251
Views
6
CrossRef citations to date
0
Altmetric
Reviews

MDSCs interactions with other immune cells and their role in maternal-fetal tolerance

, , , , &
Pages 534-551 | Received 10 Nov 2020, Accepted 21 May 2021, Published online: 15 Jun 2021

References

  • Gabrilovich DI, Bronte V, Chen S-H, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425–426. doi:10.1158/0008-5472.CAN-06-3037.
  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–268. doi:10.1038/nri3175.
  • Dumitru CA, Moses K, Trellakis S, et al. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother. 2012;61:1155–1167. doi:10.1007/s00262-012-1294-5.
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174. doi:10.1038/nri2506.
  • Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125:3356–3364. doi:10.1172/JCI80005.
  • Zhang Y, et al. Human trophoblast cells induced MDSCs from peripheral blood CD14(+) myelomonocytic cells via elevated levels of CCL2. Cell Mol Immunol. 2016;13:615–627. doi:10.1038/cmi.2015.41.
  • Ribechini E, Greifenberg V, Sandwick S, et al. Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol. 2010;199:273–281. doi:10.1007/s00430-010-0151-4.
  • Ma H, Xia CQ. Phenotypic and functional diversities of myeloid-derived suppressor cells in autoimmune diseases. Mediators Inflamm. 2018;4316584. doi:10.1155/2018/4316584.
  • Damuzzo V, et al. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom. 2015;88:77–91. doi:10.1002/cyto.b.21206.
  • Moses K, Brandau S. Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol. 2016;28:187–196. doi:10.1016/j.smim.2016.03.018.
  • Kotsakis A, et al. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381:14–22. doi:10.1016/j.jim.2012.04.004.
  • Köstlin-Gille N, et al. HIF-1α-deficiency in myeloid cells leads to a disturbed accumulation of myeloid derived suppressor cells (MDSC) during pregnancy and to an increased abortion rate in mice. Front Immunol. 2019;10:161. doi:10.3389/fimmu.2019.00161.
  • Haile LA, Gamrekelashvili J, Manns MP, et al. CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol (Baltimore, MD: 1950). 2010;185:203–210. doi:10.4049/jimmunol.0903573.
  • Bronte V, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. doi:10.1038/ncomms12150.
  • Youn JI, Collazo M, Shalova IN, et al. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukocyte Biol. 2012;91:167–181. doi:10.1189/jlb.0311177.
  • Bharat A, et al. Flow cytometry reveals similarities between lung macrophages in humans and mice. Am J Respir Cell Mol Biol. 2016;54:147–149. doi:10.1165/rcmb.2015-0147LE.
  • Verschoor CP, et al. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukocyte Biol. 2013;93:633–637. doi:10.1189/jlb.0912461.
  • Mandruzzato S, et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother. 2016;65:161–169. doi:10.1007/s00262-015-1782-5.
  • Condamine T, Dominguez GA, Youn J-I, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1(2):aaf8943–aaf8943. doi:10.1126/sciimmunol.aaf8943.
  • Nefedova Y, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol (Baltimore, MD: 1950). 2004;172:464–474. doi:10.4049/jimmunol.172.1.464.
  • Rébé C, Végran F, Berger H, et al. STAT3 activation: a key factor in tumor immunoescape. Jak-stat. 2013;2:e23010. doi:10.4161/jkst.23010.
  • Marigo I, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32:790–802. doi:10.1016/j.immuni.2010.05.010.
  • Kumar V, et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 2016;44(2):303–315. doi:10.1016/j.immuni.2016.01.014.
  • Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008;8:663–674. doi:10.1038/nri2359.
  • Grootjans J, Kaser A, Kaufman RJ, et al. The unfolded protein response in immunity and inflammation. Nat Rev Immunol. 2016;16:469–484. doi:10.1038/nri.2016.62.
  • Lee BR, et al. Elevated endoplasmic reticulum stress reinforced immunosuppression in the tumor microenvironment via myeloid-derived suppressor cells. Oncotarget. 2014;5:12331–12345. doi:10.18632/oncotarget.2589.
  • Mohamed E, Cao Y, Rodriguez PC. Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy. Cancer Immunol Immunother. 2017;66:1069–1078. doi:10.1007/s00262-017-2019-6.
  • Nan J, et al. Endoplasmic reticulum stress induced LOX-1(+) CD15(+) polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology. 2018;154:144–155. doi:10.1111/imm.12876.
  • Condamine T, et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 2014;124:2626–2639. doi:10.1172/jci74056.
  • Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–119. doi:10.1038/s41590-017-0022-x.
  • Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70:68–77. doi:10.1158/0008-5472.Can-09-2587.
  • Yu J, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol (Baltimore, MD: 1950). 2013;190:3783–3797. doi:10.4049/jimmunol.1201449.
  • Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends in Immunology. 2016;37:208–220. doi:10.1016/j.it.2016.01.004.
  • Galván GC, et al. Effects of obesity on the regulation of macrophage population in the prostate tumor microenvironment. Nutrition and Cancer. 2017;69:996–1002. doi:10.1080/01635581.2017.1359320.
  • Zelenay S, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162:1257–1270. doi:10.1016/j.cell.2015.08.015.
  • Zhang S, et al. Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS One. 2016;11:e0156549. doi:10.1371/journal.pone.0156549.
  • Medzhitov R, et al. Highlights of 10 years of immunology in nature reviews immunology. Nat Rev Immunol. 2011;11:693–702. doi:10.1038/nri3063.
  • Yu J, et al. Noncanonical NF-κB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer. J Immunol (Baltimore, MD: 1950). 2014;193:2574–2586. doi:10.4049/jimmunol.1400833.
  • Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med. 2019;97(8):1049–1064. doi:10.1007/s00109-019-01795-9.
  • Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. Journal of Immunology (Baltimore, MD: 1950). 2009;182(8):4499–4506. doi:10.4049/jimmunol.0802740.
  • Chen J, et al. Suppression of T cells by myeloid-derived suppressor cells in cancer. Human Immunology. 2017;78:113–119. doi:10.1016/j.humimm.2016.12.001.
  • Steggerda SM, et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017;5:101. doi:10.1186/s40425-017-0308-4.
  • Tamura R, et al. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol (Northwood, London, England). 2019;37:2. doi:10.1007/s12032-019-1329-2.
  • Bruno A, Mortara L, Baci D, et al. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. Front Immunol. 2019;10:771. doi:10.3389/fimmu.2019.00771.
  • Bianchi G, et al. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis. 2014;5:e1135. doi:10.1038/cddis.2014.109.
  • Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32:19–25. doi:10.1016/j.it.2010.10.002.
  • Sceneay J, Parker BS, Smyth MJ, et al. Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncoimmunology. 2013;2:e22355. doi:10.4161/onci.22355.
  • Bachanova V, Sarhan D, DeFor TE, et al. Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol Immunother. 2018;67(3):483–494. doi:10.1007/s00262-017-2100-1.
  • Fortin C, Huang X, Yang Y. NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells. J Immunol. 2012;189(4):1843–1849. doi:10.4049/jimmunol.1200584.
  • Yang Y, et al. Phase I study of random healthy donor-derived allogeneic natural killer cell therapy in patients with malignant lymphoma or advanced solid tumors. Cancer Immunol Res. 2016;4:215–224. doi:10.1158/2326-6066.Cir-15-0118.
  • Shariatpanahi SP, Shariatpanahi SP, Madjidzadeh K, et al. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: implications for therapeutic targeting strategies. J Theor Biol. 2018;442:1–10. doi:10.1016/j.jtbi.2018.01.006.
  • Stiff A, et al. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res. 2018;24:1891–1904. doi:10.1158/1078-0432.Ccr-17-0691.
  • Sarhan D, et al. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res. 2016;76:5696–5706. doi:10.1158/0008-5472.Can-16-0839.
  • Zhang C, Wang S, Yang C, et al. The crosstalk between myeloid derived suppressor cells and immune cells: to establish immune tolerance in transplantation. J Immunol Res. 2016;4986797. doi:10.1155/2016/4986797.
  • Pileri A, Agostinelli C, Sessa M, et al. Langerhans, plasmacytoid dendritic and myeloid-derived suppressor cell levels in mycosis fungoides vary according to the stage of the disease. Virchows Arch. 2017;470(5):575–582. doi:10.1007/s00428-017-2107-1.
  • Khosravianfar N, et al. Myeloid-derived suppressor cells elimination by 5-fluorouracil increased dendritic cell-based vaccine function and improved immunity in tumor mice. Iranian J Allergy Asthma Immunol. 2018;17:47–55.
  • Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017;45:43–51. doi:10.1016/j.coi.2017.01.002.
  • Sendo S, et al. CD11b + Gr-1(dim) tolerogenic dendritic cell-like cells are expanded in interstitial lung disease in SKG mice. Arthritis Rheumatol (Hoboken, N.J.). 2017;69:2314–2327. doi:10.1002/art.40231.
  • Bryant AJ, Mehrad B, Brusko TM, et al. Myeloid-derived suppressor cells and pulmonary hypertension. IJMS. 2018;19(8):2277. doi:10.3390/ijms1908.
  • Abdissa K, et al. Presence of infected Gr-1(int)CD11b(hi)CD11c(int) monocytic myeloid derived suppressor cells subverts T cell response and is associated with impaired dendritic cell function in mycobacterium avium-infected mice. Front Immunol. 2018;9:2317. doi:10.3389/fimmu.2018.02317.
  • Markowitz J, et al. Author correction: nitric oxide mediated inhibition of antigen presentation from DCs to CD4(+) T cells in cancer and measurement of STAT1 nitration. Sci Rep. 2018;8:4203. doi:10.1038/s41598-018-21306-z.
  • Zhu J, et al. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation. Sci Rep. 2016;6:27136. doi:10.1038/srep27136.
  • Shahbaz SK, Sadeghi M, Koushki K, et al. Regulatory T cells: possible mediators for the anti-inflammatory action of statins. Pharmacol Res. 2019;149:104469. doi:10.1016/j.phrs.2019.104469.
  • Brimnes MK, et al. Increased level of both CD4 + FOXP3+ regulatory T cells and CD14 + HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72:540–547. doi:10.1111/j.1365-3083.2010.02463.x.
  • Wang L, et al. Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. AIDS (London, England). 2016;30:1521–1531. doi:10.1097/qad.0000000000001083.
  • Zahorchak AF, Perez-Gutierrez A, Ezzelarab MB, et al. Monocytic myeloid-derived suppressor cells generated from rhesus macaque bone marrow enrich for regulatory T cells. Cell Immunol. 2018;329:50–55. doi:10.1016/j.cellimm.2018.04.013.
  • Wang J, et al. Surgery-induced monocytic myeloid-derived suppressor cells expand regulatory T cells in lung cancer. Oncotarget. 2017;8:17050–17058. doi:10.18632/oncotarget.14991.
  • Huang B, et al. Gr-1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66:1123–1131. doi:10.1158/0008-5472.Can-05-1299.
  • Lee CR, et al. Myeloid-derived suppressor cells are controlled by regulatory T cells via TGF-β during murine colitis. Cell Rep. 2016;17:3219–3232. doi:10.1016/j.celrep.2016.11.062.
  • Serafini P, Mgebroff S, Noonan K, et al. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68:5439–5449. doi:10.1158/0008-5472.Can-07-6621.
  • Najafi M, Farhood B, Mortezaee K. Contribution of regulatory T cells to cancer: a review. J Cell Physiol. 2019;234:7983–7993. doi:10.1002/jcp.27553.
  • Wang Y, et al. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget. 2016;7:15356–15368. doi:10.18632/oncotarget.7324.
  • Movahedi K, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111:4233–4244. doi:10.1182/blood-2007-07-099226.
  • Köstlin N, et al. Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an anti-inflammatory phenotype. Immunology. 2017;152:89–101. doi:10.1111/imm.12751.
  • Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17:469–482. doi:10.1038/nri.2017.64.
  • Mor G, Cardenas I, Abrahams V, et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann NY Acad Sci. 2011;1221:80–87. doi:10.1111/j.1749-6632.2010.05938.x.
  • Aghaeepour N, et al. An immune clock of human pregnancy. Sci Immunol. 2017;2(15):eaan2946. doi:10.1126/sciimmunol.aan2946.
  • Robertson SA, Mau VJ, Hudson SN, et al. Cytokine-leukocyte networks and the establishment of pregnancy. Am J Reprod Immunol (New York, N.Y.). 1989;37:438–442. doi:10.1111/j.1600-0897.1997.tb00257.x.
  • Houser BL, Tilburgs T, Hill J, et al. Two unique human decidual macrophage populations. J Immunol (Baltimore, MD: 1950). 2011;186:2633–2642. doi:10.4049/jimmunol.1003153.
  • Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. 2003;69:1438–1446. doi:10.1095/biolreprod.103.017574.
  • Koopman LA, Kopcow HD, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003;198(8):1201–1212. doi:10.1084/jem.20030305.
  • Kang X, Zhang X, Liu Z, et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4 + CD25-T cells by activation of the TGF-beta/beta-catenin pathway. Mol Hum Reprod. 2016;22(7):499–511. doi:10.1093/molehr/gaw026.
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–271. doi:10.1038/ni1037.
  • Samstein RM, Josefowicz SZ, Arvey A, et al. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012;150:29–38. doi:10.1016/j.cell.2012.05.031.
  • Hunt JS, Vassmer D, Ferguson TA, et al. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol (Baltimore, MD: 1997). 1950;158:4122–4128.
  • Guleria I, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med. 2005;202:231–237. doi:10.1084/jem.20050019.
  • Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta. 2014;35:241–248. doi:10.1016/j.placenta.2014.02.004.
  • Pan T, et al. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice. J Leukocyte Biol. 2016;100:499–511. doi:10.1189/jlb.1A1015-481RR.
  • Zhu M, Huang X, Yi S, et al. High granulocytic myeloid-derived suppressor cell levels in the peripheral blood predict a better IVF treatment outcome. J Matern Fetal Neonatal Med. 2019;32:1092–1097. doi:10.1080/14767058.2017.1400002.
  • Pan T, et al. 17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin Exp Immunol. 2016;185:86–97. doi:10.1111/cei.12790.
  • Ghaebi M, et al. Immune regulatory network in successful pregnancy and reproductive failures. Biomed Pharmacother. 2017;88:61–73. doi:10.1016/j.biopha.2017.01.016.
  • Bartmann C, et al. CD33(+)/HLA-DR(neg) and CD33(+)/HLA-DR(+/−) cells: rare populations in the human decidua with characteristics of MDSC. Am J Reprod Immunol (New York, N.Y.: 1989). 2016;75:539–556. doi:10.1111/aji.12492.
  • Wang Y, et al. Inhibition of pregnancy-associated granulocytic myeloid-derived suppressor cell expansion and arginase-1 production in preeclampsia. J Reprod Immunol. 2018;127:48–54. doi:10.1016/j.jri.2018.05.002.
  • Schwarz J, et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) accumulate in cord blood of preterm infants and remain elevated during the neonatal period. Clin Exp Immunol. 2018;191:328–337. doi:10.1111/cei.13059.
  • Verma P, et al. Altered crosstalk of estradiol and progesterone with Myeloid-derived suppressor cells and Th1/Th2 cytokines in early miscarriage is associated with early breakdown of maternal-fetal tolerance. Am J Reprod Immunol (New York, N.Y.: 1989). 2019;81:e13081. doi:10.1111/aji.13081.
  • Köstlin N, et al. HLA-G promotes myeloid-derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4. Eur J Immunol. 2017;47:374–384. doi:10.1002/eji.201646564.
  • Kang X, et al. CXCR2-mediated granulocytic myeloid-derived suppressor cells’ functional characterization and their role in maternal fetal interface. DNA Cell Biol. 2016;35:358–365. doi:10.1089/dna.2015.2962.
  • Ismail AQT. Does placental MDSC-mediated modulation of arginine levels help protect the foetus from auxotrophic pathogens?J Matern Fetal Neonatal Med. 2018;31:1667–1669, doi:10.1080/14767058.2017.1319935.
  • Ren J, et al. Myeloid-derived suppressor cells depletion may cause pregnancy loss via upregulating the cytotoxicity of decidual natural killer cells. Am J Reprod Immunol (New York, N.Y.: 1989). 2019;81:e13099. doi:10.1111/aji.13099.
  • Zhang T, et al. MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur J Immunol. 2018;48:1059–1073. doi:10.1002/eji.201747417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.