2005;308(5728):1643–1645. doi:10.1126/science.1110656.
  • Carette JE, Raaben M, Wong AC, et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2011;477(7364):340–343. doi:10.1038/nature10348.
  • Cote M, Misasi J, Ren T, et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature. 2011;477(7364):344–348. doi:10.1038/nature10380.
  • Delrue I, Van Gorp H, Van Doorsselaere J, Pl D, Hj N. Susceptible cell lines for the production of porcine reproductive and respiratory syndrome virus by stable transfection of sialoadhesin and CD163. BMC Biotechnol. 2010;10:48. doi:10.1186/1472-6750-10-48.
  • Zheng Q, Hou J, Zhou Y, Yang Y, Xie B, Cao X. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res. 2015;25(10):1121–1136. doi:10.1038/cr.2015.108.
  • Lawler C, Tan CSE, Simas JP, Stevenson PG. Type I interferons and NK cells restrict gammaherpesvirus lymph node infection. J Virol. 2016;90(20):9046–9057. doi:10.1128/JVI.01108-16.
  • Ang CW, Jacobs BC, Laman JD. The Guillain-Barré syndrome: a true case of molecular mimicry. Trends Immunol. 2004;25(2):61–66. doi:10.1016/j.it.2003.12.004.
  • Jacobs BC, van Doorn PA, Schmitz PI, et al. Campylobacter jejuni infections and anti-GM1 antibodies in Guillain-Barré syndrome. Ann Neurol. 1996;40(2):181–187. doi:10.1002/ana.410400209.
  • Godschalk PC, Kuijf ML, Li J, et al. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes. Infect Immun. 2007;75(3):1245–1254. doi:10.1128/IAI.00872-06.
  • Madrid L, Seale AC, Kohli-Lynch M, Infant GBS Disease Investigator Group, et al. Infant Group B streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses. Clin Infect Dis. 2017;65(suppl_2):S160–s72. doi:10.1093/cid/cix656.
  • Caugant DA, Maiden MC. Meningococcal carriage and disease–population biology and evolution. Vaccine. 2009;27(4):B64–B70. doi:10.1016/j.vaccine.2009.04.061
  • Vogel U, Frosch M. Mechanisms of neisserial serum resistance. Mol Microbiol. 1999;32(6):1133–1139. doi:10.1046/j.1365-2958.1999.01469.x.
  • Esmail H, Riou C, Bruyn ED, et al. The immune response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu Rev Immunol. 2018;36:603–638. doi:10.1146/annurev-immunol-042617-053420.
  • Bax M, Kuijf ML, Heikema AP, et al. Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. Infect Immun. 2011;79(7):2681–2689. doi:10.1128/IAI.00009-11.
  • Avril T, Wagner ER, Willison HJ, Crocker PR. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun. 2006;74(7):4133–4141. doi:10.1128/IAI.02094-05.
  • Pitts SI, Maruthur NM, Langley GE, et al. Obesity, diabetes, and the risk of invasive group B streptococcal disease in nonpregnant adults in the United States. Open Forum Infect Dis. 2018;5(6):ofy030.
  • Dupont M, Souriant S, Balboa L, et al. Tuberculosis-associated IFN-I induces Siglec-1 on tunnelling nanotubes and favors HIV-1 spread in macrophages. Elife. 2020;9:e52535. 52535. doi:10.7554/eLife.
  • Kabaso D, Lokar M, Kralj-Iglič V, Veranič P, Iglič A. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int J Nanomedicine. 2011;6:495–509. doi:10.2147/IJN.S16982.
  • Halasz H, Ghadaksaz AR, Madarasz T, et al. Live cell superresolution-structured illumination microscopy imaging analysis of the intercellular transport of microvesicles and costimulatory proteins via nanotubes between immune cells. Methods Appl Fluoresc. 2018;6(4):045005. doi:10.1088/2050-6120/aad57d.
  • Bracq L, Xie M, Benichou S, Bouchet J. Mechanisms for cell-to-cell transmission of HIV-1. Front Immunol. 2018;9:260. doi:10.3389/fimmu.2018.00260.
  • Brener Z. Biology of Trypanosoma Cruzi. Annu Rev Microbiol. 1973;27(1):347–382. doi:10.1146/annurev.mi.27.100173.002023.
  • Rosestolato CTF, Dutra J. d M F, De Souza W, de Carvalho TMU. Participation of host cell actin filaments during interaction of trypomastigote forms of Trypanosoma cruzi with host cells. Cell Struct Funct. 2002;27(2):91–98. doi:10.1247/csf.27.91.
  • Ribeiro AL, Nunes MP, Teixeira MM, Rocha MOC. Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol. 2012;9(10):576–589. doi:10.1038/nrcardio.2012.109.
  • Buscaglia C, Campo V, Frasch A, Di Noia J. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol. 2006;4(3):229–236. doi:10.1038/nrmicro1351.
  • Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM. The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell. 2002;10(4):757–768. doi:10.1016/S1097-2765(02)00680-9.
  • Risso MG, Garbarino GB, Mocetti E, et al. Differential expression of a virulence factor, the trans-sialidase, by the main Trypanosoma cruzi phylogenetic lineages. J Infect Dis. 2004;189(12):2250–2259. doi:10.1086/420831.
  • Tomlinson S, Pontes de Carvalho LC, Vandekerckhove F, Nussenzweig V. Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J Immunol. 1994;153(7):3141–3147.
  • Holscher C. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Med Microbiol Immunol. 2004;193(1):1–17. doi:10.1007/s00430-003-0186-x.
  • Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T. Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol. 2009;11(11):1600–1611. doi:10.1111/j.1462-5822.2009.01350.x.
  • Fontana MF, de Melo GL, Anidi C, et al. Macrophage colony stimulating factor derived from CD4+ T cells contributes to control of a blood-borne infection. PLoS Pathog. 2016;12(12):e1006046. doi:10.1371/journal.ppat.1006046.
  • Gupta P, Lai SM, Sheng J, et al. Tissue-resident CD169(+) macrophages form a crucial front line against plasmodium infection. Cell Rep. 2016;16(6):1749–1761. doi:10.1016/j.celrep.2016.07.010.
  • Chen WC, Kawasaki N, Nycholat CM, et al. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One. 2012;7(6):e39039. doi:10.1371/journal.pone.0039039.
  • Edgar LJ, Kawasaki N, Nycholat CM, Paulson JC. Targeted delivery of antigen to activated CD169+ Macrophages Induces Bias for Expansion of CD8+ T Cells. Cell Chem Biol. 2019;26(1):131–136.e4. doi:10.1016/j.chembiol.2018.10.006.
  • Veninga H, Borg EG, Vreeman K, et al. Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur J Immunol. 2015;45(3):747–757. doi:10.1002/eji.201444983.
  • Kawasaki N, Vela JL, Nycholat CM, et al. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proc Natl Acad Sci USA. 2013;110(19):7826–7831. doi:10.1073/pnas.1219888110.
  • van Dinther D, Veninga H, Revet M, et al. Comparison of protein and peptide targeting for the development of a CD169-based vaccination strategy against melanoma. Front Immunol. 2018;9:1997. doi:10.3389/fimmu.2018.01997.
  • van Dinther D, Lopez Venegas M, Veninga H, in mice and humans, et al. Activation of CD8+ T cell responses after melanoma antigen targeting to CD169+ antigen presenting cells. Cancers. 2019;11(2):183. doi:10.3390/cancers11020183.
  • Park SM, Angel CE, McIntosh JD, et al. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes. PLoS One. 2014;9(4):e94781. doi:10.1371/journal.pone.0094781.
  • Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606–616. doi:10.1038/nri1669.
  • Steiniger BS. Human spleen microanatomy: why mice do not suffice. Immunology. 2015;145(3):334–346. doi:10.1111/imm.12469.
  • Steiniger B, Barth P, Herbst B, Hartnell A, Crocker PR. The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology. 1997;92(2):307–316. doi:10.1046/j.1365-2567.1997.00328.x.
  • Steiniger BS, Seiler A, Lampp K, Wilhelmi V, Stachniss V. Blymphocyte compartments in the human splenic red pulp: capillary sheaths and periarteriolar regions. Histochem Cell Biol. 2014;141(5):507–518. doi:10.1007/s00418-013-1172-z.
  • Delputte PL, Van Gorp H, Favoreel HW, et al. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLoS One. 2011;6(2):e16827. doi:10.1371/journal.pone.0016827.
  • Poderoso T, Martinez P, Alvarez B, et al. Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs. Vaccine. 2011;29(29–30):4813–4820. doi:10.1016/j.vaccine.2011.04.076.
  • Aarnoudse CA, Bax M, Sanchez-Hernandez M, Garcia-Vallejo JJ, van Kooyk Y. Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells. Int J Cancer. 2008;122(4):839–846. doi:10.1002/ijc.23101.
  • Singh SK, Stephani J, Schaefer M, et al. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol Immunol. 2009;47(2–3):164–174. doi:10.1016/j.molimm.2009.09.026.
  • Taylor ME, Drickamer K. Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands. Glycobiology. 2009;19(11):1155–1162. doi:10.1093/glycob/cwp076.
  • Graham SA, Jegouzo SA, Yan S, et al. Prolectin, a glycan-binding receptor on dividing B cells in germinal centers. J Biol Chem. 2009;284(27):18537–18544. doi:10.1074/jbc.M109.012807.
  • Zajonc DM, Kronenberg M. Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells. Immunol Rev. 2009;230(1):188–200. doi:10.1111/j.1600-065X.2009.00802.x.
  • Barral P, Polzella P, Bruckbauer A, et al. CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol. 2010;11(4):303–312. doi:10.1038/ni.1853.
  • Barral P, Sanchez-Nino MD, van Rooijen N, Cerundolo V, Batista FD. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. Embo J. 2012;31(10):2378–2390. doi:10.1038/emboj.2012.87.
  • Le Bon A, Thompson C, Kamphuis E, et al. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol. 2006;176(4):2074–2078. doi:10.4049/jimmunol.176.4.2074.
  • Fink K, Lang KS, Manjarrez-Orduno N, et al. Early type I interferon-mediated signals on B cells specifically enhance antiviral humoral responses. Eur J Immunol. 2006;36(8):2094–2105. doi:10.1002/eji.200635993.
  • Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol. 2009;10(7):786–793. doi:10.1038/ni.1745.
  • Sawyer JD, Wilson ML, Neumeister MW. A systematic review of surgical management of melanoma of the external ear. Plast Reconstr Surg Glob Open. 2018;6(4):e1755. doi:10.1097/GOX.0000000000001755.
  • Allen PJ, Coit DG. The surgical management of metastatic melanoma. Ann Surg Oncol. 2002;9(8):762–770. doi:10.1007/BF02574498.
  • Berney C, Herren S, Power CA, Gordon S, Martinez-Pomares L, Kosco-Vilbois MH. A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein. J Exp Med. 1999;190(6):851–860. doi:10.1084/jem.190.6.851.
  • Carrasco YR, Batista FD. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity. 2007;27(1):160–171. doi:10.1016/j.immuni.2007.06.007.
  • Junt T, Moseman EA, Iannacone M, et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 2007;450(7166):110–114. doi:10.1038/nature06287.
  • Phan T, Grigorova I, Okada T, Cyster J. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol. 2007;8(9):992–1000. doi:10.1038/ni1494.
  • Dobry AS, Zogg CK, Hodi FS, Smith TR, Ott PA, Iorgulescu JB. Management of metastatic melanoma: improved survival in a national cohort following the approvals of checkpoint blockade immunotherapies and targeted therapies. Cancer Immunol Immunother. 2018;67(12):1833–1844. doi:10.1007/s00262-018-2241-x.
  • Iorgulescu JB, Harary M, Zogg CK, Ligon KL, et al. Improved risk-adjusted survival for melanoma brain metastases in the era of checkpoint blockade immunotherapies: results from a national cohort. Cancer Immunol Res. 2018;6(9):1039–1045. doi:10.1158/2326-6066.CIR-18-0067.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454. doi:10.1056/NEJMoa1200690.
  • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi:10.1038/nature13954.
  • Daud AI, Loo K, Pauli ML, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126(9):3447–3452. doi:10.1172/JCI87324.
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–550. doi:10.1038/s41591-018-0014-x.
  • Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80. doi:10.1126/science.aaa6204.
  • Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16(2):102–111. doi:10.1038/nri.2015.10.
  • Leon B, Ballesteros-Tato A, Randall TD, Lund FE. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. J Exp Med. 2014;211(8):1637–1655. doi:10.1084/jem.20131692.
  • Klebanoff CA, Gattinoni L, Palmer DC, et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res. 2011;17(16):5343–5352. doi:10.1158/1078-0432.CCR-11-0503.
  • Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–4557. doi:10.1158/1078-0432.CCR-11-0116.
  • van Duikeren S, Arens R. Predicting the efficacy of cancer vaccines by evaluating T-cell responses. Oncoimmunology. 2013;2(1):e22616. doi:10.4161/onci.22616.
  • Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671–684. doi:10.1038/nrc3322.
  • Enamorado M, Iborra S, Priego E, et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat Commun. 2017;8:16073. doi:10.1038/ncomms16073.
  • Jacquelot N, Enot DP, Flament C, et al. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Invest. 2016;126(3):921–937. doi:10.1172/JCI80071.
  • Hailemichael Y, Dai Z, Jaffarzad N, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med. 2013;19(4):465–472. doi:10.1038/nm.3105.
  • Overwijk WW. Cancer vaccines in the era of checkpoint blockade: the magic is in the adjuvant. Curr Opin Immunol. 2017;47:103–109. doi:10.1016/j.coi.2017.07.015.
  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003;421(6925):852–856. doi:10.1038/nature01441.
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003;300(5617):337–339. doi:10.1126/science.1082305.
  • Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 2003;300(5617):339–342. doi:10.1126/science.1083317.
  • Backer R, Schwandt T, Greuter M, et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc Natl Acad Sci USA. 2010;107(1):216–221. doi:10.1073/pnas.0909541107.
  • van Dinther D, Veninga H, Iborra S, et al. Functional CD169 on macrophages mediates interaction with dendritic cells for CD8+ T cell cross-priming. Cell Rep. 2018;22(6):1484–1495. doi:10.1016/j.celrep.2018.01.021.
  • Eickhoff S, Brewitz A, Gerner MY, et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell. 2015;162(6):1322–1337. doi:10.1016/j.cell.2015.08.004.
  • Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity. 2015;43(3):554–565. doi:10.1016/j.immuni.2015.07.020.
  • Sheng J, Chen Q, Soncin I, Ng SL, Karjalainen K, Ruedl C. A discrete subset of monocyte-derived cells among typical conventional type 2 dendritic cells can efficiently cross-present. Cell Rep. 2017;21(5):1203–1214. doi:10.1016/j.celrep.2017.10.024.
  • Crocker PR, Kelm S, Dubois C, et al. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. Embo J. 1991;10(7):1661–1669.
  • Collins BE, Kiso M, Hasegawa A, et al. Binding specificities of the sialoadhesin family of I-type lectins. Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J Biol Chem. 1997;272(27):16889–16895. doi:10.1074/jbc.272.27.16889.
  • May AP, Robinson RC, Vinson M, Crocker PR, Jones EY. Crystal structure of the N-terminal domain of sialoadhesin in complex with 3’ sialyllactose at 1.85 A resolution. Mol Cell. 1998;1(5):719–728. doi:10.1016/S1097-2765(00)80071-4.
  • Crocker PR, Vinson M, Kelm S, Drickamer K. Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis. Biochem J. 1999;341(2):355–361. doi:10.1042/0264-6021:3410355.
  • Kelm S, Brossmer R, Isecke R, Gross HJ, Strenge K, Schauer R. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur J Biochem. 1998;255(3):663–672. doi:10.1046/j.1432-1327.1998.2550663.x.
  • Zaccai NR, May AP, Robinson RC, et al. Crystallographic and in silico analysis of the sialoside-binding characteristics of the Siglec sialoadhesin. J Mol Biol. 2007;365(5):1469–1479. doi:10.1016/j.jmb.2006.10.084.
  • Bukrinsky JT, St Hilaire PM, Meldal M, Crocker PR, Henriksen A. Complex of sialoadhesin with a glycopeptide ligand. Biochim Biophys Acta. 2004;1702(2):173–179. doi:10.1016/j.bbapap.2004.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.