282
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Immunological and biological dissection of normal and tumoral salivary glands

, , &
Pages 139-155 | Received 12 Feb 2021, Accepted 12 Jul 2021, Published online: 11 Aug 2021

References

  • Zaura E, Brandt BW, Prodan A, et al. On the ecosystemic network of saliva in healthy young adults. Isme J. 2017;11(5):1218–1231. doi:10.1038/ismej.2016.199.
  • Lynge Pedersen AM, Belstrom D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80 Suppl 1:S3–S12. doi:10.1016/j.jdent.2018.08.010.
  • La Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol Lett. 2020;19(4):3045–3058. doi:10.3892/ol.2020.11441.[InsertedFromOnline]
  • Rai AK, Panda M, Das AK, et al. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol. 2021;203(1):137–152. doi:10.1007/s00203-020-02011-w.
  • Chattopadhyay I, Verma M, Panda M. Role of Oral Microbiome Signatures in Diagnosis and Prognosis of Oral Cancer. Technol Cancer Res Treat. 2019;18:1533033819867354. doi:10.1177/1533033819867354.
  • Porcheri C, Mitsiadis TA. Physiology, Pathology and Regeneration of Salivary Glands. Cells. 2019;8(9)
  • Bradley PJ. Classification of Salivary Gland Neoplasms. Adv Otorhinolaryngol. 2016;78:1–8. doi:10.1159/000442119.[InsertedFromOnline]
  • Fábián TK, Fejérdy P, Nguyen MT, Soti C, Csermely P. Potential immunological functions of salivary Hsp70 in mucosal and periodontal defense mechanisms. Arch Immunol Ther Exp (Warsz)). 2007;55(2):91–98. doi:10.1007/s00005-007-0012-z.[InsertedFromOnline]
  • Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13(4):4295–4320. doi:10.3390/ijms13044295.
  • Ando T, Hatsushika K, Wako M, et al. Orally administered TGF-beta is biologically active in the intestinal mucosa and enhances oral tolerance. J Allergy Clin Immunol. 2007;120(4):916–923. doi:10.1016/j.jaci.2007.05.023.
  • Penttila I. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats. Pediatr Res. 2006;59(5):650–655. doi:10.1203/01.pdr.0000203149.75465.74.
  • Mega J, McGhee JR, Kiyono H. Cytokine- and Ig-producing T cells in mucosal effector tissues: analysis of IL-5- and IFN-gamma-producing T cells, T cell receptor expression, and IgA plasma cells from mouse salivary gland-associated tissues. J Immunol. 1992;148(7):2030–2039.
  • Hofmann M, Pircher H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc Natl Acad Sci U S A. 2011;108(40):16741–16746. doi:10.1073/pnas.1107200108.
  • Thom JT, Weber TC, Walton SM, Torti N, Oxenius A. The salivary gland acts as a sink for tissue-resident memory CD8(+) T cells, facilitating protection from local cytomegalovirus infection. Cell Rep. 2015;13(6):1125–1136. doi:10.1016/j.celrep.2015.09.082.
  • Woyciechowski S, Hofmann M, Pircher H. α4 β1 integrin promotes accumulation of tissue-resident memory CD8+ T cells in salivary glands . Eur J Immunol. 2017;47(2):244–250. doi:10.1002/eji.201646722.
  • Persson EK, Uronen-Hansson H, Semmrich M, et al. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity. 2013;38(5):958–969. doi:10.1016/j.immuni.2013.03.009.
  • Gao Y, Nish SA, Jiang R, et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013;39(4):722–732. doi:10.1016/j.immuni.2013.08.028.
  • Le A, Saverin M, Hand AR. Distribution of dendritic cells in normal human salivary glands. Acta Histochem Cytochem. 2011;44(4):165–173. doi:10.1267/ahc.11010.
  • Schlitzer A, McGovern N, Teo P, et al. IRF4 transcription factor-dependent CD11b + dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38(5):970–983. doi:10.1016/j.immuni.2013.04.011.
  • Tanaka Y, Nagashima H, Bando K, et al. Oral CD103-CD11b + classical dendritic cells present sublingual antigen and induce Foxp3+ regulatory T cells in draining lymph nodes. Mucosal Immunol. 2017;10(1):79–90. doi:10.1038/mi.2016.46.
  • Liu R, Tang C, Shen A, et al. IL-37 suppresses hepatocellular carcinoma growth by converting pSmad3 signaling from JNK/pSmad3L/c-Myc oncogenic signaling to pSmad3C/P21 tumor-suppressive signaling. Oncotarget. 2016;7(51):85079–85096. doi:10.18632/oncotarget.13196.
  • Sfriso P, Oliviero F, Calabrese F, et al. Epithelial CXCR3-B regulates chemokines bioavailability in normal, but not in Sjogren’s syndrome, salivary glands. J Immunol. 2006;176(4):2581–2589. doi:10.4049/jimmunol.176.4.2581.
  • Andreasen S, Agander TK, Bjørndal K, et al. Genetic rearrangements, hotspot mutations, and microRNA expression in the progression of metastatic adenoid cystic carcinoma of the salivary gland. Oncotarget. 2018;9(28):19675–19687. doi:10.18632/oncotarget.24800.
  • Sowa P, Goroszkiewicz K, Szydelko J, et al. A Review of Selected Factors of Salivary Gland Tumour Formation and Malignant Transformation. Biomed Res Int. 2018;2018:2897827. doi:10.1155/2018/2897827.
  • Guzzo M, Locati LD, Prott FJ, Gatta G, McGurk M, Licitra L. Major and minor salivary gland tumors. Crit Rev Oncol Hematol. 2010;74(2):134–148. doi:10.1016/j.critrevonc.2009.10.004.
  • Licitra L, Grandi C, Prott FJ, Schornagel JH, Bruzzi P, Molinari R. Major and minor salivary glands tumours. Crit Rev Oncol Hematol. 2003;45(2):215–225. doi:10.1016/s1040-8428(02)00005-7.
  • Vigili MG, Sciarretta F, Marzetti A, Marzetti F. The recurrent multifocal pleomorphic adenoma. Acta Otorhinolaryngol Ital. 1993;13(1):31–42.
  • Kuzenko YV, Romanuk AM, Dyachenko OO, Hudymenko O. Pathogenesis of Warthin’s tumors. Interv Med Appl Sci. 2016;8(2):41–48. doi:10.1556/1646.8.2016.2.2.
  • Capodiferro S, Ingravallo G, Limongelli L, et al. Intra-cystic (in situ) mucoepidermoid carcinoma: a clinico-pathological study of 14 cases. J Clin Med. 2020;9(4)doi:10.3390/jcm9041157.
  • Ghosh-Laskar S, Murthy V, Wadasadawala T, et al. Mucoepidermoid carcinoma of the parotid gland: factors affecting outcome. Head Neck. 2011;33(4):497–503. doi:10.1002/hed.21477.
  • Bai S, Clubwala R, Adler E, et al. Salivary mucoepidermoid carcinoma: a multi-institutional review of 76 patients. Head and Neck Pathol. 2013;7(2):105–112. doi:10.1007/s12105-012-0405-0.
  • Godge P, Sharma S, Yadav M. Adenoid cystic carcinoma of the parotid gland. Contemp Clin Dent. 2012;3(2):223–226. doi:10.4103/0976-237X.96838.
  • Nakaguro M, Tada Y, Faquin WC, Sadow PM, Wirth LJ, Nagao T. Salivary duct carcinoma: Updates in histology, cytology, molecular biology, and treatment. Cancer Cytopathol. 2020;128(10):693–703. doi:10.1002/cncy.22288.
  • Alame M, Cornillot E, Cacheux V, et al. The molecular landscape and microenvironment of salivary duct carcinoma reveal new therapeutic opportunities. Theranostics. 2020;10(10):4383–4394. doi:10.7150/thno.42986.
  • Ma H, Zhang M, Qin J. Probing the role of mesenchymal stem cells in salivary gland cancer on biomimetic microdevices. Integr Biol (Camb)). 2012;4(5):522–530. doi:10.1039/c2ib20026k.
  • Von Luttichau I, Notohamiprodjo M, Wechselberger A, et al. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev. 2005;14(3):329–336. doi:10.1089/scd.2005.14.329.
  • Ghaderi A, Abtahi S. Mesenchymal stem cells: miraculous healers or dormant killers?Stem Cell Rev Rep. 2018;14(5):722–733. doi:10.1007/s12015-018-9824-y.
  • Razmkhah M, Abtahi S, Ghaderi A. Mesenchymal stem cells, immune cells and tumor cells crosstalk: a sinister triangle in the tumor microenvironment. Curr Stem Cell Res Ther. 2019;14(1):43–51. doi:10.2174/1574888X13666180816114809.
  • Lee Y, Shin JH, Longmire M, et al. CD44+ cells in head and neck squamous cell carcinoma suppress T-Cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res. 2016;22(14):3571–3581. doi:10.1158/1078-0432.CCR-15-2665.
  • Fedele V, Melisi D. Permissive state of EMT: The role of immune cell compartment. Front Oncol. 2020;10(:587. doi:10.3389/fonc.2020.00587.
  • Mak MP, Tong P, Diao L, et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res. 2016;22(3):609–620. doi:10.1158/1078-0432.CCR-15-0876.
  • Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020;468:72–81. doi:10.1016/j.canlet.2019.10.013.[InsertedFromOnline]
  • Spiegel JL, Jakob M, Kruizenga M, et al. Cancer stem cell markers in adenocarcinoma of the salivary glands – reliable prognostic markers?Eur Arch Otorhinolaryngol. 2021;278(7):2517–2528. doi:10.1007/s00405-020-06389-7.
  • Dong L, Wang YX, Li SL, et al. TGF-beta1 promotes migration and invasion of salivary adenoid cystic carcinoma. J Dent Res. 2011;90(6):804–809. doi:10.1177/0022034511401407.
  • Tang YL, Fan YL, Jiang J, et al. C-kit induces epithelial-mesenchymal transition and contributes to salivary adenoid cystic cancer progression. Oncotarget. 2014;5(6):1491–1501. doi:10.18632/oncotarget.1606.
  • Tsutsumi S, Saeki H, Nakashima Y, et al. Programmed death-ligand 1 expression at tumor invasive front is associated with epithelial-mesenchymal transition and poor prognosis in esophageal squamous cell carcinoma. Cancer Sci. 2017;108(6):1119–1127. doi:10.1111/cas.13237.
  • Xu GL, Ni CF, Liang HS, et al. Upregulation of PD-L1 expression promotes epithelial-to-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells. Gastroenterol Rep (Oxf)). 2020;8(5):390–398. doi:10.1093/gastro/goaa049.
  • Sisto M, Lisi S, Ribatti D. The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochem Cell Biol. 2018;150(2):133–147. doi:10.1007/s00418-018-1680-y.
  • Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–454. doi:10.1038/nrc822.
  • Georgolios A, Batistatou A, Manolopoulos L, Charalabopoulos K. Role and expression patterns of E-cadherin in head and neck squamous cell carcinoma (HNSCC). J Exp Clin Cancer Res. 2006;25(1):5–14.
  • Busch A, Bauer L, Wardelmann E, Rudack C, Grünewald I, Stenner M. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol. 2017;70(5):403–409. doi:10.1136/jclinpath-2016-203745.
  • Fan TF, Deng WW, Bu LL, Wu TF, Zhang WF, Sun ZJ. B7-H3 regulates migration and invasion in salivary gland adenoid cystic carcinoma via the JAK2/STAT3 signaling pathway. Am J Transl Res. 2017;9(3):1369–1380.
  • Langman G, Andrews CL, Weissferdt A. WT1 expression in salivary gland pleomorphic adenomas: a reliable marker of the neoplastic myoepithelium. Mod Pathol. 2011;24(2):168–174. doi:10.1038/modpathol.2010.190.
  • Enescu AS, Mărgăritescu CL, Crăiţoiu MM, Enescu A, Crăiţoiu Ş. The involvement of growth differentiation factor 5 (GDF5) and aggrecan in the epithelial-mesenchymal transition of salivary gland pleomorphic adenoma. Rom J Morphol Embryol. 2013;54(4):969–976.
  • Devi A, Yadav AB, Kamboj M, Narwal A, Kumar V, Singh V. Potential immmunohistochemical markers to characterize epithelial-mesenchymal transition in pleomorphic adenoma. J Exp Ther Oncol. 2019;13(1):1–7.
  • Pardis S, Zare R, Jaafari-Ashkavandi Z, Ashraf MJ, Khademi B. Twist expression in pleomorphic adenoma, adenoid cystic carcinoma and mucoepidermoid carcinoma of salivary glands. Turk Patoloji Derg. 2016;32(1):15–21. doi:10.5146/tjpath.2015.01343.
  • Allen CT, Clavijo PE, Van Waes C, Chen Z. Anti-tumor immunity in head and neck cancer: understanding the evidence, how tumors escape and immunotherapeutic approaches. Cancers (Basel)). 2015;7(4):2397–2414. doi:10.3390/cancers7040900.
  • Damar M, Dinç AE, Erdem D, et al. Pretreatment neutrophil-lymphocyte ratio in salivary gland tumors is associated with malignancy. Otolaryngol Head Neck Surg. 2016;155(6):988–996. doi:10.1177/0194599816659257.
  • Haghshenas MR, Khademi B, Faghih Z, Ghaderi A, Erfani N. Immune regulatory cells and IL17-producing lymphocytes in patients with benign and malignant salivary gland tumors. Immunology Letters. 2015;164(2):109–116.
  • O’Higgins C, Ward FJ, Abu Eid R. Abu Eid R. Deciphering the role of regulatory CD4 T cells in oral and oropharyngeal cancer: a systematic review. Front Oncol. 2018;8:442. doi:10.3389/fonc.2018.00442.
  • Martin F, Apetoh L, Ghiringhelli F. Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity?Trends Mol Med. 2012;18(12):742–749. doi:10.1016/j.molmed.2012.09.007.
  • Cohen CJ, Crome SQ, MacDonald KG, Dai EL, Mager DL, Levings MK. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol. 2011;187(11):5615–5626. doi:10.4049/jimmunol.1101058.
  • Kryczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009;114(6):1141–1149. doi:10.1182/blood-2009-03-208249.
  • Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–6541. doi:10.1182/blood-2010-11-317321.
  • He D, Li H, Yusuf N, et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 2010;184(5):2281–2288. doi:10.4049/jimmunol.0902574.
  • Huang Q, Duan L, Qian X, et al. IL-17 Promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma. Sci Rep. 2016;6:36551. doi:10.1038/srep36551.
  • Cosmi L, Maggi L, Santarlasci V, et al. Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol. 2010;125(1):222–230 e1-4. doi:10.1016/j.jaci.2009.10.012.
  • Haghshenas MR, Khademi B, Ashraf MJ, Ghaderi A, Erfani N. Helper and cytotoxic T-cell subsets (Th1, Th2, Tc1, and Tc2) in benign and malignant salivary gland tumors. Oral Dis. 2016;22(6):566–572. doi:10.1111/odi.12496.
  • Sparano A, Lathers DM, Achille N, Petruzzelli GJ, Young MR. Modulation of Th1 and Th2 cytokine profiles and their association with advanced head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 2004;131(5):573–576. doi:10.1016/j.otohns.2004.03.016.
  • Mosconi C, de Arruda JAA, de Farias ACR, et al. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019;88:95–101. doi:10.1016/j.oraloncology.2018.11.028.
  • Chang H, Kim JS, Choi YJ, et al. Overexpression of PD-L2 is associated with shorter relapse-free survival in patients with malignant salivary gland tumors. OTT. 2017;Volume 10:2983–2992. doi:10.2147/OTT.S134589.
  • Speight PM, Barrett AW. Salivary gland tumours. Oral Dis. 2002;8(5):229–240. doi:10.1034/j.1601-0825.2002.02870.x.
  • Linxweiler M, Kuo F, Katabi N, et al. The immune microenvironment and neoantigen landscape of aggressive salivary gland carcinomas differ by subtype. Clin Cancer Res. 2020;26(12):2859–2870. doi:10.1158/1078-0432.CCR-19-3758.
  • Sridharan V, Gjini E, Liao X, et al. Immune profiling of adenoid cystic carcinoma: PD-L2 expression and associations with tumor-infiltrating lymphocytes. Cancer Immunol Res. 2016;4(8):679–687. doi:10.1158/2326-6066.CIR-16-0031.
  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity . Nature. 2015; 2015523:231–235. (7559) doi:10.1038/nature14404.
  • Yang Y, Ye YC, Chen Y, Zhao JL, et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors . Cell Death Dis. 2018;9(8):793. doi:10.1038/s41419-018-0818-0.
  • Wang R, Geng N, Zhou Y, et al. Aberrant Wnt-1/beta-catenin signaling and WIF-1 deficiency are important events which promote tumor cell invasion and metastasis in salivary gland adenoid cystic carcinoma. BME. 2015;26(s1):S2145–S53. doi:10.3233/BME-151520.
  • Wend P, Fang L, Zhu Q, et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. Embo J. 2013;32(14):1977–1989. doi:10.1038/emboj.2013.127.
  • Yang Z, Li H, Wang W, et al. CCL2/CCR2 Axis promotes the progression of salivary adenoid cystic carcinoma via recruiting and reprogramming the tumor-associated macrophages. Front Oncol. 2019;9:231. doi:10.3389/fonc.2019.00231.
  • Sierra-Filardi E, Nieto C, Dominguez-Soto A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol. 2014;192(8):3858–3867. doi:10.4049/jimmunol.1302821.
  • Seifi S, Seyedmajidi M, Salehinejad J, Gholinia H, Aliakbarpour F. Immunohistochemical expression of CD56 and ALDH1 in common salivary gland tumors. Iran J Otorhinolaryngol. 2016;28(89):389–397.
  • Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN. Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother. 2004;53(3):176–186. doi:10.1007/s00262-003-0478-4.
  • Szkaradkiewicz A, Karpiński TM, Drews M, Borejsza-Wysocki M, Majewski P, Andrzejewska E. Natural killer cell cytotoxicity and immunosuppressive cytokines (IL-10, TGF-beta1) in patients with gastric cancer. J Biomed Biotechnol. 2010;2010:901564. doi:10.1155/2010/901564.
  • Molling JW, Langius JAE, Langendijk JA, et al. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol. 2007;25(7):862–868. doi:10.1200/JCO.2006.08.5787.
  • Ogawa Y, Hong SS, Toyosawa S, Chang CK, Yagi T. Expression of major histocompatibility complex class II antigens and interleukin-1 by epithelial cells of Warthin’s tumor. Cancer. 1990;66(10):2111–2117.
  • Thrane PS, Halstensen TS, Haanaes HR, Brandtzaeg P. Increased epithelial expression of HLA-DQ and HLA-DP molecules in salivary glands from patients with Sjögren’s syndrome compared with obstructive sialadenitis. Clin Exp Immunol. 2008;92(2):256–262. doi:10.1111/j.1365-2249.1993.tb03389.x.
  • Chin KW, Billings KR, Ishiyama A, Wang MB, Wackym PA. Characterization of lymphocyte subpopulations in Warthin’s tumor. Laryngoscope. 1995;105(9):928–933. doi:10.1288/00005537-199509000-00011.
  • Sakamoto K, Nakamura Y, Nakashima T. Immunohistochemical distribution of CD9 in parotid gland tumors. Auris Nasus Larynx. 2004;31(1):49–55. doi:10.1016/j.anl.2003.09.008.
  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–12297. doi:10.1073/pnas.192461099.
  • Mukaigawa T, Hayashi R, Hashimoto K, Ugumori T, Hato N, Fujii S. Programmed death ligand-1 expression is associated with poor disease free survival in salivary gland carcinomas. J Surg Oncol. 2016;114(1):36–43.
  • Krijgsman D, Roelands J, Hendrickx W, Bedognetti D, Kuppen PJK. HLA-G: A New Immune Checkpoint in Cancer?Int J Mol Sci. 2020;21(12).
  • Arolt C, Meyer M, Ruesseler V, et al. Lymphocyte activation gene 3 (LAG3) protein expression on tumor-infiltrating lymphocytes in aggressive and TP53-mutated salivary gland carcinomas. Cancer Immunol Immunother. 2020;69(7):1363–1373. doi:10.1007/s00262-020-02551-6.
  • Witte HM, Gebauer N, Lappöhn D, et al. Prognostic impact of PD-L1 expression in malignant salivary gland tumors as assessed by established scoring criteria: tumor proportion score (TPS), combined positivity score (CPS), and immune cell (IC) infiltrate. Cancers. 2020;12(4):873. doi:10.3390/cancers12040873.
  • Harada K, Ferdous T, Ueyama Y. PD-L1 expression in malignant salivary gland tumors. BMC Cancer. 2018;18(1):156. doi:10.1186/s12885-018-4069-3.
  • Vital D, Ikenberg K, Moch H, Rössle M, Huber GF. The expression of PD-L1 in salivary gland carcinomas. Sci Rep. 2019;9(1):12724. doi:10.1038/s41598-019-49215-9.
  • Dine J, Gordon R, Shames Y, Kasler MK, Barton-Burke M. Immune checkpoint inhibitors: an innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs. 2017;4(2):127–135. doi:10.4103/apjon.apjon_4_17.
  • Cohen RB, Delord J-P, Doi T, et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: findings of the phase 1b KEYNOTE-028 study. Am J Clin Oncol. 2018;41(11):1083–1088. doi:10.1097/COC.0000000000000429.
  • Long L, Zhang X, Chen F, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018;9(5-6):176–189. doi:10.18632/genesandcancer.180.
  • Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. 2019;10:379. doi:10.3389/fimmu.2019.00379.
  • Bachelerie F, Ben-Baruch A, Burkhardt AM, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66(1):1–79. doi:10.1124/pr.113.007724.
  • Uchida D, Kuribayashi N, Kinouchi M, et al. Expression and function of CXCR4 in human salivary gland cancers. Clin Exp Metastasis. 2013;30(2):133–142. doi:10.1007/s10585-012-9518-9.
  • Phattarataratip E, Dhanuthai K. Expression of C-X-C motif chemokine receptors 4 and 7 in salivary gland neoplasms. Arch Oral Biol. 2017;83:136–144. doi:10.1016/j.archoralbio.2017.07.012.
  • Klein Nulent TJW, van Es RJJ, Valstar MH, et al. High CXCR4 expression in adenoid cystic carcinoma of the head and neck is associated with increased risk of locoregional recurrence. J Clin Pathol. 2020;73(8):476–482.
  • Muller A, Sonkoly E, Eulert C, et al. Chemokine receptors in head and neck cancer: association with metastatic spread and regulation during chemotherapy. Int J Cancer. 2006;118(9):2147–2157. doi:10.1002/ijc.21514.
  • Shen Z, Li T, Chen D, et al. The CCL5/CCR5 axis contributes to the perineural invasion of human salivary adenoid cystic carcinoma. Oncol Rep. 2014;31(2):800–806.
  • Gao T, Shen Z, Ma C, Li Y, Kang X, Sun M. The CCL5/CCR5 Chemotactic Pathway Promotes Perineural Invasion in Salivary Adenoid Cystic Carcinoma. J Oral Maxillofac Surg 2018;76(8):1708–1718. doi:10.1016/j.joms.2018.02.009.
  • Legler DF, Uetz-von Allmen E, Hauser MA. CCR7: roles in cancer cell dissemination, migration and metastasis formation. Int J Biochem Cell Biol. 2014;54:78–82. doi:10.1016/j.biocel.2014.07.002.
  • Haghshenas MR, Ashraf MJ, Khademi B, Ghaderi A, Erfani N, Razmkhah M. and chemokine receptor patterns in patients with benign and malignant salivary gland tumors: a distinct role for CCR7. Eur Cytokine Netw. 2017;28(1):27–35. doi:10.1684/ecn.2017.0388.
  • Ueda M, Shimada T, Goto Y, et al. Expression of CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4) in head and neck squamous cell carcinoma. Auris, Nasus, Larynx. 2010;37(4):488–495.
  • Kondo T, Ito F, Nakazawa H, Horita S, Osaka Y, Toma H. High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J Urol. 2004;171(6 Pt 1):2171–2175. doi:10.1097/01.ju.0000127726.25609.87.
  • Mardani M, AndishehTadbir A, Khademi B, Melekzadeh M, Vaziri L. Decreased Serum Monocyte Chemoattractant Protein1 in Salivary Gland Tumor Patients. Asian Pac J Cancer Prev. 2016;17(7):3601–3604.
  • Diegel CR, Cho KR, El-Naggar AK, Williams BO, Lindvall C. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res. 2010;70(22):9143–9152. doi:10.1158/0008-5472.CAN-10-1758.
  • Sakai M, Fukumoto M, Ikai K, et al. Role of the mTOR signaling pathway in salivary gland development. Febs J. 2019;286(18):3701–3717. doi:10.1111/febs.14937.
  • Pai SG, Carneiro BA, Mota JM, et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10(1):101. doi:10.1186/s13045-017-0471-6.
  • Wang J, Chen J, Zhang K, Zhao Y, Nör JE, Wu J. TGF-β1 regulates the invasive and metastatic potential of mucoepidermoid carcinoma cells . J Oral Pathol Med. 2011;40(10):762–768. doi:10.1111/j.1600-0714.2011.01051.x.
  • Phuchareon J, van Zante A, Overdevest JB, McCormick F, Eisele DW, Tetsu O. Tetsu O. c-kit expression is rate-limiting for stem cell factor-mediated disease progression in adenoid cystic carcinoma of the salivary glands. Transl Oncol. 2014;7(5):537–545. doi:10.1016/j.tranon.2014.07.006.
  • Chen TY, Keeney MG, Chintakuntlawar AV, et al. Adenoid cystic carcinoma of the lacrimal gland is frequently characterized by MYB rearrangement. Eye (Lond)). 2017;31(5):720–725.,. doi:10.1038/eye.2016.307.
  • Kurzrock R, Bowles DW, Kang H, et al. Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: results from MyPathway, a phase IIa multiple basket study. Ann Oncol. 2020;31(3):412–421. doi:10.1016/j.annonc.2019.11.018.
  • Locati LD, Perrone F, Cortelazzi B, et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: Translational analyses and clinical impact. Eur J Cancer. 2016;69:158–165. doi:10.1016/j.ejca.2016.09.022.
  • Tchekmedyian V, Sherman EJ, Dunn L, et al. Phase II study of Lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J Clin Oncol. 2019;37(18):1529–1537. doi:10.1200/JCO.18.01859.
  • Takahashi H, Tada Y, Saotome T, et al. Phase II trial of trastuzumab and docetaxel in patients with human epidermal growth factor receptor 2-positive salivary duct carcinoma. J Clin Oncol. 2019;37(2):125–134. doi:10.1200/JCO.18.00545.
  • Wong SJ, Karrison T, Hayes DN, et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann Oncol. 2016;27(2):318–323. doi:10.1093/annonc/mdv537.
  • Goyal G, Mehdi SA, Ganti AK. Salivary gland cancers: Biology and systemic therapy. Oncology (Williston Park). 2015;29(10):773–780.
  • Stenman G, Persson F, Andersson MK. Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol. 2014;50(8):683–690. doi:10.1016/j.oraloncology.2014.04.008.
  • Barani S, Khademi B, Ghaderi A. KIR2DS4, KIR2DL2, and KIR2DS4del are linked with basaloid tumors, lymph node metastasis, advanced stage and metastatic risk in head and neck squamous cell carcinoma. Exp Mol Pathol. 2020;112:104345. doi:10.1016/j.yexmp.2019.104345.
  • Barani S, Khademi B, Ashouri E, Ghaderi A. KIR2DS1, 2DS5, 3DS1 and KIR2DL5 are associated with the risk of head and neck squamous cell carcinoma in Iranians. Hum Immunol. 2018;79(4):218–223. doi:10.1016/j.humimm.2018.01.012.
  • Morales-Estevez C, De la Haba-Rodriguez J, Manzanares-Martin B, et al. KIR genes and their ligands predict the response to Anti-EGFR monoclonal antibodies in solid tumors. Front Immunol. 2016;7:561. doi:10.3389/fimmu.2016.00561.
  • Faden DL, Concha-Benavente F, Chakka AB, McMichael EL, Chandran U, Ferris RL. Immunogenomic correlates of response to cetuximab monotherapy in head and neck squamous cell carcinoma. Head Neck. 2019;41(8):2591–2601.
  • Jie HB, Schuler PJ, Lee SC, et al. CTLA-4(+) Regulatory T cells increased in cetuximab-treated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer Res. 2015;75(11):2200–2210. doi:10.1158/0008-5472.CAN-14-2788.
  • Lopez-Albaitero A, Ferris RL. Immune activation by epidermal growth factor receptor specific monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg. 2007;133(12):1277–1281. doi:10.1001/archotol.133.12.1277.
  • Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res. 2013;19(7):1858–1872. doi:10.1158/1078-0432.CCR-12-2426.
  • Trivedi S, Srivastava RM, Concha-Benavente F, et al. Anti-EGFR targeted monoclonal antibody isotype influences antitumor cellular immunity in head and neck cancer patients. Clin Cancer Res. 2016;22(21):5229–5237. doi:10.1158/1078-0432.CCR-15-2971.
  • Lujan B, Hakim S, Moyano S, et al. Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br J Cancer. 2010;103(4):510–516.
  • Lee JH, Jeong JH, Kim TH, et al. Induction of squamous cell carcinoma after MAP3K8 overexpression in murine salivry gland epithelial cells. Head Neck. 2019;41(4):924–929. doi:10.1002/hed.25411.
  • Huang Y, Yu T, Fu X, et al. EGFR inhibition prevents in vitro tumor growth of salivary adenoid cystic carcinoma. BMC Cell Biol. 2013;14:13. doi:10.1186/1471-2121-14-13.
  • Kawahara K, Hiraki A, Yoshida R, et al. Salivary duct carcinoma treated with cetuximab-based targeted therapy: A case report. Mol Clin Oncol. 2017;6(6):886–892. doi:10.3892/mco.2017.1226.
  • Lai J-I, Reddy AK, Newberg JY, Montesion M, Chang PM-H. High-grade salivary gland ductal carcinoma with unusual EGFR amplification responsive to Afatinib. JCO Precision Oncology. 2019;(3):1–5.
  • Locati LD, Bossi P, Perrone F, et al. Cetuximab in recurrent and/or metastatic salivary gland carcinomas: A phase II study. Oral Oncol. 2019;45(7):574–118. doi:10.1016/j.oraloncology.2008.07.010.
  • Jakob JA, Kies MS, Glisson BS, et al. Phase II study of Gefitinib in patients with advanced salivary gland cancers. Head Neck. 2015;37(5):644–649. doi:10.1002/hed.23647.
  • Parag-Sharma K, Tasoulas J, Musicant AM, et al. Synergistic efficacy of combined EGFR and HDAC inhibitors overcomes tolerance to EGFR monotherapy in salivary mucoepidermoid carcinoma. Oral Oncol. 2021;115:105166. doi:10.1016/j.oraloncology.2020.105166.
  • Melnick M, Deluca KA, Sedghizadeh PP, Jaskoll T. Cytomegalovirus-induced salivary gland pathology: AREG, FGF8, TNF-α, and IL-6 signal dysregulation and neoplasia. Exp Mol Pathol. 2013;94(2):386–397. doi:10.1016/j.yexmp.2013.01.005.
  • Melnick M, Sedghizadeh PP, Allen CM, Jaskoll T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specic localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp Mol Pathol. 2012;92(1):118–125. doi:10.1016/j.yexmp.2011.10.011.
  • Braicu C, Buse M, Busuioc C, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel)). 2019;11(10)doi:10.3390/cancers11101618.
  • Ahn MY, Ahn JW, Kim HS, Lee J, Yoon JH. Apicidin inhibits cell growth by downregulating IGF-1R in salivary mucoepidermoid carcinoma cells. Oncol Rep. 2015;33(4):1899–1907. doi:10.3892/or.2015.3776.
  • Rodriguez CP, Wu QV, Voutsinas J, et al. A Phase II Trial of Pembrolizumab and Vorinostat in Recurrent Metastatic Head and Neck Squamous Cell Carcinomas and Salivary Gland Cancer. Clin Cancer Rese. 2020;26(4):837–845. doi:10.1158/1078-0432.CCR-19-2214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.